1
|
Zhang YY, Li HK, Huang X, Yuan YJ, Zhang XF, Gao XS, Wang XJ, Wei MM, Huang HS, Li W. Heterozygosity analysis of spontaneous 2n female gametes and centromere mapping of the diploid Hevea brasiliensis based on full-sib triploid populations. PLANT REPRODUCTION 2024; 37:47-56. [PMID: 37758937 DOI: 10.1007/s00497-023-00481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
KEY MESSAGE Unreduced megagametophytes via second-division restitution were confirmed through heterozygosity analysis, and four candidate physical centromeres of rubber were located for the first time. The evaluation of maternal heterozygosity restitution (MHR) is vital in identifying the mechanism of 2n gametogenesis and assessing the utilization value of 2n gametes. In this study, three full-sib triploid populations were employed to evaluate the MHR of 2n female gametes of rubber tree clone GT1 and to confirm their genetic derivation. The 2n female gametes of GT1 were derived from second-division restitution (SDR) and transmitted more than half of the parental heterozygosity. In addition, low recombination frequency markers were developed, and four candidate physical centromeres of rubber tree were located for the first time. The confirmation that 2n female gametes of rubber tree clone GT1 are derived from SDR provides insights into the molecular mechanisms of 2n gametogenesis. In addition, the identified centromere location will aid in the development of centromeric markers for the rapid identification of the 2n gametogenesis mechanism.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- State Key Laboratory of Tropical Crop Breeding, State Centre for Rubber Breeding, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
| | - Hong-Kun Li
- Dehong Institute of Tropical Agricultural Sciences of Yunnan Province, Ruili, 678600, Yunnan, China
| | - Xiao Huang
- State Key Laboratory of Tropical Crop Breeding, State Centre for Rubber Breeding, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Yu-Jiao Yuan
- College of Tropical Crops, Yunnan Agricultural University, Puer, 665099, Yunnan, China
| | - Xiao-Fei Zhang
- State Key Laboratory of Tropical Crop Breeding, State Centre for Rubber Breeding, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Xin-Sheng Gao
- State Key Laboratory of Tropical Crop Breeding, State Centre for Rubber Breeding, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Xiang-Jun Wang
- State Key Laboratory of Tropical Crop Breeding, State Centre for Rubber Breeding, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Ming-Ming Wei
- State Key Laboratory of Tropical Crop Breeding, State Centre for Rubber Breeding, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Hua-Sun Huang
- State Key Laboratory of Tropical Crop Breeding, State Centre for Rubber Breeding, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Weiguo Li
- State Key Laboratory of Tropical Crop Breeding, State Centre for Rubber Breeding, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
| |
Collapse
|
2
|
Aleza P, Garavello MF, Rouiss H, Benedict AC, Garcia-Lor A, Hernández M, Navarro L, Ollitrault P. Inheritance pattern of tetraploids pummelo, mandarin, and their interspecific hybrid sour orange is highly influenced by their phylogenomic structure. FRONTIERS IN PLANT SCIENCE 2023; 14:1327872. [PMID: 38143579 PMCID: PMC10739408 DOI: 10.3389/fpls.2023.1327872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023]
Abstract
Citrus polyploidy is associated with a wide range of morphological, genetic, and physiological changes that are often advantageous for breeding. Citrus triploid hybrids are very interesting as new seedless varieties. However, tetraploid rootstocks promote adaptation to different abiotic stresses and promote resilience. Triploid and tetraploid hybrids can be obtained through sexual hybridizations using tetraploid parents (2x × 4x, 4x × 2x, or 4x × 4x), but more knowledge is needed about the inheritance pattern of tetraploid parents to optimize the efficiency of triploid varieties and tetraploid rootstock breeding strategies. In this work, we have analyzed the inheritance pattern of three tetraploid genotypes: 'Chandler' pummelo (Citrus maxima) and 'Cleopatra' mandarin (Citrus reticulata), which represent two clear examples of autotetraploid plants constituted by the genome of a single species, and the 'Sevillano' sour orange, which is an allotetraploid interspecific hybrid between C. maxima and C. reticulata. Polymorphic simple sequence repeat (SSR) and single-nucleotide polymorphism (SNP) markers were used to estimate parental heterozygosity restitution, and allele frequencies for centromeric loci were used to calculate the preferential pairing rate related to the proportion of disomic and tetrasomic segregation. The tetraploid pummelo and mandarin displayed tetrasomic segregation. Sour orange evidenced a clear intermediate inheritance for five of the nine chromosomes (1, 2, 5, 7, and 8), a slight tendency toward tetrasomic inheritance on chromosome 3, and intermediate inheritance with a tendency toward disomy for chromosomes 4, 6, and 9. These results indicate that the interspecific versus intraspecific phylogenomic origin affects preferential pairing and, therefore, the inheritance patterns. Despite its high level of heterozygosity, the important preferential chromosome pairing observed in sour orange results in a limited diversity of the genotypic variability of its diploid gametes, and consequently, a large part of the genetic value of the original diploid sour orange is transferred to the tetraploid progenies.
Collapse
Affiliation(s)
- Pablo Aleza
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Miguel Fernando Garavello
- Concordia Agricultural Experimental Station, National Agricultural Technology Institute, Concordia, Entre Ríos, Argentina
| | - Houssem Rouiss
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Ana Cristina Benedict
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Andres Garcia-Lor
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Maria Hernández
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Luis Navarro
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Patrick Ollitrault
- Centre de coopération internationale en recherche agronomique pour le développement Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (UMR AGAP) Institut, Montpellier, France
- AGAP Institut, Univ Montpellier, Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
3
|
Calvez L, Dereeper A, Perdereau A, Mournet P, Miranda M, Bruyère S, Hufnagel B, Froelicher Y, Lemainque A, Morillon R, Ollitrault P. Meiotic Behaviors of Allotetraploid Citrus Drive the Interspecific Recombination Landscape, the Genetic Structures, and Traits Inheritance in Tetrazyg Progenies Aiming to Select New Rootstocks. PLANTS (BASEL, SWITZERLAND) 2023; 12:1630. [PMID: 37111854 PMCID: PMC10146282 DOI: 10.3390/plants12081630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Sexual breeding at the tetraploid level is a promising strategy for rootstock breeding in citrus. Due to the interspecific origin of most of the conventional diploid citrus rootstocks that produced the tetraploid germplasm, the optimization of this strategy requires better knowledge of the meiotic behavior of the tetraploid parents. This work used Genotyping By Sequencing (GBS) data from 103 tetraploid hybrids to study the meiotic behavior and generate a high-density recombination landscape for their tetraploid intergenic Swingle citrumelo and interspecific Volkamer lemon progenitors. A genetic association study was performed with root architecture traits. For citrumelo, high preferential chromosome pairing was revealed and led to an intermediate inheritance with a disomic tendency. Meiosis in Volkamer lemon was more complex than that of citrumelo, with mixed segregation patterns from disomy to tetrasomy. The preferential pairing resulted in low interspecific recombination levels and high interspecific heterozygosity transmission by the diploid gametes. This meiotic behavior affected the efficiency of Quantitative Trait Loci (QTL) detection. Nevertheless, it enabled a high transmission of disease and pest resistance candidate genes from P. trifoliata that are heterozygous in the citrumelo progenitor. The tetrazyg strategy, using doubled diploids of interspecific origin as parents, appears to be efficient in transferring the dominant traits selected at the parental level to the tetraploid progenies.
