1
|
Brant RA, Edwards CE, Reid JL, Bassüner B, Delfeld B, Dell N, Mangan SA, de la Paz Bernasconi Torres V, Albrecht MA. Restoration age affects microbial-herbaceous plant interactions in an oak woodland. Ecol Evol 2024; 14:e11360. [PMID: 38706936 PMCID: PMC11066493 DOI: 10.1002/ece3.11360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024] Open
Abstract
In degraded ecosystems, soil microbial communities (SMCs) may influence the outcomes of ecological restoration. Restoration practices can affect SMCs, though it is unclear how variation in the onset of restoration activities in woodlands affects SMCs, how those SMCs influence the performance of hard-to-establish woodland forbs, and how different woodland forbs shape SMCs. In this study, we quantified soil properties and species abundances in an oak woodland restoration chronosequence (young, intermediate, and old restorations). We measured the growth of three woodland forb species when inoculated with live whole-soil from young, intermediate, or old restorations. We used DNA metabarcoding to characterize SMCs of each inoculum treatment and the soil after conditioning by each plant species. Our goals were to (1) understand how time since the onset of restoration affected soil abiotic properties, plant communities, and SMCs in a restoration chronosequence, (2) test growth responses of three forb species to whole-soil inoculum from restoration sites, and (3) characterize changes in SMCs before and after conditioning by each forb species. Younger restored woodlands had greater fire-sensitive tree species and lower concentrations of soil phosphorous than intermediate or older restored woodlands. Bacterial and fungal soil communities varied significantly among sites. Forbs exhibited the greatest growth in soil from the young restoration. Each forb species developed a unique soil microbial community. Our results highlight how restoration practices affect SMCs, which can in turn affect the growth of hard-to-establish forb species. Our results also highlight that the choice of forb species can alter SMCs, which could have long-term potential consequences for restoration success.
Collapse
Affiliation(s)
| | | | - John Leighton Reid
- Missouri Botanical GardenSt. LouisMissouriUSA
- Present address:
School of Plant and Environmental SciencesVirginia TechBlacksburgVirginiaUSA
| | | | | | - Noah Dell
- Missouri Botanical GardenSt. LouisMissouriUSA
| | - Scott A. Mangan
- Department of Biological SciencesArkansas State UniversityJonesboroArkansasUSA
| | | | | |
Collapse
|
2
|
Wang B, Chen C, Xiao YM, Chen KY, Wang J, Zhao S, Liu N, Li JN, Zhou GY. Trophic relationships between protists and bacteria and fungi drive the biogeography of rhizosphere soil microbial community and impact plant physiological and ecological functions. Microbiol Res 2024; 280:127603. [PMID: 38199002 DOI: 10.1016/j.micres.2024.127603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
Rhizosphere microorganisms play a vital role in enhancing plant health, productivity, and the accumulation of secondary metabolites. Currently, there is a limited understanding of the ecological processes that control the assembly of community. To address the role of microbial interactions in assembly and for functioning of the rhizosphere soil microbiota, we collected rhizosphere soil samples from Anisodus tanguticus on the Tibetan Plateau spanning 1500 kilometers, and sequenced the bacteria, fungi, archaea, and protist communities. We observed a significant but weak distance-decay relationship in the microbial communities of rhizosphere soil. Our comprehensive analysis of spatial, abiotic, and biotic factors showed that trophic relationships between protists and bacteria and fungi predominantly influenced the alpha and beta diversity of bacterial, fungal, and protistan communities, while abiotic factors had a greater impact on archaeal communities, including soil pH, available phosphorus, total phosphorus and mean annual temperature. Importantly, microbial interactions had a more significant influence on Anisodus tanguticus physiological and ecological functions compared to individual microorganisms. Network analyses revealed that bacteria occupy a central position of the co-occurrence network and play a crucial role of connector within this community. The addition of protists increased the stability of bacterial, fungal, and archaeal networks. Overall, our findings indicate that trophic relationships play an important role in assembly and for functioning of the rhizosphere soil microbiota. Bacterial communities serve as a crucial link between different kingdoms of microorganisms in the rhizosphere community. These findings help us to fully harness the beneficial functions of rhizosphere microorganisms for plants and achieve sustainable use of biological resources.
