1
|
Lu Y, Huang J, Liu D, Kong X, Song Y, Jing L. Pangenome Data Analysis Reveals Characteristics of Resistance Gene Analogs Associated with Sclerotinia sclerotiorum Resistance in Sunflower. Life (Basel) 2024; 14:1322. [PMID: 39459622 PMCID: PMC11509514 DOI: 10.3390/life14101322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
The sunflower, an important oilseed crop and food source across the world, is susceptible to several pathogens, which cause severe losses in sunflower production. The utilization of genetic resistance is the most economical, effective measure to prevent infectious diseases. Based on the sunflower pangenome, in this study, we explored the variability of resistance gene analogs (RGAs) within the species. According to a comparative analysis of RGA candidates in the sunflower pangenome using the RGAugury pipeline, a total of 1344 RGAs were identified, comprising 1107 conserved, 199 varied, and 38 rare RGAs. We also identified RGAs associated with resistance against Sclerotinia sclerotiorum (S. sclerotiorum) in sunflower at the quantitative trait locus (QTL). A total of 61 RGAs were found to be located at four quantitative trait loci (QTLs). Through a detailed expression analysis of RGAs in one susceptible and two tolerant sunflower inbred lines (ILs) across various time points post inoculation, we discovered that 348 RGAs exhibited differential expression in response to Sclerotinia head rot (SHR), with 17 of these differentially expressed RGAs being situated within the QTL regions. In addition, 15 RGA candidates had gene introgression. Our data provide a better understanding of RGAs, which facilitate genomics-based improvements in disease resistance in sunflower.
Collapse
Affiliation(s)
| | | | | | | | | | - Lan Jing
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhhot 010011, China; (Y.L.); (J.H.); (D.L.); (X.K.); (Y.S.)
| |
Collapse
|
2
|
Radhika DH, Nandan M, Gunnaiah R, Doddaraju P, Dumble P, Manjunatha G, Vikram Singh N. Genome and transcriptome exploration reveals receptor-like kinases as potential resistance gene analogs against bacterial blight in pomegranate. Mol Biol Rep 2024; 51:735. [PMID: 38874770 DOI: 10.1007/s11033-024-09670-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Pomegranate (Punica granatum L.) is a tropical fruit crop of pharma-nutritional importance. However, it faces farming challenges due to pests and diseases, particularly bacterial blight and wilt. Developing resistant cultivars is crucial for sustainable pomegranate cultivation, and understanding resistance's genetic basis is essential. METHODS AND RESULTS We used an extensive resistance gene analogues (RGA) prediction tool to identify 958 RGAs, classified into Nucleotide Binding Site-leucine-rich repeat (NBS-LRR) proteins, receptor-like kinases (RLKs), receptor-like proteins (RLPs), Transmembrane coiled-coil (TM-CC), and nine non-canonical RGAs. RGAs were distributed across all eight chromosomes, with chromosome 02 containing the most RGAs (161), and chromosome 08 having the highest density (4.42 RGA/Mb). NBS-LRR genes were predominantly present on chromosomes 08 and 02, whereas RLKs and RLPs were primarily located on chromosomes 04 and 07. Gene ontology analysis revealed that 475 RGAs were associated with defence against various biotic stresses. Using RNAseq, we identified 120 differentially expressed RGAs, with RLKs (74) being prominent among the differentially expressed genes. CONCLUSION The discovery of these RGAs is a significant step towards breeding pomegranates for pest and disease resistance. The differentially expressed RLKs hold promise for developing resistant cultivars against bacterial blight, thereby contributing to the sustainability of pomegranate cultivation.
Collapse
Affiliation(s)
- Dattatraya Hegde Radhika
- Dept. of Biotechnology and Crop Improvement, University of Horticultural Sciences, Bagalkot, 587104, India
| | - M Nandan
- Dept. of Biotechnology and Crop Improvement, University of Horticultural Sciences, Bagalkot, 587104, India
| | - Raghavendra Gunnaiah
- Dept. of Biotechnology and Crop Improvement, University of Horticultural Sciences, Bagalkot, 587104, India.
| | - Pushpa Doddaraju
- Biocontrol Laboratory, Directorate of Research, University of Horticultural Sciences, Bagalkot, 587104, India
| | - Pavan Dumble
- Biocontrol Laboratory, Directorate of Research, University of Horticultural Sciences, Bagalkot, 587104, India
- Research and Development Division-Biodefense, Sea6Energy Private Limited, C-CAMP, NCBS-TIFR Campus, GKVK, Bengaluru, 560065, India
| | - Girigowda Manjunatha
- Biocontrol Laboratory, Directorate of Research, University of Horticultural Sciences, Bagalkot, 587104, India
| | | |
Collapse
|
3
|
Nadeem S, Riaz Ahmed S, Luqman T, Tan DKY, Maryum Z, Akhtar KP, Muhy Ud Din Khan S, Tariq MS, Muhammad N, Khan MKR, Liu Y. A comprehensive review on Gossypium hirsutum resistance against cotton leaf curl virus. Front Genet 2024; 15:1306469. [PMID: 38440193 PMCID: PMC10909863 DOI: 10.3389/fgene.2024.1306469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/01/2024] [Indexed: 03/06/2024] Open
Abstract
Cotton (Gossypium hirsutum L.) is a significant fiber crop. Being a major contributor to the textile industry requires continuous care and attention. Cotton is subjected to various biotic and abiotic constraints. Among these, biotic factors including cotton leaf curl virus (CLCuV) are dominant. CLCuV is a notorious disease of cotton and is acquired, carried, and transmitted by the whitefly (Bemisia tabaci). A cotton plant affected with CLCuV may show a wide range of symptoms such as yellowing of leaves, thickening of veins, upward or downward curling, formation of enations, and stunted growth. Though there are many efforts to protect the crop from CLCuV, long-term results are not yet obtained as CLCuV strains are capable of mutating and overcoming plant resistance. However, systemic-induced resistance using a gene-based approach remained effective until new virulent strains of CLCuV (like Cotton Leaf Curl Burewala Virus and others) came into existence. Disease control by biological means and the development of CLCuV-resistant cotton varieties are in progress. In this review, we first discussed in detail the evolution of cotton and CLCuV strains, the transmission mechanism of CLCuV, the genetic architecture of CLCuV vectors, and the use of pathogen and nonpathogen-based approaches to control CLCuD. Next, we delineate the uses of cutting-edge technologies like genome editing (with a special focus on CRISPR-Cas), next-generation technologies, and their application in cotton genomics and speed breeding to develop CLCuD resistant cotton germplasm in a short time. Finally, we delve into the current obstacles related to cotton genome editing and explore forthcoming pathways for enhancing precision in genome editing through the utilization of advanced genome editing technologies. These endeavors aim to enhance cotton's resilience against CLCuD.
Collapse
Affiliation(s)
- Sahar Nadeem
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Syed Riaz Ahmed
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
- Pakistan Agriculture Research Council (PARC), Horticulture Research Institute Khuzdar Baghbana, Khuzdar, Pakistan
| | - Tahira Luqman
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Daniel K. Y. Tan
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Zahra Maryum
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Khalid Pervaiz Akhtar
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Sana Muhy Ud Din Khan
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Muhammad Sayyam Tariq
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Nazar Muhammad
- Agriculture and Cooperative Department, Quetta, Pakistan
| | - Muhammad Kashif Riaz Khan
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
- Plant Breeding and Genetics Division, Cotton Group, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Yongming Liu
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
4
|
Švara A, De Storme N, Carpentier S, Keulemans W, De Coninck B. Phenotyping, genetics, and "-omics" approaches to unravel and introgress enhanced resistance against apple scab ( Venturia inaequalis) in apple cultivars ( Malus × domestica). HORTICULTURE RESEARCH 2024; 11:uhae002. [PMID: 38371632 PMCID: PMC10873587 DOI: 10.1093/hr/uhae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 12/27/2023] [Indexed: 02/20/2024]
Abstract
Apple scab disease, caused by the fungus Venturia inaequalis, endangers commercial apple production globally. It is predominantly managed by frequent fungicide sprays that can harm the environment and promote the development of fungicide-resistant strains. Cultivation of scab-resistant cultivars harboring diverse qualitative Rvi resistance loci and quantitative trait loci associated with scab resistance could reduce the chemical footprint. A comprehensive understanding of the host-pathogen interaction is, however, needed to efficiently breed cultivars with enhanced resistance against a variety of pathogenic strains. Breeding efforts should not only encompass pyramiding of Rvi loci and their corresponding resistance alleles that directly or indirectly recognize pathogen effectors, but should also integrate genes that contribute to effective downstream defense mechanisms. This review provides an overview of the phenotypic and genetic aspects of apple scab resistance, and currently known corresponding defense mechanisms. Implementation of recent "-omics" approaches has provided insights into the complex network of physiological, molecular, and signaling processes that occur before and upon scab infection, thereby revealing the importance of both constitutive and induced defense mechanisms. Based on the current knowledge, we outline advances toward more efficient introgression of enhanced scab resistance into novel apple cultivars by conventional breeding or genetic modification techniques. However, additional studies integrating different "-omics" approaches combined with functional studies will be necessary to unravel effective defense mechanisms as well as key regulatory genes underpinning scab resistance in apple. This crucial information will set the stage for successful knowledge-based breeding for enhanced scab resistance.
Collapse
Affiliation(s)
- Anže Švara
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, KU Leuven Plant Institute, Willem de Croylaan 42, 3001 Leuven, Belgium
- KU Leuven Plant Institute, KU Leuven 3001 Leuven, Belgium
| | - Nico De Storme
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, KU Leuven Plant Institute, Willem de Croylaan 42, 3001 Leuven, Belgium
- KU Leuven Plant Institute, KU Leuven 3001 Leuven, Belgium
| | - Sebastien Carpentier
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
- Genetic resources, Bioversity International, Willem de Croylaan 42, 3001 Leuven, Belgium
- KU Leuven Plant Institute, KU Leuven 3001 Leuven, Belgium
| | - Wannes Keulemans
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, KU Leuven Plant Institute, Willem de Croylaan 42, 3001 Leuven, Belgium
- KU Leuven Plant Institute, KU Leuven 3001 Leuven, Belgium
| | - Barbara De Coninck
- Laboratory of Plant Health and Protection, Division of Crop Biotechnics, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, KU Leuven Plant Institute, Willem de Croylaan 42, 3001 Leuven, Belgium
| |
Collapse
|
5
|
Marone D, Laidò G, Saccomanno A, Petruzzino G, Giaretta Azevedo CV, De Vita P, Mastrangelo AM, Gadaleta A, Ammar K, Bassi FM, Wang M, Chen X, Rubiales D, Matny O, Steffenson BJ, Pecchioni N. Genome-wide association study of common resistance to rust species in tetraploid wheat. FRONTIERS IN PLANT SCIENCE 2024; 14:1290643. [PMID: 38235202 PMCID: PMC10792004 DOI: 10.3389/fpls.2023.1290643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Rusts of the genus Puccinia are wheat pathogens. Stem (black; Sr), leaf (brown; Lr), and stripe (yellow; Yr) rust, caused by Puccinia graminis f. sp. tritici (Pgt), Puccinia triticina (Pt), and Puccinia striiformis f. sp. tritici (Pst), can occur singularly or in mixed infections and pose a threat to wheat production globally in terms of the wide dispersal of their urediniospores. The development of durable resistant cultivars is the most sustainable method for controlling them. Many resistance genes have been identified, characterized, genetically mapped, and cloned; several quantitative trait loci (QTLs) for resistance have also been described. However, few studies have considered resistance to all three rust pathogens in a given germplasm. A genome-wide association study (GWAS) was carried out to identify loci associated with resistance to the three rusts in a collection of 230 inbred lines of tetraploid wheat (128 of which were Triticum turgidum ssp. durum) genotyped with SNPs. The wheat panel was phenotyped in the field and subjected to growth chamber experiments across different countries (USA, Mexico, Morocco, Italy, and Spain); then, a mixed linear model (MLM) GWAS was performed. In total, 9, 34, and 5 QTLs were identified in the A and B genomes for resistance to Pgt, Pt, and Pst, respectively, at both the seedling and adult plant stages. Only one QTL on chromosome 4A was found to be effective against all three rusts at the seedling stage. Six QTLs conferring resistance to two rust species at the adult plant stage were mapped: three on chromosome 1B and one each on 5B, 7A, and 7B. Fifteen QTLs conferring seedling resistance to two rusts were mapped: five on chromosome 2B, three on 7B, two each on 5B and 6A, and one each on 1B, 2A, and 7A. Most of the QTLs identified were specific for a single rust species or race of a species. Candidate genes were identified within the confidence intervals of a QTL conferring resistance against at least two rust species by using the annotations of the durum (cv. 'Svevo') and wild emmer wheat ('Zavitan') reference genomes. The 22 identified loci conferring resistance to two or three rust species may be useful for breeding new and potentially durable resistant wheat cultivars.