Collapse
Affiliation(s)
- Lény Calvez
- UMR AGAP, CIRAD, F-97170 Petit-Bourg, France; (L.C.); (A.D.); (S.B.); (B.H.)
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
| | - Alexis Dereeper
- UMR AGAP, CIRAD, F-97170 Petit-Bourg, France; (L.C.); (A.D.); (S.B.); (B.H.)
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
| | - Aude Perdereau
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, F-91000 Evry, France; (A.P.)
| | - Pierre Mournet
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
- UMR AGAP, CIRAD, F-34398 Montpellier, France
| | - Maëva Miranda
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
- UMR AGAP, CIRAD, F-34398 Montpellier, France
| | - Saturnin Bruyère
- UMR AGAP, CIRAD, F-97170 Petit-Bourg, France; (L.C.); (A.D.); (S.B.); (B.H.)
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
| | - Barbara Hufnagel
- UMR AGAP, CIRAD, F-97170 Petit-Bourg, France; (L.C.); (A.D.); (S.B.); (B.H.)
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
| | - Yann Froelicher
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
- UMR AGAP, CIRAD, F-20230 San Giuliano, France
| | - Arnaud Lemainque
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, F-91000 Evry, France; (A.P.)
| | - Raphaël Morillon
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
- UMR AGAP, CIRAD, F-34398 Montpellier, France
| | - Patrick Ollitrault
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
- UMR AGAP, CIRAD, F-34398 Montpellier, France
| |
Collapse
|
4
|
Xia QM, Miao LK, Xie KD, Yin ZP, Wu XM, Chen CL, Grosser JW, Guo WW. Localization and characterization of Citrus centromeres by combining half-tetrad analysis and CenH3-associated sequence profiling. PLANT CELL REPORTS 2020; 39:1609-1622. [PMID: 32897396 DOI: 10.1007/s00299-020-02587-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
The physical locations of citrus centromere are revealed by combining genetic and immunological assays for the first time and nine citrus centromere-specific markers for cytogenetics are mined. Centromere localization is challenging, because highly redundant repetitive sequences in centromeric regions make sequence assembly difficult. Although several citrus genomes have been released, the centromeric regions and their characteristics remain to be elucidated. Here, we mapped citrus centromeres through half-tetrad analysis (HTA) that included the genotyping of 54 tetraploid hybrids derived from 2n megagametophytes of Nadorcott tangor with 212 single nucleotide polymorphism (SNP) markers. The sizes of centromeric regions, which estimated based on the heterozygosity restitution rate pattern along the chromosomes, ranged from 1.12 to 18.19 Mb. We also profiled the binding sequences with the centromere-specific histone variant CenH3 by chromatin immunoprecipitation sequencing (ChIP-seq). Based on the positions of the top ten CenH3-enriched contigs, the sizes of centromeric regions were estimated to range from 0.01 to 7.60 Mb and were either adjacent to or included in the centromeric regions identified by HTA. We used DNA probes from two repeats selected from the centromeric regions and seven CenH3-binding centromeric repeats to verify centromeric locations by fluorescence in situ hybridization (FISH). Centromere localization in citrus will contribute to the mining of centromeric/pericentromeric markers, thus to facilitate the rapid identification of mechanisms underlying 2n gamete formation and serve the polyploidy breeding.
Collapse
Affiliation(s)
- Qiang-Ming Xia
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lu-Ke Miao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kai-Dong Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhao-Ping Yin
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Meng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun-Li Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jude W Grosser
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA
| | - Wen-Wu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
5
|
Mendes S, Régis T, Terol J, Soares Filho WDS, Talon M, Pedrosa-Harand A. Integration of mandarin ( Citrus reticulata) cytogenetic map with its genome sequence. Genome 2020; 63:437-444. [PMID: 32758104 DOI: 10.1139/gen-2020-0046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Citrus is an extremely important genus in terms of world fruit production. Despite its economic importance and the small genome sizes of its species (2n = 18, 1C = 430 ± 68 Mbp), entire genomic assemblies have only recently become available for some of its representatives. Together with the previous CMA/DAPI banding and fluorescence in situ hybridization (FISH) in the group, these data are important for understanding the complex relationships between its species and for assisting breeding programs. To anchor genomic data with the cytogenetic map of mandarin (Citrus reticulata), the parental species of several economically important hybrids such as sweet orange and clementine, 18 BAC (bacterial artificial chromosome) clones were used. Eleven clementine BACs were positioned by BAC-FISH, doubling the number of chromosome markers so far available for BAC-FISH in citrus. Additionally, six previously mapped BACs were end-sequenced, allowing, together with one BAC previously sequenced, their assignment to scaffolds and the subsequent integration of chromosomes and the genome assembly. This study therefore established correlations between mandarin scaffolds and chromosomes, allowing further structural genomic and comparative study with the sweet orange genome, as well as insights into the chromosomal evolution of the group.