Collapse
Affiliation(s)
- Bo Wang
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Chen
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Yuan-Ming Xiao
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China
| | - Kai-Yang Chen
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Wang
- Qinghai University, Xining 810016, China
| | - Shuo Zhao
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Liu
- Qinghai University, Xining 810016, China
| | - Jia-Nan Li
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guo-Ying Zhou
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China.
| |
Collapse
|
3
|
Legume plant defenses and nutrients mediate indirect interactions between soil rhizobia and chewing herbivores. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Saha H, Kaloterakis N, Harvey JA, Van der Putten WH, Biere A. Effects of Light Quality on Colonization of Tomato Roots by AMF and Implications for Growth and Defense. PLANTS 2022; 11:plants11070861. [PMID: 35406841 PMCID: PMC9002964 DOI: 10.3390/plants11070861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
Beneficial soil microbes can enhance plant growth and defense, but the extent to which this occurs depends on the availability of resources, such as water and nutrients. However, relatively little is known about the role of light quality, which is altered during shading, resulting a low red: far-red ratio (R:FR) of light. We examined how low R:FR light influences arbuscular mycorrhizal fungus (AMF)-mediated changes in plant growth and defense using Solanum lycopersicum (tomato) and the insect herbivore Chrysodeixis chalcites. We also examined effects on third trophic level interactions with the parasitoid Cotesia marginiventris. Under low R:FR light, non-mycorrhizal plants activated the shade avoidance syndrome (SAS), resulting in enhanced biomass production. However, mycorrhizal inoculation decreased stem elongation in shaded plants, thus counteracting the plant’s SAS response to shading. Unexpectedly, activation of SAS under low R:FR light did not increase plant susceptibility to the herbivore in either non-mycorrhizal or mycorrhizal plants. AMF did not significantly affect survival or growth of caterpillars and parasitoids but suppressed herbivore-induced expression of jasmonic acid-signaled defenses genes under low R:FR light. These results highlight the context-dependency of AMF effects on plant growth and defense and the potentially adverse effects of AMF under shading.
Collapse
Affiliation(s)
- Haymanti Saha
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (N.K.); (J.A.H.); (W.H.V.d.P.); (A.B.)
- Correspondence: ; Tel.: +31-645036538
| | - Nikolaos Kaloterakis
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (N.K.); (J.A.H.); (W.H.V.d.P.); (A.B.)
- Soil Biology Group, Wageningen University and Research, Droevendaalsesteeg 2, 6708 PB Wageningen, The Netherlands
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Jeffrey A. Harvey
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (N.K.); (J.A.H.); (W.H.V.d.P.); (A.B.)
- Department of Ecological Sciences, Section Animal Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Wim H. Van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (N.K.); (J.A.H.); (W.H.V.d.P.); (A.B.)
- Laboratory of Nematology, Wageningen University and Research, Droevendaalsesteeg 2, 6708 PB Wageningen, The Netherlands
| | - Arjen Biere
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (N.K.); (J.A.H.); (W.H.V.d.P.); (A.B.)
| |
Collapse
|
5
|
Zhang P, Luan M, Li X, Lian Z, Zhao X. The distribution of soil fungal communities along an altitudinal gradient in an alpine meadow. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
6
|
Goyal RK, Mattoo AK, Schmidt MA. Rhizobial-Host Interactions and Symbiotic Nitrogen Fixation in Legume Crops Toward Agriculture Sustainability. Front Microbiol 2021; 12:669404. [PMID: 34177848 PMCID: PMC8226219 DOI: 10.3389/fmicb.2021.669404] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Symbiotic nitrogen fixation (SNF) process makes legume crops self-sufficient in nitrogen (N) in sharp contrast to cereal crops that require an external input by N-fertilizers. Since the latter process in cereal crops results in a huge quantity of greenhouse gas emission, the legume production systems are considered efficient and important for sustainable agriculture and climate preservation. Despite benefits of SNF, and the fact that chemical N-fertilizers cause N-pollution of the ecosystems, the focus on improving SNF efficiency in legumes did not become a breeder’s priority. The size and stability of heritable effects under different environment conditions weigh significantly on any trait useful in breeding strategies. Here we review the challenges and progress made toward decoding the heritable components of SNF, which is considerably more complex than other crop allelic traits since the process involves genetic elements of both the host and the symbiotic rhizobial species. SNF-efficient rhizobial species designed based on the genetics of the host and its symbiotic partner face the test of a unique microbiome for its success and productivity. The progress made thus far in commercial legume crops with relevance to the dynamics of host–rhizobia interaction, environmental impact on rhizobial performance challenges, and what collectively determines the SNF efficiency under field conditions are also reviewed here.