Collapse
Affiliation(s)
- Daniela Marone
- Centro di Ricerca Cerealicoltura e Colture Industriali, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Foggia, Italy
| | - Giovanni Laidò
- Centro di Ricerca Cerealicoltura e Colture Industriali, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Foggia, Italy
| | - Antonietta Saccomanno
- Centro di Ricerca Cerealicoltura e Colture Industriali, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Foggia, Italy
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Reggio Emilia, Italy
| | - Giuseppe Petruzzino
- Centro di Ricerca Cerealicoltura e Colture Industriali, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Foggia, Italy
| | - Cleber V. Giaretta Azevedo
- Centro di Ricerca Cerealicoltura e Colture Industriali, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Foggia, Italy
| | - Pasquale De Vita
- Centro di Ricerca Cerealicoltura e Colture Industriali, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Foggia, Italy
| | - Anna Maria Mastrangelo
- Centro di Ricerca Cerealicoltura e Colture Industriali, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Foggia, Italy
| | - Agata Gadaleta
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti (Di.S.S.P.A.), Università di Bari “Aldo Moro”, Bari, Italy
| | - Karim Ammar
- International Maize and Wheat Improvement Centre (CIMMYT), Ciudad de México, Mexico
| | - Filippo M. Bassi
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics, and Quality Research Unit, United States Department of Agriculture - Agriculture Research Service (USDA-ARS), Pullman, WA, United States
| | - Diego Rubiales
- Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Oadi Matny
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Brian J. Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Nicola Pecchioni
- Centro di Ricerca Cerealicoltura e Colture Industriali, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Foggia, Italy
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
6
|
Naveed H, Islam W, Jafir M, Andoh V, Chen L, Chen K. A Review of Interactions between Plants and Whitefly-Transmitted Begomoviruses. PLANTS (BASEL, SWITZERLAND) 2023; 12:3677. [PMID: 37960034 PMCID: PMC10648457 DOI: 10.3390/plants12213677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
The transmission of plant viruses from infected to healthy host plants is a process in which insects play a major role, using various transmission strategies. Environmental factors have an impact on the transmission of viruses and the subsequent development of infections or diseases. When viruses are successful, plant virus diseases can reach epidemic proportions. Many plants across different regions are vulnerable to viral infections transmitted by the whitefly vector. Begomoviruses, which are transmitted by whiteflies, represent a significant threat to agriculture worldwide. The review highlights the mechanisms of virus acquisition and transmission by whiteflies and explores the factors influencing these interactions. Understanding the impacts of these changes is crucial for managing the spread of pests and mitigating damage to crops. It underscores the need for continued research to elucidate the mechanisms driving plant-insect-virus interactions and to identify new approaches for sustainable pest management.
Collapse
Affiliation(s)
- Hassan Naveed
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China;
| | - Waqar Islam
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
| | - Muhammad Jafir
- Department of Ecology, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China;
| | - Vivian Andoh
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China;
| | - Liang Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China;
| | - Keping Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China;
| |
Collapse
|
7
|
Sun Y, Kou DR, Li Y, Ni JP, Wang J, Zhang YM, Wang QN, Jiang B, Wang X, Sun YX, Xu XT, Tan XJ, Zhang YJ, Kong XD. Pan-genome of Citrullus genus highlights the extent of presence/absence variation during domestication and selection. BMC Genomics 2023; 24:332. [PMID: 37322453 DOI: 10.1186/s12864-023-09443-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023] Open
Abstract
The rich genetic diversity in Citrullus lanatus and the other six species in the Citrullus genus provides important sources in watermelon breeding. Here, we present the Citrullus genus pan-genome based on the 400 Citrullus genus resequencing data, showing that 477 Mb contigs and 6249 protein-coding genes were absent in the Citrullus lanatus reference genome. In the Citrullus genus pan-genome, there are a total of 8795 (30.5%) genes that exhibit presence/absence variations (PAVs). Presence/absence variation (PAV) analysis showed that a lot of gene PAV were selected during the domestication and improvement, such as 53 favorable genes and 40 unfavorable genes were identified during the C. mucosospermus to C. lanatus landrace domestication. We also identified 661 resistance gene analogs (RGAs) in the Citrullus genus pan-genome, which contains 90 RGAs (89 variable and 1 core gene) located on the pangenome additional contigs. By gene PAV-based GWAS, 8 gene presence/absence variations were found associated with flesh color. Finally, based on the results of gene PAV selection analysis between watermelon populations with different fruit colors, we identified four non-reference candidate genes associated with carotenoid accumulation, which had a significantly higher frequency in the white flesh. These results will provide an important source for watermelon breeding.
Collapse
Affiliation(s)
- Yang Sun
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.
| | - Dou-Rong Kou
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Yan Li
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
- Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | | | - Jing Wang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
- Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yong-Mei Zhang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Qing-Nan Wang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Bin Jiang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Xu Wang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Yue-Xin Sun
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Xin-Tong Xu
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Xiao-Juan Tan
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Yong-Jun Zhang
- Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | | |
Collapse
|
8
|
Rizwan M, Haider SZ, Bakar A, Rani S, Danial M, Sharma V, Mubin M, Serfraz A, Shahnawaz-Ur-Rehman M, Shakoor S, Alkahtani S, Saleem F, Mamoon-Ur-Rehman H, Serfraz S. Evolution of NLR genes in genus Arachis reveals asymmetric expansion of NLRome in wild and domesticated tetraploid species. Sci Rep 2023; 13:9305. [PMID: 37291184 PMCID: PMC10250334 DOI: 10.1038/s41598-023-36302-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
Arachis hypogaea is an allotetraploid crop widely grown in the world. Wild relatives of genus Arachis are the rich source of genetic diversity and high levels of resistance to combat pathogens and climate change. The accurate identification and characterization of plant resistance gene, nucleotide binding site leucine rich repeat receptor (NLRs) substantially contribute to the repertoire of resistances and improve production. In the current study, we have studied the evolution of NLR genes in genus Arachis and performed their comparative genomics among four diploids (A. duranensis, A. ipaensis, A. cardenasii, A. stenosperma) and two tetraploid (wild: A. monticola and domesticated: A. hypogaea) species. In total 521, 354, 284, 794, 654, 290 NLR genes were identified from A. cardenasii, A. stenosperma and A. duranensis, A. hypogaea, A. monticola and A. ipaensis respectively. Phylogenetic analysis and classification of NLRs revealed that they belong to 7 subgroups and specific subgroups have expanded in each genome leading towards divergent evolution. Gene gain and loss, duplication assay reveals that wild and domesticated tetraploids species have shown asymmetric expansion of NLRome in both sub-genome (AA and BB). A-subgenome of A. monticola exhibited significant contraction of NLRome while B-subgenome shows expansion and vice versa in case of A. hypogaea probably due to distinct natural and artificial selection pressure. In addition, diploid species A. cardenasii revealed the largest repertoire of NLR genes due to higher frequency of gene duplication and selection pressure. A. cardenasii and A. monticola can be regarded as putative resistance resources for peanut breeding program for introgression of novel resistance genes. Findings of this study also emphasize the application neo-diploids and polyploids due to higher quantitative expression of NLR genes. To the best of our knowledge, this is the first study that studied the effect of domestication and polyploidy on the evolution of NLR genes in genus Arachis to identify genomic resources for improving resistance of polyploid crop with global importance on economy and food security.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Syed Zeeshan Haider
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Abu Bakar
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Shamiza Rani
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Danial
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Vikas Sharma
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425, Jülich, Germany
| | - Muhammad Mubin
- Virology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ali Serfraz
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
- Department of Plant Pathology, University of Arid Agriculture, Rawalpindi , Pakistan
| | | | - Sidra Shakoor
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Fozia Saleem
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
| | | | - Saad Serfraz
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
9
|
Genome wide identification and evolutionary analysis of vat like NBS-LRR genes potentially associated with resistance to aphids in cotton. Genetica 2023; 151:119-131. [PMID: 36717534 DOI: 10.1007/s10709-023-00181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/24/2023] [Indexed: 02/01/2023]
Abstract
Nucleotide Binding Site - Leucine Rich Repeat (NBS-LRR) genes play a significant role in plant defense against biotic stresses and are an integral part of signal transduction pathways. Vat gene has been well reported for their role in resistance to Aphis gossypii and viruses transmitted by them. Despite their importance, Vat like NBS-LRR resistance genes have not yet been identified and studied in cotton species. This study report hundreds of orthologous Vat like NBS-LRR genes from the genomes of 18 cotton species through homology searches and the distribution of those identified genes were tend to be clustered on different chromosome. Especially, in a majority of the cases, Vat like genes were located on chromosome number 13 and they all shared two conserved NBS-LRR domains, one disease resistant domain and several repeats of LRR on the investigated cotton Vat like proteins. Gene ontology study on Vat like NBS-LRR genes revealed the molecular functions viz., ADP and protein binding. Phylogenetic analysis also revealed that Vat like sequences of two diploid species, viz., G. arboreum and G. anomalum, were closely related to the sequences of the tetraploids than all other diploids. The Vat like genes of G. aridum and G. schwendimanii were distantly related among diploids and tetraploids species. Various hormones and defense related cis-acting regulatory elements were identified from the 2 kb upstream sequences of the Vat like genes implying their defensive response towards the biotic stresses. Interestingly, G. arboreum and G. trilobum were found to have more regulatory elements than larger genomes of tetraploid cotton species. Thus, the present study provides the evidence for the evolution of Vat like genes in defense mechanisms against aphids infestation in cotton genomes and allows further characterization of candidate genes for developing aphid and aphid transmitted viruses resistant crops through cotton breeding.
Collapse
|
10
|
Naqvi RZ, Siddiqui HA, Mahmood MA, Najeebullah S, Ehsan A, Azhar M, Farooq M, Amin I, Asad S, Mukhtar Z, Mansoor S, Asif M. Smart breeding approaches in post-genomics era for developing climate-resilient food crops. FRONTIERS IN PLANT SCIENCE 2022; 13:972164. [PMID: 36186056 PMCID: PMC9523482 DOI: 10.3389/fpls.2022.972164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Improving the crop traits is highly required for the development of superior crop varieties to deal with climate change and the associated abiotic and biotic stress challenges. Climate change-driven global warming can trigger higher insect pest pressures and plant diseases thus affecting crop production sternly. The traits controlling genes for stress or disease tolerance are economically imperative in crop plants. In this scenario, the extensive exploration of available wild, resistant or susceptible germplasms and unraveling the genetic diversity remains vital for breeding programs. The dawn of next-generation sequencing technologies and omics approaches has accelerated plant breeding by providing the genome sequences and transcriptomes of several plants. The availability of decoded plant genomes offers an opportunity at a glance to identify candidate genes, quantitative trait loci (QTLs), molecular markers, and genome-wide association studies that can potentially aid in high throughput marker-assisted breeding. In recent years genomics is coupled with marker-assisted breeding to unravel the mechanisms to harness better better crop yield and quality. In this review, we discuss the aspects of marker-assisted breeding and recent perspectives of breeding approaches in the era of genomics, bioinformatics, high-tech phonemics, genome editing, and new plant breeding technologies for crop improvement. In nutshell, the smart breeding toolkit in the post-genomics era can steadily help in developing climate-smart future food crops.