Collapse
Affiliation(s)
- Sandra Mendes
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil
| | - Thallita Régis
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil
| | - Javier Terol
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | | | - Manuel Talon
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Andrea Pedrosa-Harand
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil
| |
Collapse
|
6
|
Ahmed D, Curk F, Evrard JC, Froelicher Y, Ollitrault P. Preferential Disomic Segregation and C. micrantha/C. medica Interspecific Recombination in Tetraploid 'Giant Key' Lime; Outlook for Triploid Lime Breeding. FRONTIERS IN PLANT SCIENCE 2020; 11:939. [PMID: 32670332 PMCID: PMC7330052 DOI: 10.3389/fpls.2020.00939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 06/09/2020] [Indexed: 05/14/2023]
Abstract
The triploid 'Tahiti' lime (C. x latifolia (Yu. Tanaka) Tanaka) naturally originated from a merger between a haploid ovule of lemon (C. x limon (L.) Burm) and a diploid pollen from a 'Mexican' lime (C. x aurantiifolia (Christm.) Swing). The very limited natural inter-varietal diversity and gametic sterility of C. latifolia requires a phylogenomic based reconstruction breeding strategy to insure its diversification. We developed a strategy based on interploid hybridization between diploid lemon and the doubled diploid 'Giant Key' lime. This lime is a doubled diploid of 'Mexican' lime, itself a natural interspecific F1 hybrid between C. medica L. and C. micrantha Wester. For an optimized breeding program, we analyzed the meiotic behavior of the allotetraploid lime, the genetic structure of its diploid gametes, the interspecific recombination between C. medica and C. micrantha, and constructed its genetic map. A population of 272 triploid hybrids was generated using 'Giant Key' lime as pollinator. One hundred fifty-eight SNPs diagnostic of C. micrantha, regularly distributed throughout the citrus genome were successfully developed and applied. The genetic structure of the diploid gametes was examined based on C. micrantha doses along the genome. The diploid gametes transmitted in average 91.17% of the parental interspecific C. medica/C. micrantha heterozygosity. Three chromosomes (2, 8, and 9) showed disomic segregation with high preferential pairing values, while the remaining chromosomes showed an intermediate inheritance with a preferential disomic trend. A total of 131 SNPs were assigned to nine linkage groups to construct the genetic map. It spanned 272.8 cM with a low average recombination rate (0.99 cM Mb-1) and high synteny and colinearity with the reference clementine genome. Our results confirmed that an efficient reconstruction breeding strategy for 'Tahiti' lime is possible, based on interploid hybridization using a doubled diploid of C. aurantiifolia. The tetraploid parent should be selected for favorable agronomic traits and its genetic value should be efficiently inherited by the progeny thanks to transmission of the high level of parental heterozygosity. However, it would require developing numerous progeny to overcome the linkage drag caused by the limited interspecific recombination associated with the predominant disomic inheritance.
Collapse
Affiliation(s)
- Dalel Ahmed
- UMR AGAP, INRA, CIRAD, Montpellier SupAgro, Univ Montpellier, San Giuliano, France
| | - Franck Curk
- UMR AGAP, INRA, CIRAD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | | | | | | |
Collapse
|
7
|
Borredá C, Pérez-Román E, Ibanez V, Terol J, Talon M. Reprogramming of Retrotransposon Activity during Speciation of the Genus Citrus. Genome Biol Evol 2020; 11:3478-3495. [PMID: 31710678 PMCID: PMC7145672 DOI: 10.1093/gbe/evz246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
Speciation of the genus Citrus from a common ancestor has recently been established to begin ∼8 Ma during the late Miocene, a period of major climatic alterations. Here, we report the changes in activity of Citrus LTR retrotransposons during the process of diversification that gave rise to the current Citrus species. To reach this goal, we analyzed four pure species that diverged early during Citrus speciation, three recent admixtures derived from those species and an outgroup of the Citrus clade. More than 30,000 retrotransposons were grouped in ten linages. Estimations of LTR insertion times revealed that retrotransposon activity followed a species-specific pattern of change that could be ascribed to one of three different models. In some genomes, the expected pattern of gradual transposon accumulation was suddenly arrested during the radiation of the ancestor that gave birth to the current Citrus species. The individualized analyses of retrotransposon lineages showed that in each and every species studied, not all lineages follow the general pattern of the species itself. For instance, in most of the genomes, the retrotransposon activity of elements from the SIRE lineage reached its highest level just before Citrus speciation, while for Retrofit elements, it has been steadily growing. Based on these observations, we propose that Citrus retrotransposons may respond to stressful conditions driving speciation as a part of the genetic response involved in adaptation. This proposal implies that the evolving conditions of each species interact with the internal regulatory mechanisms of the genome controlling the proliferation of mobile elements.
Collapse
Affiliation(s)
- Carles Borredá
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| | - Estela Pérez-Román
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| | - Victoria Ibanez
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| | - Javier Terol
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| | - Manuel Talon
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| |
Collapse
|
8
|
Garavello M, Cuenca J, Garcia-Lor A, Ortega N, Navarro L, Ollitrault P, Aleza P. Male and female inheritance patterns in tetraploid 'Moncada' mandarin. PLANT CELL REPORTS 2020; 39:335-349. [PMID: 31781856 PMCID: PMC7018676 DOI: 10.1007/s00299-019-02494-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/20/2019] [Indexed: 05/11/2023]
Abstract
KEY MESSAGE Tetraploid `Moncada´ mandarin, used as male and female in interploidy hybridizations, displays mainly tetrasomic inheritance for most LGs, with slight variations according to the direction of the crossing. Triploid-breeding programs in citrus are key tool to develop seedless cultivars. Obtaining triploid citrus hybrids may be achieved through different strategies, such as the exploitation of female unreduced gamete in crosses between diploid parents and diploid by tetraploid sexual hybridizations, in which tetraploid genotypes can be used as male or female parents. Genetic configuration of triploid populations from interploid crosses greatly depends on the chromosomic segregation mode of the tetraploid parent used. Here, we have analyzed the inheritance of the tetraploid 'Moncada' mandarin and compared the genetic structures of the resulting gametes when used as male and as female parent. The preferential chromosome pairing rate is calculated from the parental heterozygosity restitution (PHR) of codominant molecular markers, indicating the proportion between disomic and tetrasomic segregation. Tetraploid 'Moncada' both as female and male parent largely exhibited tetrasomic segregation. However, as female parent, one linkage group (LG8) showed intermediate segregation with tendency towards tetrasomic inheritance, while another linkage group (LG4) evidenced a clear intermediate segregation. On the other hand, when used as male parent two linkage groups (LG5 and LG6) showed values that fit an intermediate inheritance model with tetrasomic tendency. Significant doubled reduction (DR) rates were observed in five linkage groups as female parent, and in six linkage groups as male parent. The new knowledge generated here will serve to define crossing strategies in citrus improvement programs to efficiently obtain new varieties of interest in the global fresh consumption market.