Collapse
Affiliation(s)
- Ravinder K Goyal
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB, Canada
| | - Autar K Mattoo
- Sustainable Agricultural Systems Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, MD, United States
| | - Maria Augusta Schmidt
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB, Canada
| |
Collapse
|
7
|
Ochieno DMW, Karoney EM, Muge EK, Nyaboga EN, Baraza DL, Shibairo SI, Naluyange V. Rhizobium-Linked Nutritional and Phytochemical Changes Under Multitrophic Functional Contexts in Sustainable Food Systems. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2020.604396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rhizobia are bacteria that exhibit both endophytic and free-living lifestyles. Endophytic rhizobial strains are widely known to infect leguminous host plants, while some do infect non-legumes. Infection of leguminous roots often results in the formation of root nodules. Associations between rhizobia and host plants may result in beneficial or non-beneficial effects. Such effects are linked to various biochemical changes that have far-reaching implications on relationships between host plants and the dependent multitrophic biodiversity. This paper explores relationships that exist between rhizobia and various plant species. Emphasis is on nutritional and phytochemical changes that occur in rhizobial host plants, and how such changes affect diverse consumers at different trophic levels. The purpose of this paper is to bring into context various aspects of such interactions that could improve knowledge on the application of rhizobia in different fields. The relevance of rhizobia in sustainable food systems is addressed in context.
Collapse
|
8
|
Elhady A, Hallmann J, Heuer H. Symbiosis of soybean with nitrogen fixing bacteria affected by root lesion nematodes in a density-dependent manner. Sci Rep 2020; 10:1619. [PMID: 32005934 PMCID: PMC6994534 DOI: 10.1038/s41598-020-58546-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/17/2020] [Indexed: 11/09/2022] Open
Abstract
Early maturing varieties of soybean have a high yield potential in Europe, where the main biotic threat to soybean cultivation are root lesion nematodes (Pratylenchus spp.). Nitrogen fixation in root nodules by highly efficient inoculants of Bradyrhizobium japonicum is an incentive to grow soybean in low-input rotation systems. We investigated density-dependent effects of Pratylenchus penetrans on nitrogen fixation by co-inoculated B. japonicum. Less than 130 inoculated nematodes affected the number and weight of nodules, the density of viable bacteroids in nodules, and nitrogen fixation measured as concentration of ureides in leaves. With more inoculated nematodes, the percentage that invaded the roots increased, and adverse effects on the symbiosis accelerated, leading to non-functional nodules at 4,000 and more nematodes. When P. penetrans invaded roots that had fully established nodules, growth of nodules, density of bacteroids, and nitrogen fixation were affected but not the number of nodules. In contrast, nodulation of already infested roots resulted in a high number of small nodules with decreased densities of bacteroids and nitrogen fixation. P. penetrans invaded and damaged the nodules locally, but they also significantly affected the nodule symbiosis by a plant-mediated mechanism, as shown in an experiment with split-root systems.
Collapse
Affiliation(s)
- Ahmed Elhady
- Department of Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
- Department of Plant Protection, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Johannes Hallmann
- Department of Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Holger Heuer
- Department of Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany.