Collapse
|
11
|
Fu M, Chen Y, Li H, Wang L, Liu R, Liu Z. Genome-Wide Identification and Expression Analyses of the Cotton AGO Genes and Their Potential Roles in Fiber Development and Stress Response. Genes (Basel) 2022; 13:genes13081492. [PMID: 36011401 PMCID: PMC9408788 DOI: 10.3390/genes13081492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 11/19/2022] Open
Abstract
Argonaute proteins (AGOs) are indispensable components of RNA silencing. However, systematic characterization of the AGO genes have not been completed in cotton until now. In this study, cotton AGO genes were identified and analyzed with respect to their evolution and expression profile during biotic and abiotic stresses. We identified 14 GaAGO, 14 GrAGO, and 28 GhAGO genes in the genomes of Gossypium arboreum, Gossypium raimondii, and Gossypium hirsutum. Cotton AGO proteins were classified into four subgroups. Structural and functional conservation were observed in the same subgroups based on the analysis of the gene structure and conserved domains. Twenty-four duplicated gene pairs were identified in GhAGO genes, and all of them exhibited strong purifying selection during evolution. Moreover, RNA-seq analysis showed that most of the GhAGO genes exhibit high expression levels in the fiber initiation and elongation processes. Furthermore, the expression profiles of GhAGO genes tested by quantitative real-time polymerase chain reaction (qPCR) demonstrated that they were sensitive to Verticillium wilt infection and salt and drought stresses. Overall, our results will pave the way for further functional investigation of the cotton AGO gene family, which may be involved in fiber development and stress response.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhanji Liu
- Correspondence: ; Tel.: +86-531-6665-9992
| |
Collapse
|
12
|
Li W, Lu J, Yang C, Xia S. Identification of receptor-like proteins induced by Sclerotinia sclerotiorum in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:944763. [PMID: 36061811 PMCID: PMC9429810 DOI: 10.3389/fpls.2022.944763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Heightening the resistance of plants to microbial infection is a widely concerned issue, especially for economical crops. Receptor-like proteins (RLPs), typically with tandem leucine-rich repeats (LRRs) domain, play a crucial role in mediating immune activation, being an indispensable constituent in the first layer of defense. Based on an analysis of orthologs among Brassica rapa, Brassica oleracea, and Brassica napus using Arabidopsis thaliana RLPs as a reference framework, we found that compared to A. thaliana, there were some obvious evolutionary diversities of RLPs among the three Brassicaceae species. BnRLP encoding genes were unevenly distributed on chromosomes, mainly on chrA01, chrA04, chrC03, chrC04, and chrC06. The orthologs of five AtRLPs (AtRLP3, AtRLP10, AtRLP17, AtRLP44, and AtRLP51) were highly conserved, but retrenchment and functional centralization occurred in Brassicaceae RLPs during evolution. The RLP proteins were clustered into 13 subgroups. Ten BnRLPs presented expression specificity between R and S when elicited by Sclerotinia sclerotiorum, which might be fabulous candidates for S. sclerotiorum resistance research.
Collapse
Affiliation(s)
- Wei Li
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- College of Life Science, Chongqing Normal University, Chongqing, China
| | - Junxing Lu
- College of Life Science, Chongqing Normal University, Chongqing, China
| | - Chenghuizi Yang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
13
|
Chen L, Shen E, Zhao Y, Wang H, Wilson I, Zhu QH. The Conservation of Long Intergenic Non-Coding RNAs and Their Response to Verticillium dahliae Infection in Cotton. Int J Mol Sci 2022; 23:ijms23158594. [PMID: 35955726 PMCID: PMC9368808 DOI: 10.3390/ijms23158594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 02/04/2023] Open
Abstract
Long intergenic non-coding RNAs (lincRNAs) have been demonstrated to be vital regulators of diverse biological processes in both animals and plants. While many lincRNAs have been identified in cotton, we still know little about the repositories and conservativeness of lincRNAs in different cotton species or about their role in responding to biotic stresses. Here, by using publicly available RNA-seq datasets from diverse sources, including experiments of Verticillium dahliae (Vd) infection, we identified 24,425 and 17,713 lincRNAs, respectively, in Gossypium hirsutum (Ghr) and G. barbadense (Gba), the two cultivated allotetraploid cotton species, and 6933 and 5911 lincRNAs, respectively, in G. arboreum (Gar) and G. raimondii (Gra), the two extant diploid progenitors of the allotetraploid cotton. While closely related subgenomes, such as Ghr_At and Gba_At, tend to have more conserved lincRNAs, most lincRNAs are species-specific. The majority of the synthetic and transcribed lincRNAs (78.2%) have a one-to-one orthologous relationship between different (sub)genomes, although a few of them (0.7%) are retained in all (sub)genomes of the four species. The Vd responsiveness of lincRNAs seems to be positively associated with their conservation level. The major functionalities of the Vd-responsive lincRNAs seem to be largely conserved amongst Gra, Ghr, and Gba. Many Vd-responsive Ghr-lincRNAs overlap with Vd-responsive QTL, and several lincRNAs were predicted to be endogenous target mimicries of miR482/2118, with a pair being highly conserved between Ghr and Gba. On top of the confirmation of the feature characteristics of the lincRNAs previously reported in cotton and other species, our study provided new insights into the conservativeness and divergence of lincRNAs during cotton evolution and into the relationship between the conservativeness and Vd responsiveness of lincRNAs. The study also identified candidate lincRNAs with a potential role in disease response for functional characterization.
Collapse
Affiliation(s)
- Li Chen
- School of Life Sciences, Westlake University, Hangzhou 310024, China;
| | - Enhui Shen
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China;
| | - Yunlei Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Y.Z.); (H.W.)
| | - Hongmei Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Y.Z.); (H.W.)
| | - Iain Wilson
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia;
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia;
- Correspondence:
| |
Collapse
|
14
|
Álvarez-López D, Herrera-Valencia VA, Góngora-Castillo E, García-Laynes S, Puch-Hau C, López-Ochoa LA, Lizama-Uc G, Peraza-Echeverria S. Genome-Wide Analysis of the LRR-RLP Gene Family in a Wild Banana ( Musa acuminata ssp. malaccensis) Uncovers Multiple Fusarium Wilt Resistance Gene Candidates. Genes (Basel) 2022; 13:638. [PMID: 35456444 PMCID: PMC9025879 DOI: 10.3390/genes13040638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Banana is the most popular fruit in the world, with a relevant role in food security for more than 400 million people. However, fungal diseases cause substantial losses every year. A better understanding of the banana immune system should facilitate the development of new disease-resistant cultivars. In this study, we performed a genome-wide analysis of the leucine-rich repeat receptor-like protein (LRR-RLP) disease resistance gene family in a wild banana. We identified 78 LRR-RLP genes in the banana genome. Remarkably, seven MaLRR-RLPs formed a gene cluster in the distal part of chromosome 10, where resistance to Fusarium wilt caused by Foc race 1 has been previously mapped. Hence, we proposed these seven MaLRR-RLPs as resistance gene candidates (RGCs) for Fusarium wilt. We also identified seven other banana RGCs based on their close phylogenetic relationships with known LRR-RLP proteins. Moreover, phylogenetic analysis of the banana, rice, and Arabidopsis LRR-RLP families revealed five major phylogenetic clades shared by these plant species. Finally, transcriptomic analysis of the MaLRR-RLP gene family in plants treated with Foc race 1 or Foc TR4 showed the expression of several members of this family, and some of them were upregulated in response to these Foc races. Our study provides novel insights into the structure, distribution, evolution, and expression of the LRR-RLP gene family in bananas as well as valuable RGCs that will facilitate the identification of disease resistance genes for the genetic improvement of this crop.
Collapse
Affiliation(s)
- Dulce Álvarez-López
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida 97200, Yucatán, Mexico; (D.Á.-L.); (V.A.H.-V.); (S.G.-L.)
| | - Virginia Aurora Herrera-Valencia
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida 97200, Yucatán, Mexico; (D.Á.-L.); (V.A.H.-V.); (S.G.-L.)
| | - Elsa Góngora-Castillo
- CONACYT-Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida 97200, Yucatán, Mexico;
| | - Sergio García-Laynes
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida 97200, Yucatán, Mexico; (D.Á.-L.); (V.A.H.-V.); (S.G.-L.)
| | - Carlos Puch-Hau
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Departamento de Recursos del Mar, Unidad Mérida, Km. 6, Antigua Carretera a Progreso, Apdo. Postal 73-Cordemex, Mérida 97310, Yucatán, Mexico;
| | - Luisa Alhucema López-Ochoa
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida 97200, Yucatán, Mexico;
| | - Gabriel Lizama-Uc
- Tecnológico Nacional de México/Instituto Tecnológico de Mérida, Av. Tecnológico km. 4.5, Mérida 97118, Yucatán, Mexico;
| | - Santy Peraza-Echeverria
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida 97200, Yucatán, Mexico; (D.Á.-L.); (V.A.H.-V.); (S.G.-L.)
| |
Collapse
|
15
|
Sun Y, Wang J, Li Y, Jiang B, Wang X, Xu WH, Wang YQ, Zhang PT, Zhang YJ, Kong XD. Pan-Genome Analysis Reveals the Abundant Gene Presence/Absence Variations Among Different Varieties of Melon and Their Influence on Traits. FRONTIERS IN PLANT SCIENCE 2022; 13:835496. [PMID: 35401600 PMCID: PMC8990847 DOI: 10.3389/fpls.2022.835496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Melon (Cucumismelo L.) is an important vegetable crop that has been subjected to domestication and improvement. Several varieties of melons with diverse phenotypes have been produced. In this study, we constructed a melon pan-genome based on 297 accessions comprising 168 Mb novel sequences and 4,325 novel genes. Based on the results, there were abundant genetic variations among different melon groups, including 364 unfavorable genes in the IMP_A vs. LDR_A group, 46 favorable genes, and 295 unfavorable genes in the IMP_M vs. LDR_M group. The distribution of 709 resistance gene analogs (RGAs) was also characterized across 297 melon lines, of which 603 were core genes. Further, 106 genes were found to be variable, 55 of which were absent in the reference melon genome. Using gene presence/absence variation (PAV)-based genome-wide association analysis (GWAS), 13 gene PAVs associated with fruit length, fruit shape, and fruit width were identified, four of which were located in pan-genome additional contigs.