Collapse
Affiliation(s)
- Miguel Garavello
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315, km 10.7, Moncada, 46113, Valencia, Spain
- INTA, Concordia Agricultural Experiment Station, 3200, Concordia, CC 34, Entre Ríos, Argentina
| | - José Cuenca
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315, km 10.7, Moncada, 46113, Valencia, Spain
| | - Andrés Garcia-Lor
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315, km 10.7, Moncada, 46113, Valencia, Spain
| | - Neus Ortega
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315, km 10.7, Moncada, 46113, Valencia, Spain
| | - Luis Navarro
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315, km 10.7, Moncada, 46113, Valencia, Spain
| | - Patrick Ollitrault
- Unité Mixte de Recherche, Amélioration Génétique et Adaptation des Plantes (UMR Agap), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Corse, 20230, San Giuliano, France.
| | - Pablo Aleza
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315, km 10.7, Moncada, 46113, Valencia, Spain.
| |
Collapse
|
9
|
Garavello M, Cuenca J, Dreissig S, Fuchs J, Navarro L, Houben A, Aleza P. Analysis of Crossover Events and Allele Segregation Distortion in Interspecific Citrus Hybrids by Single Pollen Genotyping. FRONTIERS IN PLANT SCIENCE 2020; 11:615. [PMID: 32523591 PMCID: PMC7261893 DOI: 10.3389/fpls.2020.00615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/21/2020] [Indexed: 05/17/2023]
Abstract
In citrus, a classical method of studying crossovers and segregation distortion (SD) is the genetic analysis of progenies. A new strategy combining fluorescence-activated cell sorting and whole genome amplification of haploid pollen nuclei with a large set of molecular markers, offers the opportunity to efficiently determine the frequency of crossovers and the identification of SD without the need to generate segregating populations. Here we have analyzed meiotic crossover events in a pollen nuclei population from "Eureka" lemon and the allelic SD was evaluated in a pollen nuclei population from a clementine × sweet orange hybrid ("CSO"). Data obtained from the "CSO" pollen nuclei population were compared to those obtained from genotyping of a segregating population ("RTSO") arising from a hand-made sexual hybridization between diploid non apomictic selected tangor (mandarin × sweet orange; "RTO" tangor) as female parent pollinated with "CSO" tangor as male parent. The analysis of crossovers rates on chromosome 1 revealed the presence of up to five crossovers events on one arm and four on the corresponding other arm, with an average of 1.97 crossovers per chromosome while no crossover events were observed in five "Eureka" lemon pollen nuclei. The rate of SD observed in "CSO" pollen nuclei (13.8%) was slightly lower than that recovered in the "RTSO" population (20.7%). In the pollen nuclei population, SD was found on linkage group (LG) 2, while the "RTSO" population showed SD on LGs 2 and 7. Potential male gametic selection mechanisms were distinguished in pollen grains, while in the population, mechanisms of gametophytic selection and/or zygotic selection were observed. This methodology is a very useful tool to facilitate research focused on the reproductive biology of citrus and study the mechanisms that affect crossovers and SD.
Collapse
Affiliation(s)
- Miguel Garavello
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
- Concordia Agricultural Experiment Station, National Agricultural Technology Institute, Entre Ríos, Argentina
| | - José Cuenca
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Steven Dreissig
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jörg Fuchs
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Luis Navarro
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Andreas Houben
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Pablo Aleza
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
- *Correspondence: Pablo Aleza,
| |
Collapse
|
10
|
Ahmed D, Comte A, Curk F, Costantino G, Luro F, Dereeper A, Mournet P, Froelicher Y, Ollitrault P. Genotyping by sequencing can reveal the complex mosaic genomes in gene pools resulting from reticulate evolution: a case study in diploid and polyploid citrus. ANNALS OF BOTANY 2019; 123:1231-1251. [PMID: 30924905 PMCID: PMC6612944 DOI: 10.1093/aob/mcz029] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/17/2019] [Accepted: 02/18/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS Reticulate evolution, coupled with reproductive features limiting further interspecific recombinations, results in admixed mosaics of large genomic fragments from the ancestral taxa. Whole-genome sequencing (WGS) data are powerful tools to decipher such complex genomes but still too costly to be used for large populations. The aim of this work was to develop an approach to infer phylogenomic structures in diploid, triploid and tetraploid individuals from sequencing data in reduced genome complexity libraries. The approach was applied to the cultivated Citrus gene pool resulting from reticulate evolution involving four ancestral taxa, C. maxima, C. medica, C. micrantha and C. reticulata. METHODS A genotyping by sequencing library was established with the restriction enzyme ApeKI applying one base (A) selection. Diagnostic single nucleotide polymorphisms (DSNPs) for the four ancestral taxa were mined in 29 representative varieties. A generic pipeline based on a maximum likelihood analysis of the number of read data was established to infer ancestral contributions along the genome of diploid, triploid and tetraploid individuals. The pipeline was applied to 48 diploid, four triploid and one tetraploid citrus accessions. KEY RESULTS Among 43 598 mined SNPs, we identified a set of 15 946 DSNPs covering the whole genome with a distribution similar to that of gene sequences. The set efficiently inferred the phylogenomic karyotype of the 53 analysed accessions, providing patterns for common accessions very close to that previously established using WGS data. The complex phylogenomic karyotypes of 21 cultivated citrus, including bergamot, triploid and tetraploid limes, were revealed for the first time. CONCLUSIONS The pipeline, available online, efficiently inferred the phylogenomic structures of diploid, triploid and tetraploid citrus. It will be useful for any species whose reproductive behaviour resulted in an interspecific mosaic of large genomic fragments. It can also be used for the first generations of interspecific breeding schemes.