| |
Collapse
|
9
|
Yu M, Wang Q, Tao W, Liu G, Liu W, Wang L, Ma L. Interactions between arbuscular mycorrhizal fungi and soil properties jointly influence plant C, N, and P stoichiometry in West Lake, Hangzhou. RSC Adv 2020; 10:39943-39953. [PMID: 35515378 PMCID: PMC9057508 DOI: 10.1039/d0ra08185j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/28/2020] [Indexed: 12/03/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) play important roles in terrestrial plants via mutualistic symbiosis. However, knowledge about the functions of AMF in aquatic plants remains limited. Here, four dominate emergent plant communities in West Lake, Hangzhou were chosen, the characteristics of AMF, plant C, N, and P stoichiometry, and soil properties were investigated. The results showed that both AMF infection rates and the number of AMF spore species increased, suggesting a great mutualism between AMF and emergent plants. Contents of C, N, and P in aboveground biomass and roots and their ratios varied greatly among these four emergent plants. Moreover, AMF infection frequency showed a significant negative correlation with aboveground biomass N (p < 0.05), whereas the rates of arbuscular mycorrhiza formation and vesicular formation after root infection showed significant negative correlations with root N and root N/P. Soil total C, soil total N, soil total P, and oxidation–reduction potential (ORP) were significantly associated with AMF infection characteristics. Our main findings are that the results of redundancy analysis and path analysis further indicated that soil C, N, and P contents, and ORP affected plant C, N, and P contents and their stoichiometry directly. Meanwhile, soil properties can also regulate plant ecological stoichiometry indirectly via altering AMF mycorrhiza. Our findings highlight that interactions between AMF and soil play crucial roles in regulating plant ecological stoichiometry and can be treated as a whole in investigating the relationships between plant and soil. Arbuscular mycorrhizal fungi (AMF) play important roles in emergent plants via mutualistic symbiosis.![]()
Collapse
Affiliation(s)
- Mengfei Yu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China
- College of Life Sciences
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Qinxiang Wang
- Yellow River Conservancy Technical Institute
- Kaifeng 475000
- China
| | - Weixia Tao
- Yellow River Conservancy Technical Institute
- Kaifeng 475000
- China
| | - Guihua Liu
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration
- Wuhan Botanical Garden
- Chinese Academy of Sciences
- Wuhan 430074
- China
| | - Wenzhi Liu
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration
- Wuhan Botanical Garden
- Chinese Academy of Sciences
- Wuhan 430074
- China
| | - Lai Wang
- State Key Laboratory of Iron and Steel Industry Environmental Protection
- Energy Conservation and Environment Protection Co., Ltd
- MCC Group
- Beijing 100088
- China
| | - Lin Ma
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration
- Wuhan Botanical Garden
- Chinese Academy of Sciences
- Wuhan 430074
- China
| |
Collapse
|
10
|
Zhang YC, Zou YN, Liu LP, Wu QS. Common mycorrhizal networks activate salicylic acid defense responses of trifoliate orange (Poncirus trifoliata). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:1099-1111. [PMID: 30450833 DOI: 10.1111/jipb.12743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/12/2018] [Indexed: 05/27/2023]
Abstract
Citrus canker, caused by Xanthomonas axonopodis pv. citri ('Xac'), is an important quarantine disease in citrus crops. Arbuscular mycorrhizal fungi (AMF) form symbiotic interactions with host plants and further affect their disease resistance, possibly by modulating the activity of salicylic acid (SA), a key phytohormone in disease resistance. Common mycorrhizal networks (CMNs) can interconnect plants, but it is not yet clear whether CMNs promote resistance to citrus canker and, if so, whether SA signaling is involved in this process. To test this possibility, we used a two-chambered rootbox to establish CMNs between trifoliate orange (Poncirus trifoliata) seedlings in chambers inoculated (treated) or not (neighboring) with the AMF, Paraglomus occultum. A subset of the AMF-inoculated seedlings were also inoculated with Xac (+AMF+Xac). At 2 d post-inoculation (dpi), compared with the +AMF-Xac treatment, neighboring seedlings in +AMF+Xac treatment had lower expression levels of the SA biosynthetic genes, PtPAL, PtEPS1, and PtPBS3, but higher SA levels, which attributed to the upregulation of PtPAL and PtPBS3 in treated seedlings and the transfer of SA, via CMNs, to the neighboring seedlings. At 4 dpi, the pathogenesis-related (PR) protein genes, PtPR1, PtPR4, and PtPR5, and the transcriptional regulatory factor gene, PtNPR1, were activated in neighboring seedlings of +AMF+Xac treatment. At 9 dpi, root phenylalanine ammonia-lyase activity and total soluble phenol and lignin concentrations increased in neighboring seedlings of +AMF+Xac treatment, likely due to the linkage and signal transfer, via CMNs. These findings support the hypothesis that CMNs transfer the SA signal from infected to neighboring healthy seedlings, to activate defense responses and affording protection to neighboring plants against citrus canker infection.