Collapse
Affiliation(s)
- Yang Sun
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Jing Wang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yan Li
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
- Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Jiang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Xu Wang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Wen-Hui Xu
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yu-Qing Wang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Pei-Tao Zhang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yong-Jun Zhang
- Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | | |
Collapse
|
16
|
Tay Fernandez CG, Nestor BJ, Danilevicz MF, Gill M, Petereit J, Bayer PE, Finnegan PM, Batley J, Edwards D. Pangenomes as a Resource to Accelerate Breeding of Under-Utilised Crop Species. Int J Mol Sci 2022; 23:2671. [PMID: 35269811 PMCID: PMC8910360 DOI: 10.3390/ijms23052671] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Pangenomes are a rich resource to examine the genomic variation observed within a species or genera, supporting population genetics studies, with applications for the improvement of crop traits. Major crop species such as maize (Zea mays), rice (Oryza sativa), Brassica (Brassica spp.), and soybean (Glycine max) have had pangenomes constructed and released, and this has led to the discovery of valuable genes associated with disease resistance and yield components. However, pangenome data are not available for many less prominent crop species that are currently under-utilised. Despite many under-utilised species being important food sources in regional populations, the scarcity of genomic data for these species hinders their improvement. Here, we assess several under-utilised crops and review the pangenome approaches that could be used to build resources for their improvement. Many of these under-utilised crops are cultivated in arid or semi-arid environments, suggesting that novel genes related to drought tolerance may be identified and used for introgression into related major crop species. In addition, we discuss how previously collected data could be used to enrich pangenome functional analysis in genome-wide association studies (GWAS) based on studies in major crops. Considering the technological advances in genome sequencing, pangenome references for under-utilised species are becoming more obtainable, offering the opportunity to identify novel genes related to agro-morphological traits in these species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - David Edwards
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia; (C.G.T.F.); (B.J.N.); (M.F.D.); (M.G.); (J.P.); (P.E.B.); (P.M.F.); (J.B.)
| |
Collapse
|
17
|
Transcriptome Analysis of a Cotton Cultivar Provides Insights into the Differentially Expressed Genes Underlying Heightened Resistance to the Devastating Verticillium Wilt. Cells 2021; 10:cells10112961. [PMID: 34831184 PMCID: PMC8616101 DOI: 10.3390/cells10112961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/25/2022] Open
Abstract
Cotton is an important economic crop worldwide. Verticillium wilt (VW) caused by Verticillium dahliae (V. dahliae) is a serious disease in cotton, resulting in massive yield losses and decline of fiber quality. Breeding resistant cotton cultivars is an efficient but elaborate method to improve the resistance of cotton against V. dahliae infection. However, the functional mechanism of several excellent VW resistant cotton cultivars is poorly understood at present. In our current study, we carried out RNA-seq to discover the differentially expressed genes (DEGs) in the roots of susceptible cotton Gossypium hirsutum cultivar Junmian 1 (J1) and resistant cotton G.hirsutum cultivar Liaomian 38 (L38) upon Vd991 inoculation at two time points compared with the mock inoculated control plants. The potential function of DEGs uniquely expressed in J1 and L38 was also analyzed by GO enrichment and KEGG pathway associations. Most DEGs were assigned to resistance-related functions. In addition, resistance gene analogues (RGAs) were identified and analyzed for their role in the heightened resistance of the L38 cultivar against the devastating Vd991. In summary, we analyzed the regulatory network of genes in the resistant cotton cultivar L38 during V. dahliae infection, providing a novel and comprehensive insight into VW resistance in cotton.
Collapse
|
18
|
Li T, Zhang Q, Jiang X, Li R, Dhar N. Cotton CC-NBS-LRR Gene GbCNL130 Confers Resistance to Verticillium Wilt Across Different Species. FRONTIERS IN PLANT SCIENCE 2021; 12:695691. [PMID: 34567025 PMCID: PMC8456104 DOI: 10.3389/fpls.2021.695691] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/11/2021] [Indexed: 05/16/2023]
Abstract
Verticillium wilt (VW) is a destructive disease in cotton caused by Verticillium dahliae and has a significant impact on yield and quality. In the absence of safe and effective chemical control, VW is difficult to manage. Thus, at present, developing resistant varieties is the most economical and effective method of controlling Verticillium wilt of cotton. The CC-NBS-LRR (CNL) gene family is an important class of plant genes involved in disease resistance. This study identified 141 GbCNLs in Gossypium barbadense genome, with 37.5% (53 genes) GbCNLs enriched in 12 gene clusters (GC01-GC12) based on gene distribution in the chromosomes. Especially, seven GbCNLs from two largest clusters (GC11 and GC12) were significantly upregulated in the resistant cultivar (Hai No. 7124) and the susceptible (Giza No. 57). Virus-induced gene silencing of GbCNL130 in G. barbadense, one typical gene in the gene cluster 12 (GC12), significantly altered the response to VW, compromising plant resistance to V. dahliae. In contrast, GbCNL130 overexpression significantly increased the resistance to VW in the wild-type Arabidopsis thaliana. Based on our research findings presented here, we conclude that GbCNL130 promotes resistance to VW by activating the salicylic acid (SA)-dependent defense response pathway resulting in strong accumulation of reactive oxygen species and upregulation of pathogenesis-related (PR) genes. In conclusion, our study resulted in the discovery of a new CNL resistance gene in cotton, GbCNL130, that confers resistance to VW across different hosts.
Collapse
Affiliation(s)
- Tinggang Li
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
- *Correspondence: Tinggang Li,
| | - Qianqian Zhang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xilong Jiang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ran Li
- Institute of Plant Protection, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nikhilesh Dhar
- Department of Plant Pathology, University of California, Davis, Salinas, CA, United States
| |
Collapse
|
19
|
Chandrakanth R, Sunil L, Sadashivaiah L, Devaki NS. In silico modelling and characterization of eight blast resistance proteins in resistant and susceptible rice cultivars. J Genet Eng Biotechnol 2020; 18:75. [PMID: 33237489 PMCID: PMC7688789 DOI: 10.1186/s43141-020-00076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/22/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Nucleotide-binding site-leucine-rich repeat (NBS-LRR) resistance genes are the largest class of plant resistance genes which play an important role in the plant defense response. These genes are better conserved than others and function as a recognition-based immune system in plants through their encoded proteins. RESULTS Here, we report the effect of Magnaporthe oryzae, the rice blast pathogen inoculation in resistant BR2655 and susceptible HR12 rice cultivars. Transcriptomic profiling was carried out to analyze differential gene expression in these two cultivars. A total of eight NBS-LRR uncharacterized resistance proteins (RP1, RP2, RP3, RP4, RP5, RP6, RP7, and RP8) were selected in these two cultivars for in silico modeling. Modeller 9.22 and SWISS-MODEL servers were used for the homology modeling of eight RPs. ProFunc server was utilized for the prediction of secondary structure and function. The CDvist Web server and Interpro scan server detected the motif and domains in eight RPs. Ramachandran plot of eight RPs confirmed that the modeled structures occupied favorable positions. CONCLUSIONS From the present study, computational analysis of these eight RPs may afford insights into their role, function, and valuable resource for studying the intricate details of the plant defense mechanism. Furthermore, the identification of resistance proteins is useful for the development of molecular markers linked to resistance genes.
Collapse
Affiliation(s)
- R Chandrakanth
- Department of Molecular Biology, Yuvaraja's College, University of Mysore, Mysuru, Karnataka, 570005, India
| | - L Sunil
- Department of Plant Cell Biotechnology, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
| | - L Sadashivaiah
- Department of Molecular Biology, Yuvaraja's College, University of Mysore, Mysuru, Karnataka, 570005, India
| | - N S Devaki
- Department of Molecular Biology, Yuvaraja's College, University of Mysore, Mysuru, Karnataka, 570005, India.
| |
Collapse
|
20
|
Lau ET, Khew CY, Hwang SS. Transcriptomic analysis of pepper plants provides insights into host responses to Fusarium solani infestation. J Biotechnol 2020; 314-315:53-62. [PMID: 32302654 DOI: 10.1016/j.jbiotec.2020.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 01/09/2023]
Abstract
Black pepper is an important commodity crop in Malaysia that generates millions of annual revenue for the country. However, black pepper yield is affected by slow decline disease caused by a soil-borne fungus Fusarium solani. RNA sequencing transcriptomics approach has been employed in this study to explore the differential gene expression in susceptible Piper nigrum L. and resistant Piper colubrinum Link. Gene expression comparative analysis of the two pepper species has yielded 2,361 differentially expressed genes (DEGs). Among them, higher expression of 1,426 DEGs was detected in resistant plant. These DEGs practically demonstrated the major branches of plant-pathogen interaction pathway (Path: ko04626). We selected five groups of defence-related DEGs for downstream qRT-PCR analysis. Cf-9, the gene responsible for recognizing fungal avirulence protein activity was found inexpressible in susceptible plant. However, this gene exhibited promising expression in resistant plant. Inactivation of Cf-9 could be the factor that causes susceptible plant fail in recognition of F. solani and subsequently delay activation of adaptive response to fungal invasion. This vital study advance the understanding of pepper plant defence in response to F. solani and aid in identifying potential solution to manage slow decline disease in black pepper cultivation.
Collapse
Affiliation(s)
- Ee Tiing Lau
- Research and Quality Development, Malaysian Pepper Board, Lot 1115, Jalan Utama, Pending Industrial Area, 93916 Kuching, Sarawak, Malaysia.
| | - Choy Yuen Khew
- Research and Quality Development, Malaysian Pepper Board, Lot 1115, Jalan Utama, Pending Industrial Area, 93916 Kuching, Sarawak, Malaysia
| | - Siaw San Hwang
- School of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93350 Kuching, Sarawak, Malaysia
| |
Collapse
|
21
|
Dolatabadian A, Bayer PE, Tirnaz S, Hurgobin B, Edwards D, Batley J. Characterization of disease resistance genes in the Brassica napus pangenome reveals significant structural variation. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:969-982. [PMID: 31553100 PMCID: PMC7061875 DOI: 10.1111/pbi.13262] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 08/30/2019] [Accepted: 09/13/2019] [Indexed: 05/18/2023]
Abstract
Methods based on single nucleotide polymorphism (SNP), copy number variation (CNV) and presence/absence variation (PAV) discovery provide a valuable resource to study gene structure and evolution. However, as a result of these structural variations, a single reference genome is unable to cover the entire gene content of a species. Therefore, pangenomics analysis is needed to ensure that the genomic diversity within a species is fully represented. Brassica napus is one of the most important oilseed crops in the world and exhibits variability in its resistance genes across different cultivars. Here, we characterized resistance gene distribution across 50 B. napus lines. We identified a total of 1749 resistance gene analogs (RGAs), of which 996 are core and 753 are variable, 368 of which are not present in the reference genome (cv. Darmor-bzh). In addition, a total of 15 318 SNPs were predicted within 1030 of the RGAs. The results showed that core R-genes harbour more SNPs than variable genes. More nucleotide binding site-leucine-rich repeat (NBS-LRR) genes were located in clusters than as singletons, with variable genes more likely to be found in clusters. We identified 106 RGA candidates linked to blackleg resistance quantitative trait locus (QTL). This study provides a better understanding of resistance genes to target for genomics-based improvement and improved disease resistance.
Collapse
Affiliation(s)
- Aria Dolatabadian
- UWA School of Biological Sciences and the UWA Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| | - Philipp E. Bayer
- UWA School of Biological Sciences and the UWA Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| | - Soodeh Tirnaz
- UWA School of Biological Sciences and the UWA Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| | - Bhavna Hurgobin
- UWA School of Biological Sciences and the UWA Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| | - David Edwards
- UWA School of Biological Sciences and the UWA Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| | - Jacqueline Batley
- UWA School of Biological Sciences and the UWA Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| |
Collapse
|
22
|
Danilevicz MF, Tay Fernandez CG, Marsh JI, Bayer PE, Edwards D. Plant pangenomics: approaches, applications and advancements. CURRENT OPINION IN PLANT BIOLOGY 2020; 54:18-25. [PMID: 31982844 DOI: 10.1016/j.pbi.2019.12.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 05/05/2023]
Abstract
With the assembly of increasing numbers of plant genomes, it is becoming accepted that a single reference assembly does not reflect the gene diversity of a species. The production of pangenomes, which reflect the structural variation and polymorphisms in genomes, enables in depth comparisons of variation within species or higher taxonomic groups. In this review, we discuss the current and emerging approaches for pangenome assembly, analysis and visualisation. In addition, we consider the potential of pangenomes for applied crop improvement, evolutionary and biodiversity studies. To fully exploit the value of pangenomes it is important to integrate broad information such as phenotypic, environmental, and expression data to gain insights into the role of variable regions within genomes.
