1
|
Turovsky EA, Plotnikov EY, Varlamova EG. Regulatory Role and Cytoprotective Effects of Exogenous Recombinant SELENOM under Ischemia-like Conditions and Glutamate Excitotoxicity in Cortical Cells In Vitro. Biomedicines 2024; 12:1756. [PMID: 39200220 PMCID: PMC11351740 DOI: 10.3390/biomedicines12081756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
Despite the successes in the prevention and treatment of strokes, it is still necessary to search for effective cytoprotectors that can suppress the damaging factors of cerebral ischemia. Among the known neuroprotectors, there are a number of drugs with a protein nature. In the present study, we were able to obtain recombinant SELENOM, a resident of the endoplasmic reticulum that exhibits antioxidant properties in its structure and functions. The resulting SELENOM was tested in two brain injury (in vitro) models: under ischemia-like conditions (oxygen-glucose deprivation/reoxygenation, OGD/R) and glutamate excitotoxicity (GluTox). Using molecular biology methods, fluorescence microscopy, and immunocytochemistry, recombinant SELENOM was shown to dose-dependently suppress ROS production in cortical cells in toxic models, reduce the global increase in cytosolic calcium ([Ca2+]i), and suppress necrosis and late stages of apoptosis. Activation of SELENOM's cytoprotective properties occurs due to its penetration into cortical cells through actin-dependent transport and activation of the Ca2+ signaling system. The use of SELENOM resulted in increased antioxidant protection of cortical cells and suppression of the proinflammatory factors and cytokines expression.
Collapse
Affiliation(s)
- Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| |
Collapse
|
2
|
El-Gazar AA, El-Emam SZ, M El-Sayyad S, El-Mancy SS, Fayez SM, Sheta NM, Al-Mokaddem AK, Ragab GM. Pegylated polymeric micelles of boswellic acid-selenium mitigates repetitive mild traumatic brain injury: Regulation of miR-155 and miR-146a/BDNF/ Klotho/Foxo3a cue. Int Immunopharmacol 2024; 134:112118. [PMID: 38705029 DOI: 10.1016/j.intimp.2024.112118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
This study aims to explore the protective machinery of pegylated polymeric micelles of boswellic acid-selenium (PMBS) against secondary neuronal damage triggered by mild repetitive traumatic brain injury (RTBI). After PMBS characterization in terms of particle size, size distribution, zeta potential, and transmission electronic microscopy, the selected formula was used to investigate its potency against experimental RTBI. Five groups of rats were used; group 1 (control) and the other four groups were subjected to RTBI. Groups 2 was RTBI positive control, while 3, 4, and 5 received boswellic acid (BSA), selenium (SEL), and PMBS, respectively. The open-field behavioral test was used for behavioral assessment. Subsequently, brain tissues were utilized for hematoxylin and eosin staining, Nissl staining, Western blotting, and ELISA in addition to evaluating microRNA expression (miR-155 and miR-146a). The behavioral changes, oxidative stress, and neuroinflammation triggered by RTBI were all improved by PMBS. Moreover, PMBS mitigated excessive glutamate-induced excitotoxicity and the dysregulation in miR-155 and miR-146a expression. Besides, connexin43 (Cx43) expression as well as klotho and brain-derived neurotrophic factor (BDNF) were upregulated with diminished neuronal cell death and apoptosis because of reduced Forkhead Box class O3a(Foxo3a) expression in the PMBS-treated group. The current study has provided evidence of the benefits produced by incorporating BSA and SEL in PEGylated polymeric micelles formula. PMBS is a promising therapy for RTBI. Its beneficial effects are attributed to the manipulation of many pathways, including the regulation of miR-155 and miR-146a expression, as well as the BDNF /Klotho/Foxo3a signaling pathway.
Collapse
Affiliation(s)
- Amira A El-Gazar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October 6 University, Giza, Egypt.
| | - Soad Z El-Emam
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Shorouk M El-Sayyad
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Shereen S El-Mancy
- Pharmaceutics and industrial pharmacy department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Sahar M Fayez
- Pharmaceutics and industrial pharmacy department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Nermin M Sheta
- Pharmaceutics and industrial pharmacy department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Asmaa K Al-Mokaddem
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ghada M Ragab
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr University for Science and Technology, Giza 12585, Egypt
| |
Collapse
|
3
|
Vedelek V, Jankovics F, Zádori J, Sinka R. Mitochondrial Differentiation during Spermatogenesis: Lessons from Drosophila melanogaster. Int J Mol Sci 2024; 25:3980. [PMID: 38612789 PMCID: PMC11012351 DOI: 10.3390/ijms25073980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Numerous diseases can arise as a consequence of mitochondrial malfunction. Hence, there is a significant focus on studying the role of mitochondria in cancer, ageing, neurodegenerative diseases, and the field of developmental biology. Mitochondria could exist as discrete organelles in the cell; however, they have the ability to fuse, resulting in the formation of interconnected reticular structures. The dynamic changes between these forms correlate with mitochondrial function and mitochondrial health, and consequently, there is a significant scientific interest in uncovering the specific molecular constituents that govern these transitions. Moreover, the specialized mitochondria display a wide array of variable morphologies in their cristae formations. These inner mitochondrial structures are closely associated with the specific functions performed by the mitochondria. In multiple cases, the presence of mitochondrial dysfunction has been linked to male sterility, as it has been observed to cause a range of abnormal spermatogenesis and sperm phenotypes in different species. This review aims to elucidate the dynamic alterations and functions of mitochondria in germ cell development during the spermatogenesis of Drosophila melanogaster.
Collapse
Affiliation(s)
- Viktor Vedelek
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Ferenc Jankovics
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary;
- Department of Medical Biology, Albert Szent-Györgyi Medical Centre, University of Szeged, 6720 Szeged, Hungary
| | - János Zádori
- Institute of Reproductive Medicine, Albert Szent-Györgyi Medical Centre, University of Szeged, 6723 Szeged, Hungary;
| | - Rita Sinka
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| |
Collapse
|
4
|
Zhang DG, Kunz WS, Lei XJ, Zito E, Zhao T, Xu YC, Wei XL, Lv WH, Luo Z. Selenium Ameliorated Oxidized Fish Oil-Induced Lipotoxicity via the Inhibition of Mitochondrial Oxidative Stress, Remodeling of Usp4-Mediated Deubiquitination, and Stabilization of Pparα. Antioxid Redox Signal 2024; 40:433-452. [PMID: 37265154 DOI: 10.1089/ars.2022.0194] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Aims: Studies demonstrated that oxidized fish oil (OFO) promoted oxidative stress and induced mitochondrial dysfunction and lipotoxicity, which attenuated beneficial effects of fish oil supplements in the treatment of nonalcoholic fatty liver disease (NAFLD). The current study was performed on yellow catfish, a good model to study NAFLD, and its hepatocytes to explore whether selenium (Se) could alleviate OFO-induced lipotoxicity via the inhibition of oxidative stress and determine its potential mechanism. Results: The analysis of triglycerides content, oxidative stress parameters, and histological and transmission electronic microscopy observation showed that high dietary Se supplementation alleviated OFO-induced lipotoxicity, oxidative stress, and mitochondrial injury and dysfunction. RNA-sequencing and immunoblotting analysis indicated that high dietary Se reduced OFO-induced decline of peroxisome-proliferator-activated receptor alpha (Pparα) and ubiquitin-specific protease 4 (Usp4) protein expression. High Se supplementation also alleviated OFO-induced reduction of thioredoxin reductase 2 (txnrd2) messenger RNA (mRNA) expression level and activity. The txnrd2 knockdown experiments revealed that txnrd2 mediated Se- and oxidized eicosapentaenoic acid (oxEPA)-induced changes of mitochondrial reactive oxygen species (mtROS) and further altered Usp4 mediated-deubiquitination and stabilization of Pparα, which, in turn, modulated mitochondrial fatty acid β-oxidation and metabolism. Mechanistically, Usp4 deubiquitinated Pparα and ubiquitin-proteasome-mediated Pparα degradation contributed to oxidative stress-induced mitochondrial dysfunction. Innovation: These findings uncovered a previously unknown mechanism by which Se and OFO interacted to affect lipid metabolism via the Txnrd2-mtROS-Usp4-Pparα pathway, which provides the new target for NAFLD prevention and treatment. Conclusion: Se ameliorated OFO-induced lipotoxicity via the inhibition of mitochondrial oxidative stress, remodeling of Usp4-mediated deubiquitination, and stabilization of Pparα. Antioxid. Redox Signal. 40, 433-452.