Collapse
Affiliation(s)
- Dalel Ahmed
- UMR AGAP, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, San Giuliano, France
| | - Aurore Comte
- IRD, CIRAD, Université de Montpellier, IPME, Montpellier, France
- South Green Bioinformatics Platform, Bioversity, CIRAD, INRA, IRD, Montpellier, France
| | - Franck Curk
- UMR AGAP, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Gilles Costantino
- UMR AGAP, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, San Giuliano, France
| | - François Luro
- UMR AGAP, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, San Giuliano, France
| | - Alexis Dereeper
- IRD, CIRAD, Université de Montpellier, IPME, Montpellier, France
- South Green Bioinformatics Platform, Bioversity, CIRAD, INRA, IRD, Montpellier, France
| | - Pierre Mournet
- UMR AGAP, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- CIRAD, UMR AGAP, Montpellier, France
| | - Yann Froelicher
- UMR AGAP, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- CIRAD, UMR AGAP, San Giuliano, France
| | - Patrick Ollitrault
- UMR AGAP, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- CIRAD, UMR AGAP, San Giuliano, France
- For correspondence. E-mail
| |
Collapse
|
11
|
Kamiri M, Stift M, Costantino G, Dambier D, Kabbage T, Ollitrault P, Froelicher Y. Preferential Homologous Chromosome Pairing in a Tetraploid Intergeneric Somatic Hybrid ( Citrus reticulata + Poncirus trifoliata) Revealed by Molecular Marker Inheritance. FRONTIERS IN PLANT SCIENCE 2018; 9:1557. [PMID: 30450106 PMCID: PMC6224360 DOI: 10.3389/fpls.2018.01557] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/04/2018] [Indexed: 05/23/2023]
Abstract
The creation of intergeneric somatic hybrids between Citrus and Poncirus is an efficient approach for citrus rootstock breeding, offering the possibility of combining beneficial traits from both genera into novel rootstock lineages. These somatic hybrids are also used as parents for further tetraploid sexual breeding. In order to optimize these latter breeding schemes, it is essential to develop knowledge on the mode of inheritance in the intergeneric tetraploid hybrids. We assessed the meiotic behavior of an intergeneric tetraploid somatic hybrid resulting from symmetric protoplast fusion of diploid Citrus reticulata and diploid Poncirus trifoliata. The analysis was based on the segregation patterns of 16 SSR markers and 9 newly developed centromeric/pericentromeric SNP markers, representing all nine linkage groups of the Citrus genetic map. We found strong but incomplete preferential pairing between homologues of the same ancestral genome. The proportion of gametes that can be explained by random meiotic chromosome associations (τ) varied significantly between chromosomes, from 0.09 ± 0.02 to 0.47 ± 0.09, respectively, in chromosome 2 and 1. This intermediate inheritance between strict disomy and tetrasomy, with global preferential disomic tendency, resulted in a high level of intergeneric heterozygosity of the diploid gametes. Although limited, intergeneric recombinations occurred, whose observed rates, ranging from 0.09 to 0.29, respectively, in chromosome 2 and 1, were significantly correlated with τ. Such inheritance is of particular interest for rootstock breeding because a large part of the multi-trait value selected at the teraploid parent level is transmitted to the progeny, while the potential for some intergeneric recombination offers opportunities for generating plants with novel allelic combinations that can be targeted by selection.
Collapse
Affiliation(s)
| | - Marc Stift
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Gohar M, Gäbelein R, Mason AS. A quartet pollen phenotype identified in a population of Brassica interspecific hybrids shows incomplete penetrance and variable response to temperature. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:894-901. [PMID: 29883021 DOI: 10.1111/plb.12854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/03/2018] [Indexed: 06/08/2023]
Abstract
Quartet pollen, where pollen grains remain attached to each other post-meiosis, is useful for tetrad analysis, crossover assessment and centromere mapping. We observed the quartet pollen phenotype for the first time in the agriculturally significant Brassica genus, in an experimental population of allohexaploid Brassica hybrids derived from the cross (Brassica napus × B. carinata) × B. juncea followed by two self-pollination generations. Quartet pollen production was assessed in 144 genotypes under glasshouse conditions, following which a set of 16 genotypes were selected to further investigate the effect of environment (warm: 25 °C and cold: 10 °C temperatures) on quartet pollen production in growth cabinets. Under glasshouse phenotyping conditions, only 92 out of 144 genotypes produced enough pollen to score: of these, 30 did not produce any observable quartet pollen, while 62 genotypes produced quartet pollen at varying frequencies. Quartet pollen production appeared quantitative and did not clearly fall into phenotypic or qualitative categories indicative of major gene expression. No consistent effect of temperature on quartet pollen production was identified, with some genotypes producing more and some producing less quartet pollen under different temperature treatments. The genetic heterogeneity and frequent pollen infertility of this population prevents strong conclusions being made. However, it is clear that the quartet phenotype in this Brassica population does not show complete penetrance and shows variable (likely genotype-specific) response to temperature stress. In future, identification of quartet phenotypes in Brassica would perhaps best be carried out via screening of diploid (e.g. B. rapa) TILLING populations.
Collapse
Affiliation(s)
- M Gohar
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| | - R Gäbelein
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| | - A S Mason
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| |
Collapse
|
13
|
Ruiz M, Pensabene-Bellavia G, Quiñones A, García-Lor A, Morillon R, Ollitrault P, Primo-Millo E, Navarro L, Aleza P. Molecular Characterization and Stress Tolerance Evaluation of New Allotetraploid Somatic Hybrids Between Carrizo Citrange and Citrus macrophylla W. rootstocks. FRONTIERS IN PLANT SCIENCE 2018; 9:901. [PMID: 30123223 PMCID: PMC6085489 DOI: 10.3389/fpls.2018.00901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/07/2018] [Indexed: 05/18/2023]
Abstract
Polyploidy is one of the main forces that drives the evolution of plants and provides great advantages for breeding. Somatic hybridization by protoplast fusion is used in citrus breeding programs. This method allows combining the whole parental genomes in a single genotype, adding complementary dominant characters, regardless of parental heterozygosity. It also contributes to surpass limitations imposed by reproductive biology and quickly generates progenies that combine the required traits. Two allotetraploid somatic hybrids recovered from the citrus rootstocks-Citrus macrophylla (CM) and Carrizo citrange (CC)-were characterized for morphology, genome composition using molecular markers (SNP, SSR, and InDel), and their tolerance to iron chlorosis, salinity, and Citrus tristeza virus (CTV). Both hybrids combine the whole parental genomes even though the loss of parental alleles was detected in most linkage groups. Mitochondrial genome was inherited from CM in both the hybrids, whereas recombination was observed for chloroplastic genome. Thus, somatic hybrids differ from each other in their genome composition, indicating that losses and rearrangements occurred during the fusion process. Both inherited the tolerance to stem pitting caused by CTV from CC, are tolerant to iron chlorosis such as CM, and have a higher tolerance to salinity than the sensitive CC. These hybrids have potential as improved rootstocks to grow citrus in areas with calcareous and saline soils where CTV is present, such as the Mediterranean region. The provided knowledge on the effects of somatic hybridization on the genome composition, anatomy, and physiology of citrus rootstocks will be key for breeding programs that aim to address current and future needs of the citrus industry.