Collapse
Affiliation(s)
- Yi-Can Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
- Institute of Root Biology, Yangtze University, Jingzhou, 434025, China
| | - Ying-Ning Zou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
- Institute of Root Biology, Yangtze University, Jingzhou, 434025, China
| | - Li-Ping Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
- Institute of Root Biology, Yangtze University, Jingzhou, 434025, China
| | - Qiang-Sheng Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
- Institute of Root Biology, Yangtze University, Jingzhou, 434025, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic
| |
Collapse
|
11
|
De Long JR, Fry EL, Veen GF, Kardol P. Why are plant–soil feedbacks so unpredictable, and what to do about it? Funct Ecol 2018. [DOI: 10.1111/1365-2435.13232] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jonathan R. De Long
- Department of Terrestrial Ecology Netherlands Institute of Ecology Wageningen The Netherlands
- School of Earth and Environmental Sciences The University of Manchester Manchester UK
| | - Ellen L. Fry
- School of Earth and Environmental Sciences The University of Manchester Manchester UK
| | - G. F. Veen
- Department of Terrestrial Ecology Netherlands Institute of Ecology Wageningen The Netherlands
| | - Paul Kardol
- Department of Forest Ecology and Management Swedish University of Agricultural Sciences Umeå Sweden
| |
Collapse
|
12
|
Wood CW, Pilkington BL, Vaidya P, Biel C, Stinchcombe JR. Genetic conflict with a parasitic nematode disrupts the legume-rhizobia mutualism. Evol Lett 2018; 2:233-245. [PMID: 30283679 PMCID: PMC6121810 DOI: 10.1002/evl3.51] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/07/2018] [Accepted: 03/09/2018] [Indexed: 12/13/2022] Open
Abstract
Genetic variation for partner quality in mutualisms is an evolutionary paradox. One possible resolution to this puzzle is that there is a tradeoff between partner quality and other fitness‐related traits. Here, we tested whether susceptibility to parasitism is one such tradeoff in the mutualism between legumes and nitrogen‐fixing bacteria (rhizobia). We performed two greenhouse experiments with the legume Medicago truncatula. In the first, we inoculated each plant with the rhizobia Ensifer meliloti and with one of 40 genotypes of the parasitic root‐knot nematode Meloidogyne hapla. In the second experiment, we inoculated all plants with rhizobia and half of the plants with a genetically variable population of nematodes. Using the number of nematode galls as a proxy for infection severity, we found that plant genotypes differed in susceptibility to nematode infection, and nematode genotypes differed in infectivity. Second, we showed that there was a genetic correlation between the number of mutualistic structures formed by rhizobia (nodules) and the number of parasitic structures formed by nematodes (galls). Finally, we found that nematodes disrupt the rhizobia mutualism: nematode‐infected plants formed fewer nodules and had less nodule biomass than uninfected plants. Our results demonstrate that there is genetic conflict between attracting rhizobia and repelling nematodes in Medicago. If genetic conflict with parasitism is a general feature of mutualism, it could account for the maintenance of genetic variation in partner quality and influence the evolutionary dynamics of positive species interactions.
Collapse
Affiliation(s)
- Corlett W Wood
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario M5S3B2 Canada
| | - Bonnie L Pilkington
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario M5S3B2 Canada
| | - Priya Vaidya
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario M5S3B2 Canada
| | - Caroline Biel
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario M5S3B2 Canada
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario M5S3B2 Canada.,Koffler Scientific Reserve University of Toronto Toronto Ontario M5S3B2 Canada
| |
Collapse
|
13
|
Ranjbar Sistani N, Kaul HP, Desalegn G, Wienkoop S. Rhizobium Impacts on Seed Productivity, Quality, and Protection of Pisum sativum upon Disease Stress Caused by Didymella pinodes: Phenotypic, Proteomic, and Metabolomic Traits. FRONTIERS IN PLANT SCIENCE 2017; 8:1961. [PMID: 29204150 PMCID: PMC5699443 DOI: 10.3389/fpls.2017.01961] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/31/2017] [Indexed: 05/24/2023]
Abstract
In field peas, ascochyta blight is one of the most common fungal diseases caused by Didymella pinodes. Despite the high diversity of pea cultivars, only little resistance has been developed until to date, still leading to significant losses in grain yield. Rhizobia as plant growth promoting endosymbionts are the main partners for establishment of symbiosis with pea plants. The key role of Rhizobium as an effective nitrogen source for legumes seed quality and quantity improvement is in line with sustainable agriculture and food security programs. Besides these growth promoting effects, Rhizobium symbiosis has been shown to have a priming impact on the plants immune system that enhances resistance against environmental perturbations. This is the first integrative study that investigates the effect of Rhizobium leguminosarum bv. viceae (Rlv) on phenotypic seed quality, quantity and fungal disease in pot grown pea (Pisum sativum) cultivars with two different resistance levels against D. pinodes through metabolomics and proteomics analyses. In addition, the pathogen effects on seed quantity components and quality are assessed at morphological and molecular level. Rhizobium inoculation decreased disease severity by significant reduction of seed infection level. Rhizobium symbiont enhanced yield through increased seed fresh and dry weights based on better seed filling. Rhizobium inoculation also induced changes in seed proteome and metabolome involved in enhanced P. sativum resistance level against D. pinodes. Besides increased redox and cell wall adjustments light is shed on the role of late embryogenesis abundant proteins and metabolites such as the seed triterpenoid Soyasapogenol. The results of this study open new insights into the significance of symbiotic Rhizobium interactions for crop yield, health and seed quality enhancement and reveal new metabolite candidates involved in pathogen resistance.