Collapse
Affiliation(s)
- Monica Furaste Danilevicz
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | | | - Jacob Ian Marsh
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Philipp Emanuel Bayer
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
23
|
Liu Z, Fu M, Li H, Chen Y, Wang L, Liu R. Systematic analysis of NAC transcription factors in Gossypium barbadense uncovers their roles in response to Verticillium wilt. PeerJ 2019; 7:e7995. [PMID: 31720116 PMCID: PMC6839521 DOI: 10.7717/peerj.7995] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 10/07/2019] [Indexed: 11/30/2022] Open
Abstract
As one of the largest plant-specific gene families, the NAC transcription factor gene family plays important roles in various plant physiological processes that are related to plant development, hormone signaling, and biotic and abiotic stresses. However, systematic investigation of the NAC gene family in sea-island cotton (Gossypium babardense L.) has not been reported, to date. The recent release of the complete genome sequence of sea-island cotton allowed us to perform systematic analyses of G. babardense NAC GbNAC) genes. In this study, we performed a genome-wide survey and identified 270 GbNAC genes in the sea-island cotton genome. Genome mapping analysis showed that GbNAC genes were unevenly distributed on 26 chromosomes. Through phylogenetic analyses of GbNACs along with their Arabidopsis counterparts, these proteins were divided into 10 groups (I–X), and each contained a different number of GbNACs with a similar gene structure and conserved motifs. One hundred and fifty-four duplicated gene pairs were identified, and almost all of them exhibited strong purifying selection during evolution. In addition, various cis-acting regulatory elements in GbNAC genes were found to be related to major hormones, defense and stress responses. Notably, transcriptome data analyses unveiled the expression profiles of 62 GbNAC genes under Verticillium wilt (VW) stress. Furthermore, the expression profiles of 15 GbNAC genes tested by quantitative real-time PCR (qPCR) demonstrated that they were sensitive to methyl jasmonate (MeJA) and salicylic acid (SA) treatments and that they could be involved in pathogen-related hormone regulation. Taken together, the genome-wide identification and expression profiling pave new avenues for systematic functional analysis of GbNAC candidates, which may be useful for improving cotton defense against VW.
Collapse
Affiliation(s)
- Zhanji Liu
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan, China
| | - Mingchuan Fu
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hao Li
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yizhen Chen
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan, China
| | - Liguo Wang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan, China
| | - Renzhong Liu
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
24
|
Sun X, Zhang L, Tang Z, Shi X, Ma J, Cui R. Transcriptome analysis of roots from resistant and susceptible rice varieties infected with Hirschmanniella mucronata. FEBS Open Bio 2019; 9:1968-1982. [PMID: 31571430 PMCID: PMC6823281 DOI: 10.1002/2211-5463.12737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/14/2019] [Accepted: 09/27/2019] [Indexed: 01/23/2023] Open
Abstract
Hirschmanniella mucronata is a plant-parasitic nematode that is widespread in rice production areas and causes 10-25% yield losses a year on average. Here, we investigated the mechanism of resistance to this nematode by comparing the transcriptomes of roots from resistant (Jiabali) and susceptible (Bawangbian) varieties of rice. Of 39 233 unigenes, 2243. exhibited altered total expression levels between control and infected resistant and susceptible varieties. Significant differences were observed in the expression levels of genes related to stress, peptidase regulation or inhibition, oxidoreductase activity, peroxidase activity and antioxidant activity. The up-regulated genes related to plant secondary metabolites, such as phenylpropanoid, lignin, cellulose or hemicellulose, may result in an increase in the degree of resistance of Jiabali to the H. mucronata infection compared with that of Bawangbian by affecting cell wall organization or biogenesis. Of the genes that responded similarly to H. mucronata infection, ~252 (~76.59%) showed greater changes (whether induced or suppressed) in RN155 (susceptible varieties infected by rice root nematode) than in RN51 (resistance varieties infected by rice root nematode). Nineteen pathogenesis-related genes belonging to nine pathogenesis-related gene families were significantly induced by H. mucronata in the infected roots of Jiabali and Bawangbian, and 13 differentially expressed genes showed changes in their abundance only in the susceptible Bawangbian variety. This study may help enhance our understanding of the mechanisms underlying plant resistance to nematodes.
Collapse
Affiliation(s)
- Xiaotang Sun
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lei Zhang
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ziqing Tang
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xugen Shi
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jian Ma
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ruqiang Cui
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
25
|
Wu L, Du G, Bao R, Li Z, Gong Y, Liu F. De novo assembly and discovery of genes involved in the response of Solanum sisymbriifolium to Verticillium dahlia. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:1009-1027. [PMID: 31402823 PMCID: PMC6656901 DOI: 10.1007/s12298-019-00666-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/20/2019] [Accepted: 04/02/2019] [Indexed: 05/27/2023]
Abstract
Verticillium wilt, caused by the soil-borne fungus Verticillium dahliae, is a devastating disease of eggplant (Solanum spp.) and causes substantial losses worldwide. Although some genes or biological processes involved in the interaction between eggplant and V. dahliae have been identified in some studies, the underlying molecular mechanism is not yet clear. Here, we monitored the transcriptomic profiles of the roots of resistant S. sisymbriifolium plants challenged with V. dahliae. Based on the measurements of physiological indexes (T-SOD, POD and SSs), three time points were selected and subsequently divided into two stages (S_12 h vs. S_0 h and S_48 h vs. S_12 h). KEGG enrichment analysis of the DEGs revealed several genes putatively involved in regulating plant-V. dahliae interactions, including mitogen-activated protein kinase (MAPK) genes (MEKK1 and MAP2K1), WRKY genes (WRKY22 and WRKY33) and cytochrome P450 (CYP) genes (CYP73A/C4H, CYP98A/C3'H and CYP84A/F5H). In addition, a subset of genes that play an important role in activating V. dahliae defence responses, including Ve genes as well as genes encoding PR proteins and TFs, were screened and are discussed. These results will help to identify key resistance genes and will contribute to a further understanding of molecular mechanisms of the S. sisymbriifolium resistance response to V. dahliae.
Collapse
Affiliation(s)
- Liyan Wu
- Plant Improvement and Utilization Lab, Yunnan University, Kunming, 650091 Yunnan China
- Horticultural Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650205 Yunnan China
| | - Guanghui Du
- Plant Improvement and Utilization Lab, Yunnan University, Kunming, 650091 Yunnan China
| | - Rui Bao
- Horticultural Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650205 Yunnan China
| | - Zhibin Li
- Horticultural Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650205 Yunnan China
| | - Yaju Gong
- Horticultural Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650205 Yunnan China
| | - Feihu Liu
- Plant Improvement and Utilization Lab, Yunnan University, Kunming, 650091 Yunnan China
| |
Collapse
|
26
|
Zhang Z, Diao H, Wang H, Wang K, Zhao M. Use of Ganoderma Lucidum polysaccharide to control cotton fusarium wilt, and the mechanism involved. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 158:149-155. [PMID: 31378351 DOI: 10.1016/j.pestbp.2019.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 06/10/2023]
Abstract
Induced resistance is an effective measure for controlling plant diseases by utilizing the natural defense of the host and meets the strategic needs of pesticide application and safety for agricultural products worldwide. Ganoderma lucidum polysaccharide (GLP), which is the main active molecule of G. lucidum, has been widely used in functional food and clinical medicine. However, there are few reports of the use of GLP for the prevention and control of plant diseases. The purpose of this study is to explore the effect of GLP and its mechanism of inducing plant resistance. In this study, we found that GLP spray and irrigation root treatments can promote growth in cotton. After soaking in GLP, theseedling height and cotton fusarium wilt resistance both increased to some extent, effects that were dose dependent. After treatment of cotton with GLP, the activities of peroxidase (POD), superoxide dismutase (SOD) and polyphenol oxidase (PPO) in leaves increased significantly, whereas the content of malondialdehyde (MDA) decreased. In addition, QRT-PCR results showed significantly increased relative expression of genes related to the jasmonic acid pathway in cotton. Therefore, we speculate that GLP can induce plant resistance by stimulating the jasmonate pathway.
Collapse
Affiliation(s)
- Zhongxiao Zhang
- Department of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Hailing Diao
- Department of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Hongyan Wang
- Department of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Kaiyun Wang
- Department of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Ming Zhao
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Ji'nan, Shandong 250100, China.
| |
Collapse
|
27
|
Li TG, Wang BL, Yin CM, Zhang DD, Wang D, Song J, Zhou L, Kong ZQ, Klosterman SJ, Li JJ, Adamu S, Liu TL, Subbarao KV, Chen JY, Dai XF. The Gossypium hirsutum TIR-NBS-LRR gene GhDSC1 mediates resistance against Verticillium wilt. MOLECULAR PLANT PATHOLOGY 2019; 20:857-876. [PMID: 30957942 DOI: 10.5897/ajmr11.781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Improving genetic resistance is a preferred method to manage Verticillium wilt of cotton and other hosts. Identifying host resistance is difficult because of the dearth of resistance genes against this pathogen. Previously, a novel candidate gene involved in Verticillium wilt resistance was identified by a genome-wide association study using a panel of Gossypium hirsutum accessions. In this study, we cloned the candidate resistance gene from cotton that encodes a protein sharing homology with the TIR-NBS-LRR receptor-like defence protein DSC1 in Arabidopsis thaliana (hereafter named GhDSC1). GhDSC1 expressed at higher levels in response to Verticillium wilt and jasmonic acid (JA) treatment in resistant cotton cultivars as compared to susceptible cultivars and its product was localized to nucleus. The transfer of GhDSC1 to Arabidopsis conferred Verticillium resistance in an A. thaliana dsc1 mutant. This resistance response was associated with reactive oxygen species (ROS) accumulation and increased expression of JA-signalling-related genes. Furthermore, the expression of GhDSC1 in response to Verticillium wilt and JA signalling in A. thaliana displayed expression patterns similar to GhCAMTA3 in cotton under identical conditions, suggesting a coordinated DSC1 and CAMTA3 response in A. thaliana to Verticillium wilt. Analyses of GhDSC1 sequence polymorphism revealed a single nucleotide polymorphism (SNP) difference between resistant and susceptible cotton accessions, within the P-loop motif encoded by GhDSC1. This SNP difference causes ineffective activation of defence response in susceptible cultivars. These results demonstrated that GhDSC1 confers Verticillium resistance in the model plant system of A. thaliana, and therefore represents a suitable candidate for the genetic engineering of Verticillium wilt resistance in cotton.
Collapse
Affiliation(s)
- Ting-Gang Li
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bao-Li Wang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chun-Mei Yin
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dan-Dan Zhang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, China
| | - Dan Wang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jian Song
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lei Zhou
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, China
| | - Zhi-Qiang Kong
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Salinas, California, USA
| | - Jun-Jiao Li
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Sabiu Adamu
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ting-Li Liu
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, c/o United States Agricultural Research Station, Salinas, California, USA
| | - Jie-Yin Chen
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, China
| | - Xiao-Feng Dai
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, China
| |
Collapse
|
28
|
Li T, Wang B, Yin C, Zhang D, Wang D, Song J, Zhou L, Kong Z, Klosterman SJ, Li J, Adamu S, Liu T, Subbarao KV, Chen J, Dai X. The Gossypium hirsutum TIR-NBS-LRR gene GhDSC1 mediates resistance against Verticillium wilt. MOLECULAR PLANT PATHOLOGY 2019; 20:857-876. [PMID: 30957942 PMCID: PMC6637886 DOI: 10.1111/mpp.12797] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Improving genetic resistance is a preferred method to manage Verticillium wilt of cotton and other hosts. Identifying host resistance is difficult because of the dearth of resistance genes against this pathogen. Previously, a novel candidate gene involved in Verticillium wilt resistance was identified by a genome-wide association study using a panel of Gossypium hirsutum accessions. In this study, we cloned the candidate resistance gene from cotton that encodes a protein sharing homology with the TIR-NBS-LRR receptor-like defence protein DSC1 in Arabidopsis thaliana (hereafter named GhDSC1). GhDSC1 expressed at higher levels in response to Verticillium wilt and jasmonic acid (JA) treatment in resistant cotton cultivars as compared to susceptible cultivars and its product was localized to nucleus. The transfer of GhDSC1 to Arabidopsis conferred Verticillium resistance in an A. thaliana dsc1 mutant. This resistance response was associated with reactive oxygen species (ROS) accumulation and increased expression of JA-signalling-related genes. Furthermore, the expression of GhDSC1 in response to Verticillium wilt and JA signalling in A. thaliana displayed expression patterns similar to GhCAMTA3 in cotton under identical conditions, suggesting a coordinated DSC1 and CAMTA3 response in A. thaliana to Verticillium wilt. Analyses of GhDSC1 sequence polymorphism revealed a single nucleotide polymorphism (SNP) difference between resistant and susceptible cotton accessions, within the P-loop motif encoded by GhDSC1. This SNP difference causes ineffective activation of defence response in susceptible cultivars. These results demonstrated that GhDSC1 confers Verticillium resistance in the model plant system of A. thaliana, and therefore represents a suitable candidate for the genetic engineering of Verticillium wilt resistance in cotton.