Collapse
Affiliation(s)
- Marta Ruiz
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Giovanni Pensabene-Bellavia
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Ana Quiñones
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Andrés García-Lor
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Raphaël Morillon
- UMR AGAP, Centre de Coopération Internationale en Recherche Agronomique Pour le Développement, Montpellier, France
| | - Patrick Ollitrault
- UMR AGAP, Centre de Coopération Internationale en Recherche Agronomique Pour le Développement, Montpellier, France
| | - Eduardo Primo-Millo
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Luis Navarro
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Pablo Aleza
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| |
Collapse
|
14
|
Rouiss H, Bakry F, Froelicher Y, Navarro L, Aleza P, Ollitrault P. Origin of C. latifolia and C. aurantiifolia triploid limes: the preferential disomic inheritance of doubled-diploid 'Mexican' lime is consistent with an interploid hybridization hypothesis. ANNALS OF BOTANY 2018; 121:571-585. [PMID: 29293884 PMCID: PMC5838810 DOI: 10.1093/aob/mcx179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/14/2017] [Indexed: 05/23/2023]
Abstract
Background and Aims Two main types of triploid limes are produced worldwide. The 'Tahiti' lime type (Citrus latifolia) is predominant, while the 'Tanepao' type (C. aurantiifolia) is produced to a lesser extent. Both types result from natural interspecific hybridization involving a diploid gamete of C. aurantiifolia 'Mexican' lime type (itself a direct interspecific C. micrantha × C. medica hybrid). The meiotic behaviour of a doubled-diploid 'Mexican' lime, the interspecific micrantha/medica recombination and the resulting diploid gamete structures were analysed to investigate the possibility that 'Tahiti' and 'Tanepao' varieties are derived from natural interploid hybridization. Methods A population of 85 tetraploid hybrids was established between a doubled-diploid clementine and a doubled-diploid 'Mexican' lime and used to infer the genotypes of 'Mexican' lime diploid gametes. Meiotic behaviour was studied through combined segregation analysis of 35 simple sequenbce repeat (SSR) and single nucleotide polymorphismn (SNP) markers covering the nine citrus chromosomes and cytogenetic studies. It was supplemented by pollen viability assessment. Key Results Pollen viability of the doubled-diploid Mexican lime (64 %) was much higher than that of the diploid. On average, 65 % of the chromosomes paired as bivalents and 31.4 % as tetravalents. Parental heterozygosity restitution ranged from 83 to 99 %. Disomic inheritance with high preferential pairing values was deduced for three chromosomes. Intermediate inheritances, with disomic trend, were found for five chromosomes, and an intermediate inheritance was observed for one chromosome. The average effective interspecific recombination rate was low (1.2 cM Mb-1). Conclusion The doubled-diploid 'Mexican' lime had predominantly disomic segregation, producing interspecific diploid gamete structures with high C. medica/C. micrantha heterozygosity, compatible with the phylogenomic structures of triploid C. latifolia and C. aurantiifolia varieties. This disomic trend limits effective interspecific recombination and diversity of the diploid gamete population. Interploid reconstruction breeding using doubled-diploid lime as one parent is a promising approach for triploid lime diversification.
Collapse
Affiliation(s)
- H Rouiss
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes (UMR Agap), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Petit-Bourg, Guadeloupe, France
| | - F Bakry
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes (UMR Agap), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier, France
| | - Y Froelicher
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes (UMR Agap), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), San Giuliano, Corse, France
| | - L Navarro
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - P Aleza
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - P Ollitrault
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes (UMR Agap), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Petit-Bourg, Guadeloupe, France
| |
Collapse
|
15
|
Oueslati A, Salhi-Hannachi A, Luro F, Vignes H, Mournet P, Ollitrault P. Genotyping by sequencing reveals the interspecific C. maxima / C. reticulata admixture along the genomes of modern citrus varieties of mandarins, tangors, tangelos, orangelos and grapefruits. PLoS One 2017; 12:e0185618. [PMID: 28982157 PMCID: PMC5628881 DOI: 10.1371/journal.pone.0185618] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/15/2017] [Indexed: 11/19/2022] Open
Abstract
The mandarin horticultural group is an important component of world citrus production for the fresh fruit market. This group formerly classified as C. reticulata is highly polymorphic and recent molecular studies have suggested that numerous cultivated mandarins were introgressed by C. maxima (the pummelos). C. maxima and C. reticulata are also the ancestors of sweet and sour oranges, grapefruit, and therefore of all the "small citrus" modern varieties (mandarins, tangors, tangelos) derived from sexual hybridization between these horticultural groups. Recently, NGS technologies have greatly modified how plant evolution and genomic structure are analyzed, moving from phylogenetics to phylogenomics. The objective of this work was to develop a workflow for phylogenomic inference from Genotyping By Sequencing (GBS) data and to analyze the interspecific admixture along the nine citrus chromosomes for horticultural groups and recent varieties resulting from the combination of the C. reticulata and C. maxima gene pools. A GBS library was established from 55 citrus varieties, using the ApekI restriction enzyme and selective PCR to improve the read depth. Diagnostic polymorphisms (DPs) of C. reticulata/C. maxima differentiation were identified and used to decipher the phylogenomic structure of the 55 varieties. The GBS approach was powerful and revealed 30,289 SNPs and 8,794 Indels with 12.6% of missing data. 11,133 DPs were selected covering the nine chromosomes with a higher density in genic regions. GBS combined with the detection of DPs was powerful for deciphering the "phylogenomic karyotypes" of cultivars derived from admixture of the two ancestral species after a limited number of interspecific recombinations. All the mandarins, mandarin hybrids, tangelos and tangors analyzed displayed introgression of C. maxima in different parts of the genome. C. reticulata/C. maxima admixture should be a major component of the high phenotypic variability of this germplasm opening up the way for association studies based on phylogenomics.