Collapse
Affiliation(s)
- Nima Ranjbar Sistani
- Molecular Systems Biology, Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Hans-Peter Kaul
- Department of Crop Sciences, University of Natural Resources and Life Sciences, ViennaVienna, Austria
| | - Getinet Desalegn
- Department of Crop Sciences, University of Natural Resources and Life Sciences, ViennaVienna, Austria
| | - Stefanie Wienkoop
- Molecular Systems Biology, Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Turetschek R, Desalegn G, Epple T, Kaul HP, Wienkoop S. Key metabolic traits of Pisum sativum maintain cell vitality during Didymella pinodes infection: cultivar resistance and the microsymbionts' influence. J Proteomics 2017; 169:189-201. [PMID: 28268116 DOI: 10.1016/j.jprot.2017.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/22/2017] [Accepted: 03/01/2017] [Indexed: 12/17/2022]
Abstract
Ascochyta blight causes severe losses in field pea production and the search for resistance traits towards the causal agent Didymella pinodes is of particular importance for farmers. Various microsymbionts have been reported to shape the plants' immune response. However, regardless their contribution to resistance, they are hardly included in experimental designs. We delineate the effect of symbionts (rhizobia, mycorrhiza) on the leaf proteome and metabolome of two field pea cultivars with varying resistance levels against D. pinodes and, furthermore, show cultivar specific symbiont colonisation efficiency. The pathogen infection showed a stronger influence on the interaction with the microsymbionts in the susceptible cultivar, which was reflected in decreased nodule weight and root mycorrhiza colonisation. Vice versa, symbionts induced variation of the host's infection response which, however, was overruled by genotypic resistance associated traits of the tolerant cultivar such as maintenance of photosynthesis and provision of sugars and carbon back bones to fuel secondary metabolism. Moreover, resistance appears to be linked to sulphur metabolism, a functional glutathione-ascorbate hub and fine adjustment of jasmonate and ethylene synthesis to suppress induced cell death. We conclude that these metabolic traits are essential for sustainment of cell vitality and thus, a more efficient infection response. SIGNIFICANCE The infection response of two Pisum sativum cultivars with varying resistance levels towards Didymella pinodes was analysed most comprehensively at proteomic and metabolomic levels. Enhanced tolerance was linked to newly discovered cultivar specific metabolic traits such as hormone synthesis and presumably suppression of cell death.
Collapse
Affiliation(s)
- Reinhard Turetschek
- University of Vienna, Department of Ecogenomics and Systems Biology, Austria
| | - Getinet Desalegn
- University of Natural Resources and Life Sciences, Department of Crop Sciences, Austria
| | - Tamara Epple
- University of Vienna, Department of Ecogenomics and Systems Biology, Austria
| | - Hans-Peter Kaul
- University of Natural Resources and Life Sciences, Department of Crop Sciences, Austria
| | - Stefanie Wienkoop
- University of Vienna, Department of Ecogenomics and Systems Biology, Austria.
| |
Collapse
|
15
|
Martínez-Medina A, Appels FVW, van Wees SCM. Impact of salicylic acid- and jasmonic acid-regulated defences on root colonization by Trichoderma harzianum T-78. PLANT SIGNALING & BEHAVIOR 2017; 12:e1345404. [PMID: 28692334 PMCID: PMC5616143 DOI: 10.1080/15592324.2017.1345404] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/16/2017] [Accepted: 06/16/2017] [Indexed: 05/22/2023]
Abstract
We recently found that the beneficial fungus Trichoderma harzianum T-78 primes tomato plants for salicylic acid (SA)- and jasmonic acid (JA)-regulated defenses, resulting in enhanced resistance against the root knot nematode Meloidogyne incognita. By using SA- and JA-impaired mutant lines and exogenous hormonal application, here we investigated whether the SA- and JA-pathways also have a role in T-78 root colonization of Arabidopsis thaliana. Endophytic colonization by T-78 was faster in the SA-impaired mutant sid2 than in the wild type. Moreover, elicitation of SA-dependent defenses by SA application reduced T-78 colonization, indicating that the SA-pathway affects T-78 endophytism. In contrast, elicitation of the JA-pathway, which antagonized SA-dependent defenses, resulted in enhanced endophytic colonization by T-78. These findings are in line with our previous observation that SA-dependent defenses are repressed by T-78, which likely aids colonization by the endophytic fungus.