Collapse
Affiliation(s)
- Dian-Guang Zhang
- Shenzhen Institute of Nutrition and Health, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Wolfram S Kunz
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
- Department of Epileptology, University of Bonn, Bonn, Germany
| | - Xi-Jun Lei
- Shenzhen Institute of Nutrition and Health, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Ester Zito
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Tao Zhao
- Shenzhen Institute of Nutrition and Health, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Yi-Chuang Xu
- Shenzhen Institute of Nutrition and Health, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Lei Wei
- Shenzhen Institute of Nutrition and Health, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Wu-Hong Lv
- Shenzhen Institute of Nutrition and Health, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Zhi Luo
- Shenzhen Institute of Nutrition and Health, Fishery College, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
5
|
Xie D, Song C, Qin T, Zhai Z, Cai J, Dai J, Sun T, Xu Y. Moschus ameliorates glutamate-induced cellular damage by regulating autophagy and apoptosis pathway. Sci Rep 2023; 13:18586. [PMID: 37903904 PMCID: PMC10616123 DOI: 10.1038/s41598-023-45878-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 10/25/2023] [Indexed: 11/01/2023] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder, causes short-term memory and cognition declines. It is estimated that one in three elderly people die from AD or other dementias. Chinese herbal medicine as a potential drug for treating AD has gained growing interest from many researchers. Moschus, a rare and valuable traditional Chinese animal medicine, was originally documented in Shennong Ben Cao Jing and recognized for its properties of reviving consciousness/resuscitation. Additionally, Moschus has the efficacy of "regulation of menstruation with blood activation, relief of swelling and pain" and is used for treating unconsciousness, stroke, coma, and cerebrovascular diseases. However, it is uncertain whether Moschus has any protective effect on AD patients. We explored whether Moschus could protect glutamate (Glu)-induced PC12 cells from cellular injury and preliminarily explored their related action mechanisms. The chemical compounds of Moschus were analyzed and identified by GC-MS. The Glu-induced differentiated PC12 cell model was thought to be the common AD cellular model. The study aims to preliminarily investigate the intervention effect of Moschus on Glu-induced PC12 cell damage as well as their related action mechanisms. Cell viability, lactate dehydrogenase (LDH), mitochondrial reactive oxygen species, mitochondrial membrane potential (MMP), cell apoptosis, autophagic vacuoles, autolysosomes or autophagosomes, proteins related to apoptosis, and the proteins related to autophagy were examined and analyzed. Seventeen active compounds of the Moschus sample were identified based on GC-MS analysis. In comparison to the control group, Glu stimulation increased cell viability loss, LDH release, mitochondrial damage, loss of MMP, apoptosis rate, and the number of cells containing autophagic vacuoles, and autolysosomes or autophagosomes, while these results were decreased after the pretreatment with Moschus and 3-methyladenine (3-MA). Furthermore, Glu stimulation significantly increased cleaved caspase-3, Beclin1, and LC3II protein expression, and reduced B-cell lymphoma 2/BAX ratio and p62 protein expression, but these results were reversed after pretreatment of Moschus and 3-MA. Moschus has protective activity in Glu-induced PC12 cell injury, and the potential mechanism might involve the regulation of autophagy and apoptosis. Our study may promote research on Moschus in the field of neurodegenerative diseases, and Moschus may be considered as a potential therapeutic agent for AD.
Collapse
Affiliation(s)
- Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Caiyou Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhenwei Zhai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jie Cai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingyi Dai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Ying Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
6
|
Hegazy AA, Domouky AM, Akmal F, El-Wafaey DI. Possible role of selenium in ameliorating lead-induced neurotoxicity in the cerebrum of adult male rats: an experimental study. Sci Rep 2023; 13:15715. [PMID: 37735606 PMCID: PMC10514268 DOI: 10.1038/s41598-023-42319-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
Chronic lead (Pb) poisoning is one of the greatest public health risks. The nervous system is the primary and most vulnerable target of Pb poisoning. Selenium (Se) has been shown to be a potential protection against heavy metal toxicity through anti-inflammatory and antioxidant properties. Therefore, the present study aimed to elucidate the possible protective role of Se in ameliorating the effects of Pb on rat cerebral structure by examining oxidative stress and markers of apoptosis. The rats were divided into 6 groups: control group, Se group, low Pb group, high Pb group, low Pb + Se group, high Pb + Se group. After the 4-week experiment period, cerebral samples were examined using biochemical and histological techniques. Pb ingestion especially when administered in high doses resulted in cerebral injury manifested by a significant increase in glial fibrillary acidic protein, malondialdehyde (MDA) marker of brain oxidation and DNA fragmentation. Moreover, Pb produced alteration of the normal cerebral structure and cellular degeneration with a significant reduction in the total number of neurons and thickness of the frontal cortex with separation of meninges from the cerebral surface. There was also a decrease in total antioxidant capacity. All these changes are greatly improved by adding Se especially in the low Pb + Se group. The cerebral structure showed a relatively normal histological appearance with normally attached pia and an improvement in neuronal structure. There was also a decrease in MDA and DNA fragmentation and an increase TAC. Selenium is suggested to reduce Pb-induced neurotoxicity due to its modulation of oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Abdelmonem Awad Hegazy
- Human Anatomy and Embryology Department, Faculty of Dentistry, Zarqa University, Zarqa City, 13110, Jordan.
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig City, 44519, Egypt.
| | - Ayat M Domouky
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig City, 44519, Egypt
| | - Fatma Akmal
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig City, 44519, Egypt
| | - Dalia Ibrahim El-Wafaey
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig City, 44519, Egypt
| |
Collapse
|
7
|
Li L, Wang M, Ma YM, Yang L, Zhang DH, Guo FY, Jing L, Zhang JZ. Selenium inhibits ferroptosis in hyperglycemic cerebral ischemia/reperfusion injury by stimulating the Hippo pathway. PLoS One 2023; 18:e0291192. [PMID: 37682882 PMCID: PMC10490962 DOI: 10.1371/journal.pone.0291192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Hyperglycemia can exacerbate cerebral ischemia/reperfusion (I/R) injury, and the mechanism involves oxidative stress, apoptosis, autophagy and mitochondrial function. Our previous research showed that selenium (Se) could alleviate this injury. The aim of this study was to examine how selenium alleviates hyperglycemia-mediated exacerbation of cerebral I/R injury by regulating ferroptosis. Middle cerebral artery occlusion (MCAO) and reperfusion models were established in rats under hyperglycemic conditions. An in vitro model of hyperglycemic cerebral I/R injury was created with oxygen-glucose deprivation and reoxygenation (OGD/R) and high glucose was employed. The results showed that hyperglycemia exacerbated cerebral I/R injury, and sodium selenite pretreatment decreased infarct volume, edema and neuronal damage in the cortical penumbra. Moreover, sodium selenite pretreatment increased the survival rate of HT22 cells under OGD/R and high glucose conditions. Pretreatment with sodium selenite reduced the hyperglycemia mediated enhancement of ferroptosis. Furthermore, we observed that pretreatment with sodium selenite increased YAP and TAZ levels in the cytoplasm while decreasing YAP and TAZ levels in the nucleus. The Hippo pathway inhibitor XMU-MP-1 eliminated the inhibitory effect of sodium selenite on ferroptosis. The findings suggest that pretreatment with sodium selenite can regulate ferroptosis by activating the Hippo pathway, and minimize hyperglycemia-mediated exacerbation of cerebral I/R injury.