Collapse
Affiliation(s)
- Amel Oueslati
- Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie, Faculté des Sciences de Tunis (FST), Université de Tunis El Manar, Tunis, Tunisia
- AGAP Research Unit, Centre de coopération Internationale en Recherche Agronomique pour le Développement Petit-Bourg, Guadeloupe, France
| | - Amel Salhi-Hannachi
- Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie, Faculté des Sciences de Tunis (FST), Université de Tunis El Manar, Tunis, Tunisia
| | - François Luro
- AGAPResearch Unit, Institut National de la Recherche Agronomique, San Giuliano, France
| | - Hélène Vignes
- AGAP Research Unit, Centre de coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Pierre Mournet
- AGAP Research Unit, Centre de coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Patrick Ollitrault
- AGAP Research Unit, Centre de coopération Internationale en Recherche Agronomique pour le Développement Petit-Bourg, Guadeloupe, France
| |
Collapse
|
16
|
Rouiss H, Cuenca J, Navarro L, Ollitrault P, Aleza P. Unreduced Megagametophyte Production in Lemon Occurs via Three Meiotic Mechanisms, Predominantly Second-Division Restitution. FRONTIERS IN PLANT SCIENCE 2017; 8:1211. [PMID: 28747921 PMCID: PMC5506204 DOI: 10.3389/fpls.2017.01211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/27/2017] [Indexed: 05/23/2023]
Abstract
Unreduced (2n) gametes have played a pivotal role in polyploid plant evolution and are useful for sexual polyploid breeding in various species, particularly for developing new seedless citrus varieties. The underlying mechanisms of 2n gamete formation were recently revealed for Citrus reticulata but remain poorly understood for other citrus species, including lemon (C. limon [L.] Burm. f.). Here, we investigated the frequency and causal meiotic mechanisms of 2n megagametophyte production in lemon. We genotyped 48progeny plants of two lemon genotypes, "Eureka Frost" and "Fino", using 16 Simple Sequence Repeat (SSR) and 18 Single Nucleotide Polymorphism (SNP) markers to determine the genetic origin of the progenies and the underlying mechanisms for 2n gamete formation. We utilized a maximum-likelihood method based on parental heterozygosity restitution (PHR) of centromeric markers and analysis of PHR patterns along the chromosome. The frequency of 2n gamete production was 4.9% for "Eureka Frost" and 8.3% for "Fino", with three meiotic mechanisms leading to 2n gamete formation. We performed the maximum-likelihood method at the individual level via centromeric marker analysis, finding that 88% of the hybrids arose from second-division restitution (SDR), 7% from first-division restitution (FDR) or pre-meiotic doubling (PRD), and 5% from post-meiotic genome doubling (PMD). The pattern of PHR along LG1 confirmed that SDR is the main mechanism for 2n gamete production. Recombination analysis between markers in this LG revealed partial chiasma interference on both arms. We discuss the implications of these restitution mechanisms for citrus breeding and lemon genetics.
Collapse
Affiliation(s)
- Houssem Rouiss
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones AgrariasMoncada, Valencia, Spain
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes (UMR Agap), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Station de RoujolPetit-Bourg, Guadeloupe, France
| | - José Cuenca
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones AgrariasMoncada, Valencia, Spain
| | - Luis Navarro
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones AgrariasMoncada, Valencia, Spain
| | - Patrick Ollitrault
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes (UMR Agap), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Station de RoujolPetit-Bourg, Guadeloupe, France
| | - Pablo Aleza
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones AgrariasMoncada, Valencia, Spain
| |
Collapse
|
17
|
Aleza P, Cuenca J, Juárez J, Navarro L, Ollitrault P. Inheritance in doubled-diploid clementine and comparative study with SDR unreduced gametes of diploid clementine. PLANT CELL REPORTS 2016; 35:1573-86. [PMID: 27038940 DOI: 10.1007/s00299-016-1972-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/21/2016] [Indexed: 05/23/2023]
Abstract
Tetraploid clementine displays mainly tetrasomic inheritance. Genetic structures of 2n SDR and 2 × gametes from DD clementine are complementary and will guides triploids citrus breeding strategies. Triploid breeding is developed worldwide to create new seedless cultivars. Citrus triploid hybrids can be recovered from 2x × 2x sexual hybridizations as a consequence of the formation of unreduced gametes (2n), or from 4x × 2x interploid hybridizations in which tetraploid parents used are most often doubled-diploid (DD). Here we have analyzed the inheritance in doubled-diploid clementine and compared the genetic structures of gametes of DD clementine with SDR unreduced gametes of diploid clementine. Parental heterozygosity restitution (PHR) with DD parents depends on the rate of preferential chromosome pairing and thus the proportion of disomic versus tetrasomic segregations. Doubled-diploid clementine largely exhibited tetrasomic segregation. However, three linkage groups had intermediate segregation and one had a tendency for disomy. Significant doubled reduction rates (DR) rates were observed in six of the nine LGs. Differences of PHR between 2n SDR and 2x DD gametes were highest in the centromeric region and progressively decreased toward the distal regions where they were not significant. Over all markers, PHR was lower (two-thirds) in SDR 2n gametes than in DD-derived diploid gametes. The two strategies appear complementary in terms of genotypic variability. Interploid 4x × 2x hybridization is potentially more efficient for developing new cultivars that are phenotypically closer to the diploid parent of the DD than sexual hybridization through SDR 2n gametes. Conversely, 2x × 2x triploidisation has the potential to produce novel products with characteristics for market segmentation strategies.
Collapse
Affiliation(s)
- P Aleza
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, 46113, Moncada, Valencia, Spain
| | - J Cuenca
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, 46113, Moncada, Valencia, Spain
| | - J Juárez
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, 46113, Moncada, Valencia, Spain
| | - L Navarro
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, 46113, Moncada, Valencia, Spain.
| | - P Ollitrault
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, 46113, Moncada, Valencia, Spain.
- UMR AGAP, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Station de Roujol, 97170, Petit-Bourg, Guadeloupe.
| |
Collapse
|
18
|
Honsho C, Sakata A, Tanaka H, Ishimura S, Tetsumura T. Single-pollen genotyping to estimate mode of unreduced pollen formation in Citrus tamurana cv. Nishiuchi Konatsu. PLANT REPRODUCTION 2016; 29:189-97. [PMID: 26968168 DOI: 10.1007/s00497-016-0277-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 02/22/2016] [Indexed: 05/23/2023]
Abstract
2n pollen formed by FDR in citrus. The Japanese local citrus cultivar, Nishiuchi Konatsu (Citrus tamurana hort. ex Tanaka; NK hereafter), has the ability to produce unreduced 2n pollen grains, allowing generation of polyploid progenies via sexual polyploidization. In this study, we developed a method of single-pollen genotyping for citrus and applied it to the analysis of transmission of heterozygosity in NK 2n pollen grains. Heterozygosity transmission was expressed as the percentage inheritance of a set of heterozygous alleles from the parent to the 2n gamete. The pathway of 2n pollen development was investigated by applying the observed heterozygosity transmission and genetic distance to two different map functions, for first division restitution (FDR) and second division restitution (SDR). The fit of the values observed for both functions was calculated, while virtually moving the centromere position. We screened for six heterozygous SSR (codominant microsatellite marker loci) in NK, all of which were expected to lie within the same linkage group. Pollen germination prior to DNA extraction was essential for this work, and 6-h incubation proved to be optimal for subsequent PCR amplification. Single-pollen genotyping unreduced NK 2n pollen grains revealed that heterozygosity transmission exceeded 50 % in all six alleles, and fitness tests indicated that the FDR map function better fitted the heterozygosity transmission observed rather than the SDR function. Our data thus strongly indicate that 2n pollen in NK is a result of first division restitution.