Collapse
Affiliation(s)
| | - Freek V. W. Appels
- Plant-Microbe Interactions, Department of Biology, Utrecht University, The Netherlands
| | - Saskia C. M. van Wees
- Plant-Microbe Interactions, Department of Biology, Utrecht University, The Netherlands
| |
Collapse
|
16
|
Biere A, Goverse A. Plant-Mediated Systemic Interactions Between Pathogens, Parasitic Nematodes, and Herbivores Above- and Belowground. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:499-527. [PMID: 27359367 DOI: 10.1146/annurev-phyto-080615-100245] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Plants are important mediators of interactions between aboveground (AG) and belowground (BG) pathogens, arthropod herbivores, and nematodes (phytophages). We highlight recent progress in our understanding of within- and cross-compartment plant responses to these groups of phytophages in terms of altered resource dynamics and defense signaling and activation. We review studies documenting the outcome of cross-compartment interactions between these phytophage groups and show patterns of cross-compartment facilitation as well as cross-compartment induced resistance. Studies involving soilborne pathogens and foliar nematodes are scant. We further highlight the important role of defense signaling loops between shoots and roots to activate a full resistance complement. Moreover, manipulation of such loops by phytophages affects systemic interactions with other plant feeders. Finally, cross-compartment-induced changes in root defenses and root exudates extend systemic defense loops into the rhizosphere, enhancing or reducing recruitment of microbes that induce systemic resistance but also affecting interactions with root-feeding phytophages.
Collapse
Affiliation(s)
- Arjen Biere
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, 6708 PB Wageningen, The Netherlands;
| | - Aska Goverse
- Lab of Nematology, Department of Plant Sciences, Wageningen University, 6700 PB Wageningen, The Netherlands
| |
Collapse
|
17
|
Zhu C, Ai L, Wang L, Yin P, Liu C, Li S, Zeng H. De novo Transcriptome Analysis of Rhizoctonia solani AG1 IA Strain Early Invasion in Zoysia japonica Root. Front Microbiol 2016; 7:708. [PMID: 27242730 PMCID: PMC4870862 DOI: 10.3389/fmicb.2016.00708] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/28/2016] [Indexed: 12/28/2022] Open
Abstract
Zoysia japonica brown spot was caused by necrotrophic fungus Rhizoctonia solani invasion, which led to severe financial loss in city lawn and golf ground maintenance. However, little was known about the molecular mechanism of R. solani pathogenicity in Z. japonica. In this study we examined early stage interaction between R. solani AG1 IA strain and Z. japonica cultivar “Zenith” root by cell ultra-structure analysis, pathogenesis-related proteins assay and transcriptome analysis to explore molecular clues for AG1 IA strain pathogenicity in Z. japonica. No obvious cell structure damage was found in infected roots and most pathogenesis-related protein activities showedg a downward trend especially in 36 h post inoculation, which exhibits AG1 IA strain stealthy invasion characteristic. According to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database classification, most DEGs in infected “Zenith” roots dynamically changed especially in three aspects, signal transduction, gene translation, and protein synthesis. Total 3422 unigenes of “Zenith” root were predicted into 14 kinds of resistance (R) gene class. Potential fungal resistance related unigenes of “Zenith” root were involved in ligin biosynthesis, phytoalexin synthesis, oxidative burst, wax biosynthesis, while two down-regulated unigenes encoding leucine-rich repeat receptor protein kinase and subtilisin-like protease might be important for host-derived signal perception to AG1 IA strain invasion. According to Pathogen Host Interaction (PHI) database annotation, 1508 unigenes of AG1 IA strain were predicted and classified into 37 known pathogen species, in addition, unigenes encoding virulence, signaling, host stress tolerance, and potential effector were also predicted. This research uncovered transcriptional profiling during the early phase interaction between R. solani AG1 IA strain and Z. japonica, and will greatly help identify key pathogenicity of AG1 IA strain.