Collapse
Affiliation(s)
- Lu Li
- Ningxia Key Laboratory of Craniocerebral Diseases, Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Meng Wang
- Ningxia Key Laboratory of Craniocerebral Diseases, Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yan-Mei Ma
- Ningxia Key Laboratory of Craniocerebral Diseases, Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lan Yang
- Ningxia Key Laboratory of Craniocerebral Diseases, Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Deng-Hai Zhang
- The Shanghai Health Commission Key Lab of AI-Based Management of Inflammation and Chronic Diseases, The Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Feng-Ying Guo
- Ningxia Key Laboratory of Craniocerebral Diseases, Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Li Jing
- Ningxia Key Laboratory of Craniocerebral Diseases, Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jian-Zhong Zhang
- Ningxia Key Laboratory of Craniocerebral Diseases, Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
8
|
Shoorei H, Jafarabadi M, PourBayranvand S, Salehnia M. Comparison of mouse ovarian follicular development and gene expression in the presence of ovarian tissue extract and sodium selenite: An experimental study. Int J Reprod Biomed 2023; 21:415-424. [PMID: 37362095 PMCID: PMC10285190 DOI: 10.18502/ijrm.v21i5.13476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/01/2023] [Accepted: 04/17/2023] [Indexed: 06/28/2023] Open
Abstract
Background Ovarian tissue extract (OTE) and sodium selenite (SS) enhance the growth and maturation of preantral follicles in a dose-dependent manner. Objective The present study was designed to bring more information regarding the mechanism of OTE and SS on the mRNA expression of follicle-stimulating hormone receptors (FSHR) and the proliferation cell nuclear antigens (PCNA) of in vitro matured isolated follicles. Materials and Methods The tissue extract was prepared from adult ovaries. The preantral follicles (n = 266) were isolated from 12-16-day-old mice and cultured in the control, experimental I (10 ng/ml SS), and experimental II (OTE) groups for 12 days. The follicular diameter, survival, and maturation rates, also, the production of 17-β-estradiol and progesterone, and the follicular expression of PCNA and FSH receptor genes were analyzed. Results The survival rate of follicles in the SS-treated group (84.58%) was significantly higher than that OTE (75.63%; p = 0.023) and control (69.38%; p = 0.032) groups. The mean diameter of culture follicles in experimental group I (403.8 μm) and experimental group II (383.97 μm) increased significantly in comparison with the control group (342.05 μm; p = 0.032). The developmental rate of follicles, percentages of antrum formation, released metaphase II oocytes (p = 0.027; p = 0.019 respectively), production of hormones and the expression of 2 studied genes were significantly increased in both experimental groups in compare with control group (p = 0.021; p = 0.023 respectively). Conclusion The OTE and SS have a positive effect on development of mouse preantral follicles via over-expression of FSHR and PCNA genes.
Collapse
Affiliation(s)
- Hamed Shoorei
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mina Jafarabadi
- Vali-E-Asr Reproductive Health Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram PourBayranvand
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mojdeh Salehnia
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
9
|
Le Gouill-Jaijarat C, Péréon Y, Leroy M, Lépine O, Loloum A, Peluchon C, Volteau C, Martineau AS, Korner S, Perrault C, Benmaziane A, Girot P, Petorin C, Perret C, Ligeza-Poisson C, Mayeur D, Flet L, Chiffoleau A, Poinas A, Bennouna J. PROPERTY: study protocol for a randomized, double-blind, multicenter placebo-controlled trial assessing neurotoxicity in patients with metastatic gastrointestinal cancer taking PHYCOCARE® during oxaliplatin-based chemotherapy. Trials 2023; 24:50. [PMID: 36670495 PMCID: PMC9854012 DOI: 10.1186/s13063-023-07071-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/05/2023] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most common adverse effects of antineoplastic agents, ranging in prevalence from 19% to over 85%. Clinically, CIPN is a predominantly sensory neuropathy that may be accompanied by motor and autonomic changes of varying intensity and duration. The high prevalence of CIPN among cancer patients makes it a major problem for both patients and survivors, as well as for their health care providers, especially because there is currently no single effective method of preventing CIPN; moreover, the options for treating this syndrome are very limited. Phycocyanin, a biliprotein pigment and an important constituent of the blue-green algae Spirulina platensis, has been reported to possess significant antioxidant and radical-scavenging properties, offering protection against oxidative stress, which is one of the hypothetic mechanisms, between others, of CIPN occurrence. METHODS Our hypothesis is that phycocyanin may give protection against oxaliplatin-induced neuropathy in the treatment of gastrointestinal cancers. Our trial will be a randomized double-blind placebo-controlled study with 110 randomized patients suffering from metastatic gastrointestinal adenocarcinoma including esogastric, colorectal, and pancreatic cancers. Patients are being followed up in the gastroenterology or oncology departments of seven French hospitals. DISCUSSION Due to the neuropathy, patients need to avoid injury by paying careful attention to home safety; patients' physicians often prescribe over-the-counter pain medications. If validated, our hypothesis should help to limit neurotoxicity without the need to discontinue chemotherapy. TRIAL REGISTRATION ClinicalTrials.gov NCT05025826. First published on August 27, 2021.