Collapse
Affiliation(s)
- Ting‐Gang Li
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Bao‐Li Wang
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Chun‐Mei Yin
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Dan‐Dan Zhang
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
- Key Laboratory of Agro‐products Quality and Safety Control in Storage and Transport Process, Ministry of AgricultureBeijing100193China
| | - Dan Wang
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Jian Song
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Lei Zhou
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
- Key Laboratory of Agro‐products Quality and Safety Control in Storage and Transport Process, Ministry of AgricultureBeijing100193China
| | - Zhi‐Qiang Kong
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Steven J. Klosterman
- United States Department of AgricultureAgricultural Research ServiceSalinasCaliforniaUSA
| | - Jun‐Jiao Li
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Sabiu Adamu
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Ting‐Li Liu
- Provincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjingJiangsu210014China
| | - Krishna V. Subbarao
- Department of Plant PathologyUniversity of California, Davis, c/o United States Agricultural Research StationSalinasCaliforniaUSA
| | - Jie‐Yin Chen
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
- Key Laboratory of Agro‐products Quality and Safety Control in Storage and Transport Process, Ministry of AgricultureBeijing100193China
| | - Xiao‐Feng Dai
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
- Key Laboratory of Agro‐products Quality and Safety Control in Storage and Transport Process, Ministry of AgricultureBeijing100193China
| |
Collapse
|
29
|
Bayer PE, Golicz AA, Tirnaz S, Chan CK, Edwards D, Batley J. Variation in abundance of predicted resistance genes in the Brassica oleracea pangenome. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:789-800. [PMID: 30230187 PMCID: PMC6419861 DOI: 10.1111/pbi.13015] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/16/2018] [Accepted: 09/14/2018] [Indexed: 05/19/2023]
Abstract
Brassica oleracea is an important agricultural species encompassing many vegetable crops including cabbage, cauliflower, broccoli and kale; however, it can be susceptible to a variety of fungal diseases such as clubroot, blackleg, leaf spot and downy mildew. Resistance to these diseases is meditated by specific disease resistance genes analogs (RGAs) which are differently distributed across B. oleracea lines. The sequenced reference cultivar does not contain all B. oleracea genes due to gene presence/absence variation between individuals, which makes it necessary to search for RGA candidates in the B. oleracea pangenome. Here we present a comparative analysis of RGA candidates in the pangenome of B. oleracea. We show that the presence of RGA candidates differs between lines and suggests that in B. oleracea, SNPs and presence/absence variation drive RGA diversity using separate mechanisms. We identified 59 RGA candidates linked to Sclerotinia, clubroot, and Fusarium wilt resistance QTL, and these findings have implications for crop breeding in B. oleracea, which may also be applicable in other crops species.
Collapse
Affiliation(s)
- Philipp E. Bayer
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| | - Agnieszka A. Golicz
- Plant Molecular Biology and Biotechnology LaboratoryFaculty of Veterinary and Agricultural SciencesUniversity of MelbourneMelbourneVic.Australia
| | - Soodeh Tirnaz
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| | - Chon‐Kit Kenneth Chan
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
- Australian Genome Research FacilityMelbourneVic.Australia
| | - David Edwards
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| | - Jacqueline Batley
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| |
Collapse
|
30
|
Naqvi RZ, Zaidi SSEA, Mukhtar MS, Amin I, Mishra B, Strickler S, Mueller LA, Asif M, Mansoor S. Transcriptomic analysis of cultivated cotton Gossypium hirsutum provides insights into host responses upon whitefly-mediated transmission of cotton leaf curl disease. PLoS One 2019; 14:e0210011. [PMID: 30730891 PMCID: PMC6366760 DOI: 10.1371/journal.pone.0210011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/14/2018] [Indexed: 11/18/2022] Open
Abstract
Cotton is a commercial and economically important crop that generates billions of dollars in annual revenue worldwide. However, cotton yield is affected by a sap-sucking insect Bemisia tabaci (whitefly), and whitefly-borne cotton leaf curl disease (CLCuD). The causative agent of devastating CLCuD is led by the viruses belonging to the genus Begomovirus (family Geminiviridae), collectively called cotton leaf curl viruses. Unfortunately, the extensively cultivated cotton (Gossypium hirsutum) species are highly susceptible and vulnerable to CLCuD. Yet, the concomitant influence of whitefly and CLCuD on the susceptible G. hirsutum transcriptome has not been interpreted. In the present study we have employed an RNA Sequencing (RNA-Seq) transcriptomics approach to explore the differential gene expression in susceptible G. hirsutum variety upon infection with viruliferous whiteflies. Comparative RNA-Seq of control and CLCuD infected plants was done using Illumina HiSeq 2500. This study yielded 468 differentially expressed genes (DEGs). Among them, we identified 220 up and 248 downregulated DEGs involved in disease responses and pathogen defense. We selected ten genes for downstream RT-qPCR analyses on two cultivars, Karishma and MNH 786 that are susceptible to CLCuD. We observed a similar expression pattern of these genes in both susceptible cultivars that was also consistent with our transcriptome data further implying a wider application of our global transcription study on host susceptibility to CLCuD. We next performed weighted gene co-expression network analysis that revealed six modules. This analysis also identified highly co-expressed genes as well as 55 hub genes that co-express with ≥ 50 genes. Intriguingly, most of these hub genes are shown to be downregulated and enriched in cellular processes. Under-expression of such highly co-expressed genes suggests their roles in favoring the virus and enhancing plant susceptibility to CLCuD. We also discuss the potential mechanisms governing the establishment of disease susceptibility. Overall, our study provides a comprehensive differential gene expression analysis of G. hirsutum under whitefly-mediated CLCuD infection. This vital study will advance the understanding of simultaneous effect of whitefly and virus on their host and aid in identifying important G. hirsutum genes which intricate in its susceptibility to CLCuD.
Collapse
Affiliation(s)
- Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States of America
| | - Syed Shan-e-Ali Zaidi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States of America
| | - M. Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
| | - Bharat Mishra
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Susan Strickler
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States of America
| | - Lukas A. Mueller
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States of America
| | - Muhammad Asif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
- * E-mail:
| |
Collapse
|
31
|
Han LB, Li YB, Wang FX, Wang WY, Liu J, Wu JH, Zhong NQ, Wu SJ, Jiao GL, Wang HY, Xia GX. The Cotton Apoplastic Protein CRR1 Stabilizes Chitinase 28 to Facilitate Defense against the Fungal Pathogen Verticillium dahliae. THE PLANT CELL 2019; 31:520-536. [PMID: 30651348 PMCID: PMC6447012 DOI: 10.1105/tpc.18.00390] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 12/12/2018] [Accepted: 01/09/2019] [Indexed: 05/19/2023]
Abstract
The apoplast serves as the first battlefield between the plant hosts and invading microbes; therefore, work on plant-pathogen interactions has increasingly focused on apoplastic immunity. In this study, we identified three proteins in the apoplast of cotton (Gossypium sp) root cells during interaction of the plant with the fungal pathogen Verticillium dahliae Among these proteins, cotton host cells secrete chitinase 28 (Chi28) and the Cys-rich repeat protein 1 (CRR1), while the pathogen releases the protease VdSSEP1. Biochemical analysis demonstrated that VdSSEP1 hydrolyzed Chi28, but CRR1 protected Chi28 from cleavage by Verticillium dahliae secretory Ser protease 1 (VdSSEP1). In accordance with the in vitro results, CRR1 interacted with Chi28 in yeast and plant cells and attenuated the observed decrease in Chi28 level that occurred in the apoplast of plant cells upon pathogen attack. Knockdown of CRR1 or Chi28 in cotton plants resulted in higher susceptibility to V. dahliae infection, and overexpression of CRR1 increased plant resistance to V dahliae, the fungus Botrytis cinerea, and the oomycete Phytophthora parasitica var nicotianae By contrast, knockout of VdSSEP1 in V. dahliae destroyed the pathogenicity of this fungus. Together, our results provide compelling evidence for a multilayered interplay of factors in cotton apoplastic immunity.
Collapse
Affiliation(s)
- Li-Bo Han
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Plant Immunity Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuan-Bao Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Plant Immunity Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Fu-Xin Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Yan Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jia-He Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Nai-Qin Zhong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shen-Jie Wu
- Institute of Cotton Research, Shanxi Academy of Agricultural Sciences, Yuncheng, Shanxi 044000, China
| | - Gai-Li Jiao
- Institute of Cotton Research, Shanxi Academy of Agricultural Sciences, Yuncheng, Shanxi 044000, China
| | - Hai-Yun Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gui-Xian Xia
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
32
|
Mushtaq R, Shahzad K, Mansoor S, Shah ZH, Alsamadany H, Mujtaba T, Al-Zahrani Y, Alzahrani HAS, Ahmed Z, Bashir A. Exploration of cotton leaf curl virus resistance genes and their screening in Gossypium arboreum by targeting resistance gene analogues. AOB PLANTS 2018; 10:ply067. [PMID: 30487965 PMCID: PMC6247833 DOI: 10.1093/aobpla/ply067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/13/2018] [Indexed: 06/09/2023]
Abstract
Cotton leaf curl virus (CLCuV) disease is one of the major limiting factors in cotton production, particularly in widely cultivated Gossypium hirsutum varieties that are susceptible to attack by this virus. Several approaches have been employed to explore putative resistance genes in another cotton species, G. arboreum. However, the exact mechanisms conferring disease resistance in cotton are still unknown. In the current study, we used various approaches to identify possible resistance genes against CLCuV infection. We report the identification and isolation of a set of genes involved in the resistance response to viral infestation. PCR products containing genomic DNA gave multiple amplifications with a single primer in most reactions, and 38 fragments were cloned from G. arboreum and G. hirsutum. The sequences of cloned fragments belonged to various pathway genes and uncharacterized proteins. However, five amplified fragments (RM1, RM6, RM8, RM12 and RM31) showed similarity with R genes. Maximum homology (94 %) was observed with G. raimondii toll/interleukin receptor-like protein. BLAST search showed the homology of all resistance gene analogues (RGAs) with more than one chromosome, and multiple hits were observed on each chromosome for each RGA. Expression analysis through RT-PCR identified variable expression levels of the different RGAs in all tested genotypes. The expression level of RGAs differed between symptomatic and asymptomatic plants, with the exception of RGA 395, whose expression level was the same in both diseased and healthy plants. Knowledge of the interaction of these genes with various cotton pathogens could be utilized to improve the resistance of susceptible G. hirsutum and other plant species.