Collapse
Affiliation(s)
- Chen Zhu
- Biochemistry and Molecular Biology Department, College of Biological Sciences and Technology, Beijing Forestry University Beijing, China
| | - Lin Ai
- Ecology Department, College of Forestry, Beijing Forestry University Beijing, China
| | - Li Wang
- Silviculture Forestry Department, College of Forestry, Beijing Forestry University Beijing, China
| | - Pingping Yin
- Turfgrass Management Department, College of Forestry, Beijing Forestry University Beijing, China
| | - Chenglan Liu
- Turfgrass Management Department, College of Forestry, Beijing Forestry University Beijing, China
| | - Shanshan Li
- Turfgrass Management Department, College of Forestry, Beijing Forestry University Beijing, China
| | - Huiming Zeng
- Turfgrass Management Department, College of Forestry, Beijing Forestry University Beijing, China
| |
Collapse
|
18
|
Ballhorn DJ, Schädler M, Elias JD, Millar JA, Kautz S. Friend or Foe-Light Availability Determines the Relationship between Mycorrhizal Fungi, Rhizobia and Lima Bean (Phaseolus lunatus L.). PLoS One 2016; 11:e0154116. [PMID: 27136455 PMCID: PMC4852939 DOI: 10.1371/journal.pone.0154116] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 04/08/2016] [Indexed: 01/14/2023] Open
Abstract
Plant associations with root microbes represent some of the most important symbioses on earth. While often critically promoting plant fitness, nitrogen-fixing rhizobia and arbuscular mycorrhizal fungi (AMF) also demand significant carbohydrate allocation in exchange for key nutrients. Though plants may often compensate for carbon loss, constraints may arise under light limitation when plants cannot extensively increase photosynthesis. Under such conditions, costs for maintaining symbioses may outweigh benefits, turning mutualist microbes into parasites, resulting in reduced plant growth and reproduction. In natural systems plants commonly grow with different symbionts simultaneously which again may interact with each other. This might add complexity to the responses of such multipartite relationships. We experimented with lima bean (Phaseolus lunatus), which efficiently forms associations with both types of root symbionts. We applied full light and low-light to each of four treatments of microbial inoculation. After an incubation period of 14 weeks, we quantified vegetative aboveground and belowground biomass and number and viability of seeds to determine effects of combined inoculant and light treatment on plant fitness. Under light-limited conditions, vegetative and reproductive traits were inhibited in AMF and rhizobia inoculated lima bean plants relative to controls (un-colonized plants). Strikingly, reductions in seed production were most critical in combined treatments with rhizobia x AMF. Our findings suggest microbial root symbionts create additive costs resulting in decreased plant fitness under light-limited conditions.
Collapse
Affiliation(s)
- Daniel J. Ballhorn
- Department of Biology, Portland State University, Portland, Oregon, 97201, United States of America
| | - Martin Schädler
- Helmholtz-Centre for Environmental Research, Dept. Community Ecology, 06120, Halle, Germany
- German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig (iDiv), Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Jacob D. Elias
- Department of Biology, Portland State University, Portland, Oregon, 97201, United States of America
| | - Jess A. Millar
- Department of Biology, Portland State University, Portland, Oregon, 97201, United States of America
| | - Stefanie Kautz
- Department of Biology, Portland State University, Portland, Oregon, 97201, United States of America
| |
Collapse
|
19
|
de Souza EM, Granada CE, Sperotto RA. Plant Pathogens Affecting the Establishment of Plant-Symbiont Interaction. FRONTIERS IN PLANT SCIENCE 2016; 7:15. [PMID: 26834779 PMCID: PMC4721146 DOI: 10.3389/fpls.2016.00015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/07/2016] [Indexed: 05/19/2023]
Affiliation(s)
- Eduardo M. de Souza
- Programa de Pós-Graduação em Biotecnologia, Centro Universitário UNIVATESLajeado, Brazil
| | - Camille E. Granada
- Programa de Pós-Graduação em Biotecnologia, Centro Universitário UNIVATESLajeado, Brazil
- Centro de Gestão Organizacional, Centro Universitário UNIVATESLajeado, Brazil
| | - Raul A. Sperotto
- Programa de Pós-Graduação em Biotecnologia, Centro Universitário UNIVATESLajeado, Brazil
- Setor de Genética e Biologia Molecular do Museu de Ciências Naturais, Centro de Ciências Biológicas e da Saúde, Centro Universitário UNIVATESLajeado, Brazil
- *Correspondence: Raul A. Sperotto
| |
Collapse
|