Collapse
Affiliation(s)
- Christele Le Gouill-Jaijarat
- grid.277151.70000 0004 0472 0371Gastroenterology Department, CHU Nantes (Nantes Teaching Hospital), Nantes Université, Nantes, France
| | - Yann Péréon
- grid.277151.70000 0004 0472 0371Department of Clinical Neurophysiology, Reference Centre for Neuromuscular Diseases AOC, Filnemus, Euro-NMD, CHU Nantes, Nantes Université, Place Alexis-Ricordeau, Nantes, France
| | - Maxime Leroy
- grid.277151.70000 0004 0472 0371Sponsor Department, Nantes Université, CHU Nantes, Nantes, France
| | | | | | - Claire Peluchon
- grid.277151.70000 0004 0472 0371Gastroenterology Department, CHU Nantes (Nantes Teaching Hospital), Nantes Université, Nantes, France ,grid.277151.70000 0004 0472 0371Clinical Investigation Centre CIC1413, Nantes Université, CHU Nantes, Inserm, Nantes, France
| | - Christelle Volteau
- grid.277151.70000 0004 0472 0371Sponsor Department, Nantes Université, CHU Nantes, Nantes, France
| | - Anne-Sophie Martineau
- grid.277151.70000 0004 0472 0371Sponsor Department, Nantes Université, CHU Nantes, Nantes, France
| | - Simon Korner
- grid.277151.70000 0004 0472 0371Sponsor Department, Nantes Université, CHU Nantes, Nantes, France
| | - Caroline Perrault
- grid.277151.70000 0004 0472 0371Sponsor Department, Nantes Université, CHU Nantes, Nantes, France
| | - Asmahane Benmaziane
- grid.414106.60000 0000 8642 9959Medical Oncology Department, Hôpital Foch, Paris, France
| | - Paul Girot
- grid.477015.00000 0004 1772 6836Gastroenterology Department, CHD Vendée, La Roche sur Yon, France
| | - Caroline Petorin
- grid.411163.00000 0004 0639 4151CHU Estaing, Clermont-Ferrant, France
| | | | | | - Didier Mayeur
- grid.418037.90000 0004 0641 1257Centre Georges et François Leclerc, Dijon, France
| | - Laurent Flet
- grid.277151.70000 0004 0472 0371Department of Pharmacy, CHU Nantes, Nantes Université, Nantes, France
| | - Anne Chiffoleau
- grid.277151.70000 0004 0472 0371Sponsor Department, Nantes Université, CHU Nantes, Nantes, France
| | - Alexandra Poinas
- grid.277151.70000 0004 0472 0371Clinical Investigation Centre CIC1413, Nantes Université, CHU Nantes, Inserm, Nantes, France
| | - Jaafar Bennouna
- grid.414106.60000 0000 8642 9959Medical Oncology Department, Hôpital Foch, Paris, France
| |
Collapse
|
10
|
Zhang X, Yu H, Yan X, Li P, Wang C, Zhang C, Ji H, Gao Q, Dong S. Selenium improved mitochondrial quality and energy supply in the liver of high-fat diet-fed grass carp (Ctenopharyngodon idella) after heat stress. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1701-1716. [PMID: 36348187 DOI: 10.1007/s10695-022-01140-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
This study aims to explore the effects of dietary selenium on hepatic mitochondrial quality and energy supply of grass carp (Ctenopharyngodon idella) fed with high-fat diet (HFD) after heat stress (HS). Grass carp were fed with HFD, and HFD contained 0.3 mg/kg nano-selenium for 10 weeks, thereafter exposed to HS from 26 to 34 °C, and named the HFD + HS (control) group and the HFD + Se + HS group, respectively. The results show that selenium significantly prompted the growth, increased glutathione peroxidase (GPX) activity, but reduced malondialdehyde (MDA) content in the liver and the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the serum of grass carp fed with HFD after HS. Further, selenium alleviated mitochondrial damage and increased the number of mitochondrial DNA copies in the liver of the grass carp fed with HFD after HS. And selenium also maintained mitochondrial homeostasis by upregulating the expression of mitochondrial quality control-related genes (pgc-1α, nrf1/2, tfam, opa1, mfn1/2, and drp1), mitophagy-related genes (beclin1, atg5, atg12, pink1, and parkin), and the protein expression of parkin and LC3-II/I in the liver of grass carp. Finally, selenium reduced the triglyceride (TG) level and increased the free fatty acid (FFA) level and adenosine triphosphate (ATP) production in the liver of grass carp fed with HFD after HS. In conclusion, dietary selenium alleviated liver damage and improved liver mitochondrial quality and ATP production by increasing liver antioxidant capacity and promoting liver mitochondrial quality in grass carp fed with HFD after HS, which help grass carp to resist these two stressors.
Collapse
Affiliation(s)
- Xiaotian Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Haibo Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, China.
| | - Xianfang Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Pengju Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Chi Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Cheng Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Qinfeng Gao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Shuanglin Dong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266100, People's Republic of China
| |
Collapse
|
11
|
Al Omairi NE, Albrakati A, Alsharif KF, Almalki AS, Alsanie W, Abd Elmageed ZY, Zaafar D, Lokman MS, Bauomy AA, Belal SK, Abdel-Daim MM, Abdel Moneim AE, Alyami H, Kassab RB. Selenium Nanoparticles with Prodigiosin Rescue Hippocampal Damage Associated with Epileptic Seizures Induced by Pentylenetetrazole in Rats. BIOLOGY 2022; 11:biology11030354. [PMID: 35336729 PMCID: PMC8945383 DOI: 10.3390/biology11030354] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/31/2022] [Accepted: 02/13/2022] [Indexed: 12/11/2022]
Abstract
Simple Summary Epilepsy is a chronic neurological disease characterized by neuronal hyper electrical activity and the development of unprovoked seizures. Although several antiepileptic drugs are currently available, their application is associated with undesirable adverse effects. In an attempt to find a novel antiepileptic medication with minimum side effects, we have investigated the potential neuroprotective activity of prodigiosin, a red pigment produced by bacterial species that have important pharmaceutical and biological activities biosynthesized with selenium formulation (SeNPs-PDG) against a murine epileptic model mediated by pentylenetetrazole. The main recorded findings revealed that SeNPs-PDG delayed the onset of epileptic seizures and decreased their duration significantly. Additionally, SeNPs-PDG prevented hippocampal cell loss, oxidative stress, neuroinflammation, restored the balance between excitatory and inhibitory neurotransmitters, and notably normalized the monoaminergic and cholinergic transmission. These promising findings indicate that SeNPs-PDG might serve as a naturally derived anticonvulsant agent due to their active antioxidant, anti-inflammatory, anti-apoptotic, and neuromodulatory properties. Abstract Background: Prodigiosin (PDG) is a red pigment synthesized by bacterial species with important pharmaceutical and biological activities. Here, we investigated the neuroprotective and anticonvulsant activities of green biosynthesized selenium formulations with PDG (SeNPs-PDG) versus pentylenetetrazole (PTZ)-induced epileptic seizures. Methods: Rats were assigned into six experimental groups: control; PTZ (60 mg/kg, epileptic model); sodium valproate (200 mg/kg) + PTZ; PDG (300 mg/kg) + PTZ; sodium selenite (0.5 mg/kg) + PTZ; and SeNPs-PDG (0.5 mg/kg) + PTZ. The treatment duration is extended to 28 days. Results: SeNPs-PDG pre-treatment delayed seizures onset and reduced duration upon PTZ injection. Additionally, SeNPs-PDG enhanced the antioxidant capacity of hippocampal tissue by activating the expression of nuclear factor erythroid 2–related factor 2 and innate antioxidants (glutathione and glutathione derivatives, in addition to superoxide dismutase and catalase) and decreasing the levels of pro-oxidants (lipoperoxidation products and nitric oxide). SeNPs-PDG administration inhibited inflammatory reactions associated with epileptic seizure development by suppressing the production and activity of glial fibrillary acidic protein and pro-inflammatory mediators, including interleukin-1 beta, tumor necrosis factor-alpha, cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor kappa B. Moreover, SeNPs-PDG protected against hippocampal cell loss following PTZ injection by decreasing the levels of cytosolic cytochrome c, Bax, and caspase-3 and enhancing the expression of anti-apoptotic Bcl-2. Interestingly, SeNPs-PDG restored the PTZ-induced imbalance between excitatory and inhibitory amino acids and improved monoaminergic and cholinergic transmission. Conclusions: These promising antioxidative, anti-inflammatory, anti-apoptotic, and neuromodulatory activities indicate that SeNPs-PDG might serve as a naturally derived anticonvulsant agent.
Collapse
Affiliation(s)
- Naif E. Al Omairi
- Department of Internal Medicine, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (N.E.A.O.); (H.A.)
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Correspondence: ; Tel.: +966-555696608
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (K.F.A.); (W.A.)
| | | | - Walaa Alsanie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (K.F.A.); (W.A.)
| | - Zakaria Y. Abd Elmageed
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, University of Louisiana at Monroe, Monroe, LA 71203, USA;
| | - Dalia Zaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11311, Egypt;
| | - Maha S. Lokman
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdul Aziz University, Alkharj 11942, Saudi Arabia;
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo 11795, Egypt; (A.E.A.M.); (R.B.K.)
| | - Amira A. Bauomy
- Department of Science Laboratories, College of Science and Arts, Qassim University, ArRass 52719, Saudi Arabia;
| | - Saied K. Belal
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia;
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed E. Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo 11795, Egypt; (A.E.A.M.); (R.B.K.)
| | - Hussain Alyami
- Department of Internal Medicine, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (N.E.A.O.); (H.A.)
| | - Rami B. Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo 11795, Egypt; (A.E.A.M.); (R.B.K.)