Collapse
Affiliation(s)
- Chitose Honsho
- Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan.
| | - Aisa Sakata
- Graduate School of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Hikaru Tanaka
- Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Shuji Ishimura
- Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Takuya Tetsumura
- Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| |
Collapse
|
19
|
Mason AS, Rousseau-Gueutin M, Morice J, Bayer PE, Besharat N, Cousin A, Pradhan A, Parkin IAP, Chèvre AM, Batley J, Nelson MN. Centromere Locations in Brassica A and C Genomes Revealed Through Half-Tetrad Analysis. Genetics 2016; 202:513-23. [PMID: 26614742 PMCID: PMC4788232 DOI: 10.1534/genetics.115.183210] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/23/2015] [Indexed: 11/18/2022] Open
Abstract
Locating centromeres on genome sequences can be challenging. The high density of repetitive elements in these regions makes sequence assembly problematic, especially when using short-read sequencing technologies. It can also be difficult to distinguish between active and recently extinct centromeres through sequence analysis. An effective solution is to identify genetically active centromeres (functional in meiosis) by half-tetrad analysis. This genetic approach involves detecting heterozygosity along chromosomes in segregating populations derived from gametes (half-tetrads). Unreduced gametes produced by first division restitution mechanisms comprise complete sets of nonsister chromatids. Along these chromatids, heterozygosity is maximal at the centromeres, and homologous recombination events result in homozygosity toward the telomeres. We genotyped populations of half-tetrad-derived individuals (from Brassica interspecific hybrids) using a high-density array of physically anchored SNP markers (Illumina Brassica 60K Infinium array). Mapping the distribution of heterozygosity in these half-tetrad individuals allowed the genetic mapping of all 19 centromeres of the Brassica A and C genomes to the reference Brassica napus genome. Gene and transposable element density across the B. napus genome were also assessed and corresponded well to previously reported genetic map positions. Known centromere-specific sequences were located in the reference genome, but mostly matched unanchored sequences, suggesting that the core centromeric regions may not yet be assembled into the pseudochromosomes of the reference genome. The increasing availability of genetic markers physically anchored to reference genomes greatly simplifies the genetic and physical mapping of centromeres using half-tetrad analysis. We discuss possible applications of this approach, including in species where half-tetrads are currently difficult to isolate.
Collapse
Affiliation(s)
- Annaliese S Mason
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, 35392 Giessen, Germany School of Agriculture and Food Sciences and Centre for Integrative Legume Research, The University of Queensland, Brisbane 4072, Australia
| | | | - Jérôme Morice
- IGEPP, Institut National de la Recherche Agronomique, BP35327, 35653 Le Rheu, France
| | - Philipp E Bayer
- School of Agriculture and Food Sciences and Centre for Integrative Legume Research, The University of Queensland, Brisbane 4072, Australia School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia
| | - Naghmeh Besharat
- School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia
| | - Anouska Cousin
- School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia
| | - Aneeta Pradhan
- School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia
| | - Isobel A P Parkin
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan, Canada
| | - Anne-Marie Chèvre
- IGEPP, Institut National de la Recherche Agronomique, BP35327, 35653 Le Rheu, France
| | - Jacqueline Batley
- School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia School of Agriculture and Food Sciences and Centre for Integrative Legume Research, The University of Queensland, Brisbane 4072, Australia
| | - Matthew N Nelson
- School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia Natural Capital and Plant Health, Royal Botanic Gardens Kew, Ardingly, West Sussex, RH17 6TN, United Kingdom
| |
Collapse
|
20
|
Cuenca J, Aleza P, Juárez J, García-Lor A, Froelicher Y, Navarro L, Ollitrault P. Maximum-likelihood method identifies meiotic restitution mechanism from heterozygosity transmission of centromeric loci: application in citrus. Sci Rep 2015; 5:9897. [PMID: 25894579 PMCID: PMC4403285 DOI: 10.1038/srep09897] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/13/2015] [Indexed: 11/09/2022] Open
Abstract
Polyploidisation is a key source of diversification and speciation in plants. Most researchers consider sexual polyploidisation leading to unreduced gamete as its main origin. Unreduced gametes are useful in several crop breeding schemes. Their formation mechanism, i.e., First-Division Restitution (FDR) or Second-Division Restitution (SDR), greatly impacts the gametic and population structures and, therefore, the breeding efficiency. Previous methods to identify the underlying mechanism required the analysis of a large set of markers over large progeny. This work develops a new maximum-likelihood method to identify the unreduced gamete formation mechanism both at the population and individual levels using independent centromeric markers. Knowledge of marker-centromere distances greatly improves the statistical power of the comparison between the SDR and FDR hypotheses. Simulating data demonstrated the importance of selecting markers very close to the centromere to obtain significant conclusions at individual level. This new method was used to identify the meiotic restitution mechanism in nineteen mandarin genotypes used as female parents in triploid citrus breeding. SDR was identified for 85.3% of 543 triploid hybrids and FDR for 0.6%. No significant conclusions were obtained for 14.1% of the hybrids. At population level SDR was the predominant mechanisms for the 19 parental mandarins.
Collapse
Affiliation(s)
- José Cuenca
- Crop Protection and Biotechnology Center. Instituto Valenciano de Investigaciones Agrarias (IVIA)
| | - Pablo Aleza
- Crop Protection and Biotechnology Center. Instituto Valenciano de Investigaciones Agrarias (IVIA)
| | - José Juárez
- Crop Protection and Biotechnology Center. Instituto Valenciano de Investigaciones Agrarias (IVIA)
| | - Andrés García-Lor
- Crop Protection and Biotechnology Center. Instituto Valenciano de Investigaciones Agrarias (IVIA)
| | - Yann Froelicher
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD)
| | - Luis Navarro
- Crop Protection and Biotechnology Center. Instituto Valenciano de Investigaciones Agrarias (IVIA)
| | - Patrick Ollitrault
- Crop Protection and Biotechnology Center. Instituto Valenciano de Investigaciones Agrarias (IVIA)
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD)
| |
Collapse
|