Collapse
Affiliation(s)
- Rakhshanda Mushtaq
- Agriculture Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Department of Biotechnology, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - Khurram Shahzad
- Department of Plant Breeding and Genetics, Faculty of Basic and Applied Sciences, University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Shahid Mansoor
- Department of Plant Breeding and Genetics, Faculty of Basic and Applied Sciences, University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Zahid Hussain Shah
- Department of Plant Breeding and Genetics, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Hameed Alsamadany
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tahir Mujtaba
- Plant and Forest Biotechnology Umea, Plant Science Centre (UPSC), Swedish University of 12 Agriculture Sciences (SLU), Umea, Sweden
| | - Yahya Al-Zahrani
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hind A S Alzahrani
- College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Zaheer Ahmed
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Aftab Bashir
- Agriculture Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Faculty of Biological Sciences, Forman Christian College University, Lahore, Pakistan
| |
Collapse
|
33
|
Kang WH, Yeom SI. Genome-wide Identification, Classification, and Expression Analysis of the Receptor-Like Protein Family in Tomato. THE PLANT PATHOLOGY JOURNAL 2018; 34:435-444. [PMID: 30369853 PMCID: PMC6200040 DOI: 10.5423/ppj.oa.02.2018.0032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/21/2018] [Accepted: 06/01/2018] [Indexed: 05/20/2023]
Abstract
Receptor-like proteins (RLPs) are involved in plant development and disease resistance. Only some of the RLPs in tomato (Solanum lycopersicum L.) have been functionally characterized though 176 genes encoding RLPs, which have been identified in the tomato genome. To further understand the role of RLPs in tomato, we performed genome-guided classification and transcriptome analysis of these genes. Phylogenic comparisons revealed that the tomato RLP members could be divided into eight subgroups and that the genes evolved independently compared to similar genes in Arabidopsis. Based on location and physical clustering analyses, we conclude that tomato RLPs likely expanded primarily through tandem duplication events. According to tissue specific RNA-seq data, 71 RLPs were expressed in at least one of the following tissues: root, leaf, bud, flower, or fruit. Several genes had expression patterns that were tissue specific. In addition, tomato RLP expression profiles after infection with different pathogens showed distinguish gene regulations according to disease induction and resistance response as well as infection by bacteria and virus. Notably, Some RLPs were highly and/or unique expressed in susceptible tomato to pathogen, suggesting that the RLP could be involved in disease response, possibly as a host-susceptibility factor. Our study could provide an important clues for further investigations into the function of tomato RLPs involved in developmental and response to pathogens.
Collapse
Affiliation(s)
- Won-Hee Kang
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Seon-In Yeom
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828,
Korea
- Department of Agricultural Plant Science, Division of Applied Life Science (BK21 Plus program), Gyeongsang National University, Jinju 52828,
Korea
- Corresponding author: Phone) +82-55-772-1917, FAX) +82-55-772-1919, E-mail)
| |
Collapse
|
34
|
Li N, ma X, Short DPG, Li T, Zhou L, Gui Y, Kong Z, Zhang D, Zhang W, Li J, Subbarao KV, Chen J, Dai X. The island cotton NBS-LRR gene GbaNA1 confers resistance to the non-race 1 Verticillium dahliae isolate Vd991. MOLECULAR PLANT PATHOLOGY 2018; 19:1466-1479. [PMID: 29052967 PMCID: PMC6638185 DOI: 10.1111/mpp.12630] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/06/2017] [Accepted: 10/14/2017] [Indexed: 05/21/2023]
Abstract
Wilt caused by Verticillium dahliae significantly reduces cotton yields, as host resistance in commercially cultivated Gossypium species is lacking. Understanding the molecular basis of disease resistance in non-commercial Gossypium species could galvanize the development of Verticillium wilt resistance in cultivated species. Nucleotide-binding site leucine-rich repeat (NBS-LRR) proteins play a central role in plant defence against pathogens. In this study, we focused on the relationship between a locus enriched with eight NBS-LRR genes and Verticillium wilt resistance in G. barbadense. Independent virus-induced gene silencing of each of the eight NBS-LRR genes in G. barbadense cultivar Hai 7124 revealed that silencing of GbaNA1 alone compromised the resistance of G. barbadense to V. dahliae isolate Vd991. In cultivar Hai 7124, GbaNA1 could be induced by V. dahliae isolate Vd991 and by ethylene, jasmonic acid and salicylic acid. Nuclear protein localization of GbaNA1 was demonstrated by transient expression. Sequencing of the GbaNA1 orthologue in nine G. hirsutum accessions revealed that all carried a non-functional allele, caused by a premature peptide truncation. In addition, all 10 G. barbadense and nine G. hirsutum accessions tested carried a full-length (∼1140 amino acids) homologue of the V. dahliae race 1 resistance gene Gbve1, although some sequence polymorphisms were observed. Verticillium dahliae Vd991 is a non-race 1 isolate that lacks the Ave1 gene. Thus, the resistance imparted by GbaNA1 appears to be mediated by a mechanism distinct from recognition of the fungal effector Ave1.
Collapse
Affiliation(s)
- Nan‐Yang Li
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing 100193China
| | - Xue‐Feng ma
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing 100193China
| | - Dylan P. G. Short
- Department of Plant PathologyUniversity of CaliforniaDavisCA 95616USA
| | - Ting‐Gang Li
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing 100193China
| | - Lei Zhou
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing 100193China
| | - Yue‐Jing Gui
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing 100193China
| | - Zhi‐Qiang Kong
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing 100193China
| | - Dan‐Dan Zhang
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing 100193China
| | - Wen‐Qi Zhang
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing 100193China
| | - Jun‐Jiao Li
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing 100193China
| | | | - Jie‐Yin Chen
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing 100193China
| | - Xiao‐Feng Dai
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing 100193China
| |
Collapse
|
35
|
Li NY, Zhou L, Zhang DD, Klosterman SJ, Li TG, Gui YJ, Kong ZQ, Ma XF, Short DPG, Zhang WQ, Li JJ, Subbarao KV, Chen JY, Dai XF. Heterologous Expression of the Cotton NBS-LRR Gene GbaNA1 Enhances Verticillium Wilt Resistance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:119. [PMID: 29467784 PMCID: PMC5808209 DOI: 10.3389/fpls.2018.00119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/22/2018] [Indexed: 05/06/2023]
Abstract
Verticillium wilt caused by Verticillium dahliae results in severe losses in cotton, and is economically the most destructive disease of this crop. Improving genetic resistance is the cleanest and least expensive option to manage Verticillium wilt. Previously, we identified the island cotton NBS-LRR-encoding gene GbaNA1 that confers resistance to the highly virulent V. dahliae isolate Vd991. In this study, we expressed cotton GbaNA1 in the heterologous system of Arabidopsis thaliana and investigated the defense response mediated by GbaNA1 following inoculations with V. dahliae. Heterologous expression of GbaNA1 conferred Verticillium wilt resistance in A. thaliana. Moreover, overexpression of GbaNA1 enabled recovery of the resistance phenotype of A. thaliana mutants that had lost the function of GbaNA1 ortholog gene. Investigations of the defense response in A. thaliana showed that the reactive oxygen species (ROS) production and the expression of genes associated with the ethylene signaling pathway were enhanced significantly following overexpression of GbaNA1. Intriguingly, overexpression of the GbaNA1 ortholog from Gossypium hirsutum (GhNA1) in A. thaliana did not induce the defense response of ROS production due to the premature termination of GhNA1, which lacks the encoded NB-ARC and LRR motifs. GbaNA1 therefore confers Verticillium wilt resistance in A. thaliana by the activation of ROS production and ethylene signaling. These results demonstrate the functional conservation of the NBS-LRR-encoding GbaNA1 in a heterologous system, and the mechanism of this resistance, both of which may prove valuable in incorporating GbaNA1-mediated resistance into other plant species.
Collapse
Affiliation(s)
- Nan-Yang Li
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, c/o Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, China
| | - Lei Zhou
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, c/o Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, China
| | - Dan-Dan Zhang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, c/o Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, China
| | - Steven J. Klosterman
- Crop Improvement and Protection Research Unit, United States Department of Agriculture, Agricultural Research Service, Salinas, CA, United States
| | - Ting-Gang Li
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, c/o Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, China
| | - Yue-Jing Gui
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, c/o Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, China
| | - Zhi-Qiang Kong
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, c/o Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, China
| | - Xue-Feng Ma
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, c/o Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, China
| | - Dylan P. G. Short
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Wen-Qi Zhang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, c/o Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, China
| | - Jun-Jiao Li
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, c/o Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, China
| | - Krishna V. Subbarao
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
- *Correspondence: Xiao-Feng Dai, Jie-Yin Chen, Krishna V. Subbarao,
| | - Jie-Yin Chen
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, c/o Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, China
- *Correspondence: Xiao-Feng Dai, Jie-Yin Chen, Krishna V. Subbarao,
| | - Xiao-Feng Dai
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, c/o Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, China
- *Correspondence: Xiao-Feng Dai, Jie-Yin Chen, Krishna V. Subbarao,
| |
Collapse
|
36
|
Leyva-Pérez MDLO, Jiménez-Ruiz J, Gómez-Lama Cabanás C, Valverde-Corredor A, Barroso JB, Luque F, Mercado-Blanco J. Tolerance of olive (Olea europaea) cv Frantoio to Verticillium dahliae relies on both basal and pathogen-induced differential transcriptomic responses. THE NEW PHYTOLOGIST 2018; 217:671-686. [PMID: 29023762 DOI: 10.1111/nph.14833] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/26/2017] [Indexed: 05/20/2023]
Abstract
Verticillium wilt of olive (VWO) is one of the most serious biotic constraints for this tree crop. Our knowledge of the genetics of the tolerance/resistance to this disease is very limited. Here we show that tolerance of the cv Frantoio relies on both basal and early pathogen-induced differential transcriptomic responses. A comparative transcriptomic analysis (RNA-seq) was conducted in root tissues of cvs Frantoio (VWO-tolerant) and Picual (VWO-susceptible). RNA samples originated from roots of inoculated olive plants during the early infection stages by Verticillium dahliae (highly virulent, defoliating pathotype). A huge number of differentially expressed genes (DEGs) were found between 'Frantoio' and 'Picual' (27 312 unigenes) in the absence of the pathogen. Upon infection with V. dahliae, 'Picual' and 'Frantoio' plants responded differently too. In the early infection stages, four clusters of DEGs could be identified according to their time-course expression patterns. Among others, a pathogenesis-related protein of the Bet v I family and a dirigent-like protein involved in lignification, and several BAK1, NHL1, reactive oxygen species stress response and BAM unigenes showed noticeable differences between cultivars. Tolerance of 'Frantoio' plants to VWO is a consequence of a complex and multifaceted process which involves many plant traits.
Collapse
Affiliation(s)
- María de la O Leyva-Pérez
- Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaén, Jaén, 23071, Spain
| | - Jaime Jiménez-Ruiz
- Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaén, Jaén, 23071, Spain
| | - Carmen Gómez-Lama Cabanás
- Department of Crop Protection, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Campus 'Alameda del Obispo', Avenida Menéndez Pidal s/n, Apartado, Córdoba, 14004, Spain
| | - Antonio Valverde-Corredor
- Department of Crop Protection, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Campus 'Alameda del Obispo', Avenida Menéndez Pidal s/n, Apartado, Córdoba, 14004, Spain
| | - Juan B Barroso
- Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaén, Jaén, 23071, Spain
| | - Francisco Luque
- Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaén, Jaén, 23071, Spain
| | - Jesús Mercado-Blanco
- Department of Crop Protection, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Campus 'Alameda del Obispo', Avenida Menéndez Pidal s/n, Apartado, Córdoba, 14004, Spain
| |
Collapse
|
37
|
Li TG, Zhang DD, Zhou L, Kong ZQ, Hussaini AS, Wang D, Li JJ, Short DPG, Dhar N, Klosterman SJ, Wang BL, Yin CM, Subbarao KV, Chen JY, Dai XF. Genome-Wide Identification and Functional Analyses of the CRK Gene Family in Cotton Reveals GbCRK18 Confers Verticillium Wilt Resistance in Gossypium barbadense. FRONTIERS IN PLANT SCIENCE 2018; 9:1266. [PMID: 30254650 PMCID: PMC6141769 DOI: 10.3389/fpls.2018.01266] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/10/2018] [Indexed: 05/07/2023]
Abstract
Cysteine-rich receptor-like kinases (CRKs) are a large subfamily of plant receptor-like kinases that play a critical role in disease resistance in plants. However, knowledge about the CRK gene family in cotton and its function against Verticillium wilt (VW), a destructive disease caused by Verticillium dahliae that significantly reduces cotton yields is lacking. In this study, we identified a total of 30 typical CRKs in a Gossypium barbadense genome (GbCRKs). Eleven of these (>30%) are located on the A06 and D06 chromosomes, and 18 consisted of 9 paralogous pairs encoded in the A and D subgenomes. Phylogenetic analysis showed that the GbCRKs could be classified into four broad groups, the expansion of which has probably been driven by tandem duplication. Gene expression profiling of the GbCRKs in resistant and susceptible cotton cultivars revealed that a phylogenetic cluster of nine of the GbCRK genes were up-regulated in response to V. dahliae infection. Virus-induced gene silencing of each of these nine GbCRKs independently revealed that the silencing of GbCRK18 was sufficient to compromise VW resistance in G. barbadense. GbCRK18 expression could be induced by V. dahliae infection or jasmonic acid, and displayed plasma membrane localization. Therefore, our expression analyses indicated that the CRK gene family is differentially regulated in response to Verticillium infection, while gene silencing experiments revealed that GbCRK18 in particular confers VW resistance in G. barbadense.