- Biology Department, Faculty of Science and Arts, Al-Baha University, Al-Mukhwah 65554, Saudi Arabia
| |
Collapse
|
12
|
Tanaka KI, Shimoda M, Kawahara M. Effects of selenium-containing compounds on Cu 2+/Zn 2+-induced neuronal cell death and potential application as therapeutic agents for neurological diseases. Neural Regen Res 2022; 17:311-312. [PMID: 34269196 PMCID: PMC8463969 DOI: 10.4103/1673-5374.317968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Ken-Ichiro Tanaka
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, Shinmachi, Nishitokyo, Tokyo, Japan
| | - Mikako Shimoda
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, Shinmachi, Nishitokyo, Tokyo, Japan
| | - Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, Shinmachi, Nishitokyo, Tokyo, Japan
| |
Collapse
|
13
|
Ramezani M, Simani L, Abedi S, Pakdaman H. Is Selenium Supplementation Beneficial in Acute Ischemic Stroke? Neurologist 2021; 27:51-55. [PMID: 34842573 DOI: 10.1097/nrl.0000000000000365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Selenium (Se) plays a significant role in brain physiology. The existing human data demonstrate that stroke is associated with significantly reduced Se levels and glutathione peroxidase (GPx) activity. This study proposed to investigate the effect of intravenous Se (Selenase) administration in patients with acute ischemic stroke (AIS) on neurological outcomes, antioxidant enzyme activity, and inflammatory marker levels. METHODS AIS patients (n=50) were recruited from a neurology unit of a university-affiliated hospital. Patients were randomly assigned to receive either Selenase or placebo (saline) for 5 days. The modified ranking scale, the national institute of health stroke scale, and the mini-mental state examination, as primary outcomes, and the serum GPx concentration, total antioxidant activity, and tumor necrosis factor-α levels, as secondary outcomes, were measured at the baseline and on day 30. RESULTS Eventually, 44 patients with AIS completed the intervention study. A notable increase in GPx and total antioxidant activity levels was detected in the treatment group compared with the placebo group (110.63±52.48 m/mL, 1.34±0.30 mmol/L, P<0.05), whereas the serum tumor necrosis factor-α level in the Selenase group was significantly lower than that of the placebo group (58.58±61.33 pg/mL, P<0.05). In addition, Selenase improved the modified ranking scale and national institute of health stroke scale scores significantly (P<0.05 and <0.04, respectively), but no statistical difference was observed between the 2 groups in the mini-mental state examination score. CONCLUSION Selenase, plausibly due to its antioxidant function, results in positive outcomes in terms of neurological deficits, antioxidant enzyme activity, and inflammatory marker levels.
Collapse
Affiliation(s)
- Mahtab Ramezani
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences
- Department of Neurology
| | - Leila Simani
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hossein Pakdaman
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences
| |
Collapse
|
14
|
Nie M, Hu C, Shi G, Cai M, Wang X, Zhao X. Selenium restores mitochondrial dysfunction to reduce Cr-induced cell apoptosis in Chinese cabbage (Brassica campestris L. ssp. Pekinensis) root tips. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112564. [PMID: 34340154 DOI: 10.1016/j.ecoenv.2021.112564] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/18/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Chromium (Cr) disrupts the growth and physiology of plants. Selenium (Se) is considered as a promising option to help plants ameliorate Cr toxicity. To investigate the effects of exogenous Se on reactive oxygen species (ROS) burst and programmed cell death (PCD) in root tip cells under Cr stress, hydroponic experiments were carried out with Chinese cabbage seedlings grown in Hoagland solution containing 1 mg L-1 Cr and 0.1 mg L-1 Se. Results showed that Se scavenged the overproduction of H2O2 and O2-·, and alleviated the level of lipid peroxidation in root tips stressed by Cr. Moreover, Se effectively prevented DNA degradation and reduced the number of apoptotic cells in root tips. Compared with Cr treatment, Se supplementation reduced the content of ROS and malondialdehyde in mitochondria by 38.23% and 17.52%, respectively. Se application decreased the opening degree of mitochondrial permeability transition pores by 32.30%, increased mitochondrial membrane potential by 40.91%, alleviated the release of cyt c from mitochondria into cytosol by 18.42% and caused 57.40% decrease of caspase 3-like protease activity, and thus restored mitochondrial dysfunction caused by Cr stress. In addition, the alteration of Se on mitochondrial physiological properties maintained calcium homeostasis between mitochondria and cytosol, which further contributed to reducing the appearance of Cr-induced PCD. Findings suggested that Se restored mitochondrial dysfunction, which further rescued root tip cells from PCD, consequently activating defense strategies to protect plants from Cr toxicity and maintaining plant growth.
Collapse
Affiliation(s)
- Min Nie
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Chengxiao Hu
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Guangyu Shi
- College of Environment Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Miaomiao Cai
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China.
| |
Collapse
|
15
|
Zimmerman MA, Hall M, Qi Q, Mehta SL, Chen G, Li PA. Ubisol Coenzyme Q10 promotes mitochondrial biogenesis in HT22 cells challenged by glutamate. Exp Ther Med 2021; 22:1295. [PMID: 34630650 PMCID: PMC8461507 DOI: 10.3892/etm.2021.10730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/15/2021] [Indexed: 11/25/2022] Open
Abstract
Glutamate-induced excitotoxicity is a well-recognized cause of neuronal cell death. Nutritional supplementation with Coenzyme Q10 (CoQ10) has been previously demonstrated to serve neuro-protective effects against glutamate-induced excitotoxicity. The aim of the present study was to determine whether the protective effect of CoQ10 against glutamate toxicity could be attributed to stimulating mitochondrial biogenesis. Mouse hippocampal neuronal HT22 cells were incubated with glutamate with or without ubisol Q10. The results revealed that glutamate significantly decreased levels of mitochondrial biogenesis related proteins, including peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α and nuclear respiratory factor (NRF)2. Additionally, glutamate reduced mitochondrial biogenesis, as determined using a mitochondrial biogenesis kit. Pretreatment with CoQ10 prevented decreases in phosphorylated (p)-Akt, p-cAMP response element-binding protein, PGC-1α, NRF2 and mitochondrial transcription factor A, increasing mitochondrial biogenesis. Taken together, the results described a novel mechanism of CoQ10-induced neuroprotection and indicated a central role for mitochondrial biogenesis in protecting against glutamate-induced excitotoxicity.
Collapse
Affiliation(s)
- Mary A Zimmerman
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA.,Department of Biology, University of Wisconsin La Crosse, La Crosse, WI 54601, USA
| | - Mia Hall
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA
| | - Qi Qi
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA.,Department of Neurology, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, P.R. China
| | - Suresh L Mehta
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA.,Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Guisheng Chen
- Department of Neurology, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, P.R. China
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
16
|
Rafiee Z, Rezaee-Tazangi F, Zeidooni L, Alidadi H, Khorsandi L. Protective effects of selenium on Bisphenol A-induced oxidative stress in mouse testicular mitochondria and sperm motility. JBRA Assist Reprod 2021; 25:459-465. [PMID: 33899458 PMCID: PMC8312290 DOI: 10.5935/1518-0557.20210010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE This study aimed to explore the impact of selenium (SE) on Bisphenol-A (BPA)-exposed sperm and isolated testicular mitochondria of mice. METHODS Mouse sperm and isolated mitochondria were exposed to BPA (0.8 mM) and different concentrations of SE (50, 100, and 200 μM) for four hours. The viability of sperm and isolated mitochondria as well as the mitochondrial membrane potential (MMP) were evaluated. SOD (superoxide dismutase), GSH (glutathione), MDA (malondialdehyde), and ROS (reactive oxygen species) levels in testicular mitochondria were also examined. RESULTS BPA concentration-dependently enhanced ROS and MDA levels in isolated mitochondria, while MMP and acclivity of GSH and SOD significantly reduced. BPA also considerably impaired spermatozoa survival and motility. SE concentration-dependently reduced mitochondrial oxidative stress, MMP, sperm survival, and total sperm motility. CONCLUSIONS Our findings collectively suggested that SE concentration-dependently reversed BPA-caused mitochondrial toxicity and reduced sperm motility by suppressing oxidative stress.
Collapse
Affiliation(s)
- Zeinab Rafiee
- Student Research committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Rezaee-Tazangi
- Department of Anatomical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Zeidooni
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadis Alidadi
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Department of Anatomical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
17
|
Zhang Y, Gliyazova NS, Li PA, Ibeanu G. Phenoxythiophene sulfonamide compound B355252 protects neuronal cells against glutamate-induced excitotoxicity by attenuating mitochondrial fission and the nuclear translocation of AIF. Exp Ther Med 2021; 21:221. [PMID: 33603830 PMCID: PMC7851598 DOI: 10.3892/etm.2021.9652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/03/2020] [Indexed: 01/03/2023] Open
Abstract
Glutamate neurotoxicity has been implicated in the initiation and progression of various neurological and neurodegenerative disorders. Therefore, it is necessary to develop therapeutics for the treatment of patients with these devastating diseases. Mitochondrial fission plays an import role in the mediation of cell death and survival. The objective of the present study was to determine whether B355252, a phenoxythiophene sulfonamide derivative, reduces glutamate-induced cell death by inhibiting mitochondrial fission and the nuclear translocation of apoptosis-inducing factor (AIF) in glutamate-challenged HT22 neuronal cells. The results revealed that glutamate treatment led to large increases in the mitochondrial levels of the major fission proteins dynamin-related protein 1 (Drp1) and mitochondrial fission 1 protein (Fis1), but only small elevations in the fusion proteins mitofusin 1 and 2 (Mfn1/2) and optic atrophy 1 (Opa1). In addition, glutamate toxicity disrupted mitochondrial reticular networks and increased the translocation of AIF to the nucleus. Pretreatment with B35525 reduced glutamate-induced cell death and prevented the increases in the protein levels of Drp1, Fis1, Mfn1/2 and Opa1 in the mitochondrial fraction. More importantly, the architecture of the mitochondria was protected and nuclear translocation of AIF was completely inhibited by B35525. These findings suggest that the regulation of mitochondrial dynamics is central to the neuroprotective properties of B355252, and presents an attractive opportunity for potential development as a therapy for neurodegenerative disorders associated with mitochondria dysfunction.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA.,Institute of Clinical Pharmacology, Department of Pharmacy, General Hospital of Ningxia Medical University, Ningxia 750004, P.R. China.,School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Nailya S Gliyazova
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA
| | - Gordon Ibeanu
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
18
|
Malekzadeh Kebria M, Salehnia M, Zavareh S, Moazzeni SS. The effect of sodium selenite on apoptotic gene expression and development of in vitro cultured mouse oocytes in comparison with in vivo obtained oocytes. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2020; 11:377-383. [PMID: 33643591 PMCID: PMC7904118 DOI: 10.30466/vrf.2018.93471.2255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/04/2018] [Indexed: 11/13/2022]
Abstract
In vitro maturation (IVM) of oocytes is widely used in assisted reproduction technologies. The present study aimed to improve the in vitro oocyte maturation and its development through enriching the culture media with sodium selenite (SS). Moreover, the effects of SS on the expression of the oocytes apoptosis-related genes were assessed. In this study, male and female NMRI mice were used and after collecting their germinal vesicle (GV) oocytes, they were cultured with SS (experimental group) and without SS (control group). Collected metaphase II oocytes (MII) from the fallopian tube were considered as in vivo group. After in vitro culture, the oocytes were assessed in terms of nuclear maturation. The MII oocytes were inseminated and the development was examined until the blastocyst stage. Also, oocytes were subjected to the molecular analysis for evaluating the expression of BAX, BCL2, P53, and BAD genes using the real-time RT-PCR. The maturation rate was significantly increased in the SS supplemented group compared to the control one. The developmental rate of the embryos was significantly higher for both of the in vivo and SS supplemented groups rather than the control one, however, no significant difference was seen between these rates of the experimental and in vivo groups. Real-time RT-PCR did not show any significant differences in the expression of the apoptosis-related genes for all of the studied groups. The p53 gene was not expressed in any of groups. Sodium selenite improved the oocyte developmental competence but did not change the expression of the apoptosis-related genes in MII oocytes.
Collapse
Affiliation(s)
| | - Mojdeh Salehnia
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran;
| | - Saeed Zavareh
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, Iran;
- Institute of Biological Sciences, Damghan University, Damghan, Iran;
| | - Seyyed Saeed Moazzeni
- Prevention of Metabolic Research Disorder Center, Research Institute for Endocrine Disorder, Shahid Beheshti University of Medical Science, Tehran, Iran.
| |
Collapse
|
19
|
Yang SJ, Han AR, Choi HR, Hwang K, Kim EA, Choi SY, Cho SW. N-Adamantyl-4-methylthiazol-2-amine suppresses glutamate-induced autophagic cell death via PI3K/Akt/mTOR signaling pathways in cortical neurons. BMB Rep 2020. [PMID: 32635984 PMCID: PMC7607153 DOI: 10.5483/bmbrep.2020.53.10.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently reported that N-adamantyl-4-methylthiazol-2-amine (KHG26693) attenuates glutamate-induced oxidative stress and inflammation in the brain. In this study, we investigated KHG 26693 as a therapeutic agent against glutamate-induced autophagic death of cortical neurons. Treatment with KHG26693 alone did not affect the viability of cultured cortical neurons but was protective against glutamate-induced cytotoxicity in a concentration-dependent manner. KHG26693 attenuated the glutamate-induced increase in protein levels of LC3, beclin-1, and p62. Whereas glutamate decreased the phosphorylation of PI3K, Akt, and mTOR, these levels were restored by treatment with KHG26693. These results suggest that KHG26693 inhibits glutamate-induced autophagy by regulating PI3K/Akt/mTOR signaling. Finally, KHG26693 treatment also attenuated glutamate-induced increases in reactive oxygen species, glutathione, glutathione peroxidase, and superoxide dismutase levels in cortical neurons, indicating that KHG26693 also protects cortical neurons against glutamate-induced autophagy by regulating the reactive oxygen species scavenging system.
Collapse
Affiliation(s)
- Seung-Ju Yang
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea
| | - A Reum Han
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hye-Rim Choi
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea
| | - Kyouk Hwang
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Eun-A Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
20
|
Nakano Y, Shimoda M, Okudomi S, Kawaraya S, Kawahara M, Tanaka KI. Seleno-l-methionine suppresses copper-enhanced zinc-induced neuronal cell death via induction of glutathione peroxidase. Metallomics 2020; 12:1693-1701. [PMID: 32926024 DOI: 10.1039/d0mt00136h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Excessive zinc ion (Zn2+) release is induced in pathological situations and causes neuronal cell death. Previously, we have reported that copper ions (Cu2+) markedly exacerbated Zn2+-induced neuronal cell death by potentiating oxidative stress, the endoplasmic reticulum (ER) stress response, and the activation of the c-Jun amino-terminal kinase (JNK) signaling pathway. In contrast, selenium (Se), an essential trace element, and amino acids containing selenium (such as seleno-l-methionine) have been reported to inhibit stress-induced neuronal cell death and oxidative stress. Thus, we investigated the effect of seleno-l-methionine on Cu2+/Zn2+-induced neuronal cell death in GT1-7 cells. Seleno-l-methionine treatment clearly restored the Cu2+/Zn2+-induced decrease in the viable cell number and attenuated the Cu2+/Zn2+-induced cytotoxicity. Accordingly, the levels of ER stress-related factors (especially, CHOP and GADD34) and of phosphorylated JNK increased upon CuCl2 and ZnCl2 co-treatment, whereas pre-treatment with seleno-l-methionine significantly suppressed these upregulations. Analysis of reactive oxygen species (ROS) as upstream factors of these pathways revealed that Cu2+/Zn2+-induced ROS production was clearly suppressed by seleno-l-methionine treatment. Finally, we found that seleno-l-methionine induced the antioxidative protein, glutathione peroxidase. Taken together, our findings suggest that seleno-l-methionine suppresses Cu2+/Zn2+-induced neuronal cell death and oxidative stress via induction of glutathione peroxidase. Thus, we think that seleno-l-methionine may help prevent refractory neurological diseases.
Collapse
Affiliation(s)
- Yukari Nakano
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | | | | | | | | | | |
Collapse
|
21
|
Yuan X, Fu Z, Ji P, Guo L, Al-Ghamdy AO, Alkandiri A, Habotta OA, Abdel Moneim AE, Kassab RB. Selenium Nanoparticles Pre-Treatment Reverse Behavioral, Oxidative Damage, Neuronal Loss and Neurochemical Alterations in Pentylenetetrazole-Induced Epileptic Seizures in Mice. Int J Nanomedicine 2020; 15:6339-6353. [PMID: 32922005 PMCID: PMC7455605 DOI: 10.2147/ijn.s259134] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Introduction Epilepsy is a chronic neurological condition characterized by behavioral, molecular, and neurochemical alterations. Current antiepileptic drugs are associated with various adverse impacts. The main goal of the current study is to investigate the possible anticonvulsant effect of selenium nanoparticles (SeNPs) against pentylenetetrazole (PTZ)-mediated epileptic seizures in mice hippocampus. Sodium valproate (VPA) was used as a standard anti-epileptic drug. Methods Mice were assigned into five groups (n=15): control, SeNPs (5 mg/kg, orally), PTZ (60 mg/kg, intraperitoneally), SeNPs+PTZ and VPA (200 mg/kg)+PTZ. All groups were treated for 10 days. Results PTZ injection triggered a state of oxidative stress in the hippocampal tissue as represented by the elevated lipoperoxidation, heat shock protein 70 level, and nitric oxide formation while decreased glutathione level and antioxidant enzymes activity. Additionally, the blotting analysis showed downregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in the epileptic mice. A state of neuroinflammation was recorded following the developed seizures represented by the increased pro-inflammatory cytokines. Moreover, neuronal apoptosis was recorded following the development of epileptic convulsions. At the neurochemical level, acetylcholinesterase activity and monoamines content were decreased in the epileptic mice, accompanied by high glutamate and low GABA levels in the hippocampal tissue. However, SeNP supplementation was found to delay the onset and decreased the duration of tonic, myoclonic, and generalized seizures following PTZ injection. Moreover, SeNPs were found to provide neuroprotection through preventing the development of oxidative challenge via the upregulation of Nrf2 and HO-1, inhibiting the inflammatory response and apoptotic cascade. Additionally, SeNPs reversed the changes in the activity and levels of neuromodulators following the development of epileptic seizures. Conclusion The obtained results suggest that SeNPs could be used as a promising anticonvulsant drug due to its potent antioxidant, anti-inflammatory, and neuromodulatory activities.
Collapse
Affiliation(s)
- Xiaona Yuan
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450000, People's Republic of China
| | - Zhenshuai Fu
- Department of ICU, Sunshine Union Hospital, Weifang City, Shandong Province 261000, People's Republic of China
| | - Pengfei Ji
- Department of Ophthalmology, Zhengzhou Second Hospital, Zhengzhou City, Henan Province 450000, People's Republic of China
| | - Lubo Guo
- Department of Pharmacy, Central Hospital Affiliated to Shandong First Medical University, Jinan City, Shandong Province 250013, People's Republic of China
| | - Ali O Al-Ghamdy
- Biology Department, Faculty of Science and Arts, Al Baha University, Almakhwah, Saudi Arabia
| | - Ali Alkandiri
- Department of Pharmacy, Central Hospital Affiliated to Shandong First Medical University, Jinan City, Shandong Province 250013, People's Republic of China.,Laboratory Technology Department, College of Technological Studies, Safat 13092, Kuwait
| | - Ola A Habotta
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Helwan 11795, Egypt
| |
Collapse
|
22
|
Yang L, Ma YM, Shen XL, Fan YC, Zhang JZ, Li PA, Jing L. The Involvement of Mitochondrial Biogenesis in Selenium Reduced Hyperglycemia-Aggravated Cerebral Ischemia Injury. Neurochem Res 2020; 45:1888-1901. [DOI: 10.1007/s11064-020-03055-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/29/2020] [Accepted: 05/13/2020] [Indexed: 10/24/2022]
|
23
|
Wang CC, Ho YH, Hung CF, Kuo JR, Wang SJ. Xanthohumol, an active constituent from hope, affords protection against kainic acid-induced excitotoxicity in rats. Neurochem Int 2020; 133:104629. [DOI: 10.1016/j.neuint.2019.104629] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
|
24
|
Ma W, He S, Ma H, Jiang H, Yan N, Zhu L, Bang JJ, Li PA, Jia S. Silver Nanoparticle Exposure Causes Pulmonary Structural Damage and Mitochondrial Dynamic Imbalance in the Rat: Protective Effects of Sodium Selenite. Int J Nanomedicine 2020; 15:633-645. [PMID: 32099356 PMCID: PMC6996549 DOI: 10.2147/ijn.s232986] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
Background With the increased application of Silver nanoparticles (AgNP), its potential concerns to the health of human beings remain to be defined. This study aims to explore the harmful effects of AgNP on lung tissue in animals and to examine the mechanisms of protection achieved by sodium selenite. Methods Sprague-Dawley(SD) rats were exposed to AgNP (200 μL,1mg/mL) through a single intratracheal instillation. Sodium selenite (0.2mg/kg) was i.p. injected. Malondialdehyde (MDA) and glutathione (GSH) were measured using a spectrophotometer. Histological outcomes and ultrastructural changes were assessed by hematoxylin and eosin (HE) staining and electronic microscopy. Caspases and mitochondrial fission and fusion markers were measured by Western blotting. Results The histopathologic findings showed that AgNP significantly increased the thickness of alveolar septa, accumulation of macrophage, and the formation of pulmonary bullae and pulmonary consolidation. Ultrastructural studies showed localization of AgNP inside the mitochondria, hyperplasia and vacuolation of type I and type II alveolar cells, lysis of osmiophilic lamellar bodies, and swollen of the mitochondria. AgNP elevated MDA and reduced GSH levels. AgNP activated caspases-3, increased mitochondrial fission markers Dynamin-related protein 1 (Drp1) and phospho-Drp1(p-Drp1), and decreased fusion proteins optic atrophy 1 (Opa1) and mitofusins 2 (Mfn2). Treatment with sodium selenite for 7 days corrected the AgNP-caused alterations in morphological, ultrastructural, oxidative stress, caspase-3 activation and mitochondrial dynamic imbalance. Conclusion We conclude that the exposure of AgNP causes lung tissue damage by enhances oxidative stress, activates caspases-3, and triggers mitochondrial dynamic imbalance towards fission. Sodium selenite effectively detoxifies the AgNP-induced damage to the lung tissue by preventing the above alterations.
Collapse
Affiliation(s)
- Wanrui Ma
- Department of General Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China.,Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), North Carolina Central University, Durham, NC, USA.,Department of Environmental, Earth and Geospatial Sciences, North Carolina Central University, Durham, NC, USA
| | - Shan He
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of hina
| | - Huiyan Ma
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of hina
| | - Haifeng Jiang
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Ning Yan
- Heart Centre, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Lili Zhu
- Heart Centre, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - John J Bang
- Department of Environmental, Earth and Geospatial Sciences, North Carolina Central University, Durham, NC, USA
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), North Carolina Central University, Durham, NC, USA
| | - Shaobin Jia
- Heart Centre, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| |
Collapse
|
25
|
Rusetskaya NY, Fedotov IV, Koftina VA, Borodulin VB. Selenium Compounds in Redox Regulation of Inflammation and Apoptosis. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2019. [DOI: 10.1134/s1990750819040085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Rusetskaya NY, Fedotov IV, Koftina VA, Borodulin VB. [Selenium compounds in redox regulation of inflammation and apoptosis]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 65:165-179. [PMID: 31258141 DOI: 10.18097/pbmc20196503165] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Monocytes and macrophages play a key role in the development of inflammation: under the action of lipopolysaccharides (LPS), absorbed from the intestine, monocytes and macrophages form reactive oxygen species (ROS) and cytokines, this leads to the development of oxidative stress, inflammation and/or apoptosis in all types of tissues. In the cells LPS induce an "internal" TLR4-mediated MAP-kinase inflammatory signaling pathway and cytokines through the superfamily of tumor necrosis factor receptor (TNFR) and the "death domain" (DD) initiate an "external" caspase apoptosis cascade or necrosis activation that causes necroptosis. Many of the proteins involved in intracellular signaling cascades (MYD88, ASK1, IKKa/b, NF-kB, AP-1) are redox-sensitive and their activity is regulated by antioxidants thioredoxin, glutaredoxin, nitroredoxin, and glutathione. Oxidation of these signaling proteins induced by ROS enhances the development of inflammation and apoptosis, and their reduction with antioxidants, on the contrary, stabilizes the signaling cascades speed, preventing the vicious circle of oxidative stress, inflammation and apoptosis that follows it. Antioxidant (AO) enzymes thioredoxin reductase (TRXR), glutaredoxin reductase (GLRXR), glutathione reductase (GR) are required for reduction of non-enzymatic antioxidants (thioredoxin, glutaredoxin, nitroredoxin, glutathione), and AO enzymes (SOD, catalase, GPX) are required for ROS deactivation. The key AO enzymes (TRXR and GPX) are selenium-dependent; therefore selenium deficiency leads to a decrease in the body's antioxidant defense, the development of oxidative stress, inflammation, and/or apoptosis in various cell types. Nrf2-Keap1 signaling pathway activated by selenium deficiency and/or oxidative stress is necessary to restore redox homeostasis in the cell. In addition, expression of some genes is changed with selenium deficiency. Consequently, growth and proliferation of cells, their movement, development, death, and survival, as well as the interaction between cells, the redox regulation of intracellular signaling cascades of inflammation and apoptosis, depend on the selenium status of the body. Prophylactic administration of selenium-containing preparations (natural and synthetic (organic and inorganic)) is able to normalize the activity of AO enzymes and the general status of the body. Organic selenium compounds have a high bioavailability and, depending on their concentration, can act both as selenium donors to prevent selenium deficiency and as antitumor drugs due to their toxicity and participation in the regulation of signaling pathways of apoptosis. Known selenorganic compounds diphenyldiselenide and ethaselen share similarity with the Russian organo selenium compound, diacetophenonylselenide (DAPS-25), which serves as a source of bioavailable selenium, exhibits a wide range of biological activity, including antioxidant activity, that governs cell redox balance, inflammation and apoptosis regulation.
Collapse
Affiliation(s)
- N Y Rusetskaya
- Razumovsky Saratov State Medical University, Saratov, Russia
| | - I V Fedotov
- Razumovsky Saratov State Medical University, Saratov, Russia
| | - V A Koftina
- Razumovsky Saratov State Medical University, Saratov, Russia
| | - V B Borodulin
- Razumovsky Saratov State Medical University, Saratov, Russia
| |
Collapse
|
27
|
Sarni AR, Baroni L. Milk and Parkinson disease: Could galactose be the missing link. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2019. [DOI: 10.3233/mnm-180234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Luciana Baroni
- Primary Care Unit, Northern District, Local Health Unit 2 Marca Trevigiana, Treviso, Italy
| |
Collapse
|
28
|
Yuan Y, Zhang A, Qi J, Wang H, Liu X, Zhao M, Duan S, Huang Z, Zhang C, Wu L, Zhang B, Zhang A, Xing C. p53/Drp1-dependent mitochondrial fission mediates aldosterone-induced podocyte injury and mitochondrial dysfunction. Am J Physiol Renal Physiol 2017; 314:F798-F808. [PMID: 28659272 DOI: 10.1152/ajprenal.00055.2017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial dysfunction is increasingly recognized as an important factor in glomerular diseases. Previous study has shown that mitochondrial fission contributed to mitochondrial dysfunction. However, the mechanism of mitochondrial fission on mitochondrial dysfunction in aldosterone-induced podocyte injury remains ambiguous. This study aimed to investigate the pathogenic effect of mitochondrial fission both in vivo and in vitro. In an animal model of aldosterone-induced nephropathy, inhibition of the mitochondrial fission protein dynamin-related protein 1 (Drp1) suppressed aldosterone-induced podocyte injury. In cultured podocytes, aldosterone dose dependently induced Drp1 expression. Knockdown of Drp1 inhibited aldosterone-induced mitochondrial fission, mitochondrial dysfunction, and podocyte apoptosis. Furthermore, aldosterone dose dependently induced p53 expression. Knockdown of p53 inhibited aldosterone-induced Drp1 expression, mitochondrial dysfunction, and podocyte apoptosis. These findings implicated that aldosterone induced mitochondrial dysfunction and podocyte injury mediated by p53/Drp1-dependent mitochondrial fission, which may provide opportunities for therapeutic intervention for podocyte injury.
Collapse
Affiliation(s)
- Yanggang Yuan
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University , Nanjing , China
| | - Aiqing Zhang
- Department of Pediatric Nephrology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University , Nanjing , China
| | - Jia Qi
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Hui Wang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University , Nanjing , China
| | - Xi Liu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University , Nanjing , China
| | - Min Zhao
- Department of Nephrology, Nanjing Children's Hospital, Nanjing Medical University , Nanjing , China
| | - Suyan Duan
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University , Nanjing , China
| | - Zhimin Huang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University , Nanjing , China
| | - Chengning Zhang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University , Nanjing , China
| | - Lin Wu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University , Nanjing , China
| | - Bo Zhang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University , Nanjing , China
| | - Aihua Zhang
- Department of Nephrology, Nanjing Children's Hospital, Nanjing Medical University , Nanjing , China
| | - Changying Xing
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University , Nanjing , China
| |
Collapse
|