Collapse
Affiliation(s)
- Ting-Gang Li
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan-Dan Zhang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Zhou
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhi-Qiang Kong
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Adamu S. Hussaini
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan Wang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun-Jiao Li
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dylan P. G. Short
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
- U.S. Agricultural Research Station, Salinas, CA, United States
| | - Nikhilesh Dhar
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
- U.S. Agricultural Research Station, Salinas, CA, United States
| | - Steven J. Klosterman
- Crop Improvement and Protection Research Unit, United States Department of Agriculture, Agricultural Research Service, Salinas, CA, United States
| | - Bao-Li Wang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chun-Mei Yin
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Krishna V. Subbarao
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
- U.S. Agricultural Research Station, Salinas, CA, United States
- *Correspondence: Krishna V. Subbarao, Jie-Yin Chen, Xiao-Feng Dai,
| | - Jie-Yin Chen
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Krishna V. Subbarao, Jie-Yin Chen, Xiao-Feng Dai,
| | - Xiao-Feng Dai
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Krishna V. Subbarao, Jie-Yin Chen, Xiao-Feng Dai,
| |
Collapse
|
38
|
Li T, Ma X, Li N, Zhou L, Liu Z, Han H, Gui Y, Bao Y, Chen J, Dai X. Genome-wide association study discovered candidate genes of Verticillium wilt resistance in upland cotton (Gossypium hirsutum L.). PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1520-1532. [PMID: 28371164 PMCID: PMC5698051 DOI: 10.1111/pbi.12734] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 05/03/2023]
Abstract
Verticillium wilt (VW), caused by infection by Verticillium dahliae, is considered one of the most yield-limiting diseases in cotton. To examine the genetic architecture of cotton VW resistance, we performed a genome-wide association study (GWAS) using a panel of 299 accessions and 85 630 single nucleotide polymorphisms (SNPs) detected using the specific-locus amplified fragment sequencing (SLAF-seq) approach. Trait-SNP association analysis detected a total of 17 significant SNPs at P < 1.17 × 10-5 (P = 1/85 630, -log10 P = 4.93); the peaks of SNPs associated with VW resistance on A10 were continuous and common in three environments (RDIG2015, RDIF2015 and RDIF2016). Haplotype block structure analysis predicted 22 candidate genes for VW resistance based on A10_99672586 with a minimum P-value (-log10 P = 6.21). One of these genes (CG02) was near the significant SNP A10_99672586 (0.26 Mb), located in a 372-kb haplotype block, and its Arabidopsis AT3G25510 homologues contain TIR-NBS-LRR domains that may be involved in disease resistance response. Real-time quantitative PCR and virus-induced gene silencing (VIGS) analysis showed that CG02 was specific to up-regulation in the resistant (R) genotype Zhongzhimian2 (ZZM2) and that silenced plants were more susceptible to V. dahliae. These results indicate that CG02 is likely the candidate gene for resistance against V. dahliae in cotton. The identified locus or gene may serve as a promising target for genetic engineering and selection for improving resistance to VW in cotton.
Collapse
Affiliation(s)
- Tinggang Li
- Laboratory of Cotton DiseaseInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijingChina
| | - Xuefeng Ma
- Laboratory of Cotton DiseaseInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijingChina
| | - Nanyang Li
- Laboratory of Cotton DiseaseInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijingChina
| | - Lei Zhou
- Laboratory of Cotton DiseaseInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijingChina
| | - Zheng Liu
- Xinjiang Academy of Agricultural and Reclamation ScienceXinjiangChina
| | - Huanyong Han
- Xinjiang Academy of Agricultural and Reclamation ScienceXinjiangChina
| | - Yuejing Gui
- Laboratory of Cotton DiseaseInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijingChina
| | - Yuming Bao
- Laboratory of Cotton DiseaseInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijingChina
| | - Jieyin Chen
- Laboratory of Cotton DiseaseInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijingChina
| | - Xiaofeng Dai
- Laboratory of Cotton DiseaseInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
39
|
Naqvi RZ, Zaidi SSEA, Akhtar KP, Strickler S, Woldemariam M, Mishra B, Mukhtar MS, Scheffler BE, Scheffler JA, Jander G, Mueller LA, Asif M, Mansoor S. Transcriptomics reveals multiple resistance mechanisms against cotton leaf curl disease in a naturally immune cotton species, Gossypium arboreum. Sci Rep 2017; 7:15880. [PMID: 29162860 PMCID: PMC5698292 DOI: 10.1038/s41598-017-15963-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/03/2017] [Indexed: 12/13/2022] Open
Abstract
Cotton leaf curl disease (CLCuD), caused by cotton leaf curl viruses (CLCuVs), is among the most devastating diseases in cotton. While the widely cultivated cotton species Gossypium hirsutum is generally susceptible, the diploid species G. arboreum is a natural source for resistance against CLCuD. However, the influence of CLCuD on the G. arboreum transcriptome and the interaction of CLCuD with G. arboreum remains to be elucidated. Here we have used an RNA-Seq based study to analyze differential gene expression in G. arboreum under CLCuD infestation. G. arboreum plants were infested by graft inoculation using a CLCuD infected scion of G. hirsutum. CLCuD infested asymptomatic and symptomatic plants were analyzed with RNA-seq using an Illumina HiSeq. 2500. Data analysis revealed 1062 differentially expressed genes (DEGs) in G. arboreum. We selected 17 genes for qPCR to validate RNA-Seq data. We identified several genes involved in disease resistance and pathogen defense. Furthermore, a weighted gene co-expression network was constructed from the RNA-Seq dataset that indicated 50 hub genes, most of which are involved in transport processes and might have a role in the defense response of G. arboreum against CLCuD. This fundamental study will improve the understanding of virus-host interaction and identification of important genes involved in G. arboreum tolerance against CLCuD.
Collapse
Affiliation(s)
- Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- Boyce Thompson Institute, 533 Tower Road, Cornell University, Ithaca, NY, USA
| | - Syed Shan-E-Ali Zaidi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- Boyce Thompson Institute, 533 Tower Road, Cornell University, Ithaca, NY, USA
- AgroBioChem Department, Gembloux Agro-Bio Tech, University of Liège, 5030, Gembloux, Belgium
| | - Khalid Pervaiz Akhtar
- Nuclear Institute for Agriculture & Biology (NIAB), Jhang Road, Faisalabad, Punjab, Pakistan
| | - Susan Strickler
- Boyce Thompson Institute, 533 Tower Road, Cornell University, Ithaca, NY, USA
| | - Melkamu Woldemariam
- Boyce Thompson Institute, 533 Tower Road, Cornell University, Ithaca, NY, USA
| | - Bharat Mishra
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brian E Scheffler
- Genomics and Bioinformatics Research Unit (USDA-ARS), Stoneville, MS, USA
| | - Jodi A Scheffler
- Crop Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Stoneville, MS, USA
| | - Georg Jander
- Boyce Thompson Institute, 533 Tower Road, Cornell University, Ithaca, NY, USA
| | - Lukas A Mueller
- Boyce Thompson Institute, 533 Tower Road, Cornell University, Ithaca, NY, USA
| | - Muhammad Asif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad, Punjab, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad, Punjab, Pakistan.
| |
Collapse
|
40
|
Zhang B, Wang Y, Liu JY. Genome-wide identification and characterization of phospholipase C gene family in cotton (Gossypium spp.). SCIENCE CHINA-LIFE SCIENCES 2017; 61:88-99. [PMID: 28547583 DOI: 10.1007/s11427-017-9053-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/01/2017] [Indexed: 01/05/2023]
Abstract
Phospholipase C (PLC) are important regulatory enzymes involved in several lipid and Ca2+-dependent signaling pathways. Previous studies have elucidated the versatile roles of PLC genes in growth, development and stress responses of many plants, however, the systematic analyses of PLC genes in the important fiber-producing plant, cotton, are still deficient. In this study, through genome-wide survey, we identified twelve phosphatidylinositol-specific PLC (PI-PLC) and nine non-specific PLC (NPC) genes in the allotetraploid upland cotton Gossypium hirsutum and nine PI-PLC and six NPC genes in two diploid cotton G. arboretum and G.raimondii, respectively. The PI-PLC and NPC genes of G. hirsutum showed close phylogenetic relationship with their homologous genes in the diploid cottons and Arabidopsis. Segmental and tandem duplication contributed greatly to the formation of the gene family. Expression profiling indicated that few of the PLC genes are constitutely expressed, whereas most of the PLC genes are preferentially expressed in specific tissues and abiotic stress conditions. Promoter analyses further implied that the expression of these PLC genes might be regulated by MYB transcription factors and different phytohormones. These results not only suggest an important role of phospholipase C members in cotton plant development and abiotic stress response but also provide good candidate targets for future molecular breeding of superior cotton cultivars.
Collapse
Affiliation(s)
- Bing Zhang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yanmei Wang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jin-Yuan Liu
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
41
|
Chen J, Li N, Ma X, Gupta VK, Zhang D, Li T, Dai X. The Ectopic Overexpression of the Cotton Ve1 and Ve2-Homolog Sequences Leads to Resistance Response to Verticillium Wilt in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:844. [PMID: 28611793 PMCID: PMC5447073 DOI: 10.3389/fpls.2017.00844] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/05/2017] [Indexed: 05/07/2023]
Abstract
Verticillium wilt, caused by the Verticillium dahliae phytopathogen, is a devastating disease affecting many economically important crops. A receptor-like protein (RLP) gene, Ve1, has been reported to confer resistance to V. dahliae in tomato plants, but few genes have been found to be involved in cotton Verticillium wilt resistance. Here, we cloned two RLP gene homologs, Gossypium barbadense resistance gene to Verticillium dahliae 1 (GbaVd1) and GbaVd2, from the Verticillium wilt-resistant cultivar G. barbadense cv. Hai7124. GbaVd1 and GbaVd2 display sequence divergence, but both encode typical RLPs. Virus-induced gene silencing of GbaVd1 or GbaVd2 compromised the resistance of cotton to V. dahliae, and both genes conferred Verticillium wilt resistance after interfamily transfer into Arabidopsis. Microarray analysis revealed that GbaVd1 and GbaVd2 participate in Verticillium wilt resistance in Arabidopsis through activation of defense responses, including the endocytosis process, signaling factors, transcription factors and reinforcement of the cell wall, as demonstrated by lignification in Arabidopsis transgenic plants. In addition, microarray analysis showed that GbaVd1 and GbaVd2 differentially mediate resistance signaling and activation of defense responses after overexpression in Arabidopsis. Thus, GbaVd1 and GbaVd2 encode RLPs and act as disease resistance genes that mediate the defense response against V. dahliae in cotton.
Collapse
Affiliation(s)
- Jieyin Chen
- Laboratory of Cotton Diseases, The Institute of Food Science and Technology, Chinese Academy of Agricultural SciencesBeijing, China
| | - Nanyang Li
- Laboratory of Cotton Diseases, The Institute of Food Science and Technology, Chinese Academy of Agricultural SciencesBeijing, China
| | - Xuefeng Ma
- Laboratory of Cotton Diseases, The Institute of Food Science and Technology, Chinese Academy of Agricultural SciencesBeijing, China
| | - Vijai K. Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, School of Science, Tallinn University of TechnologyTallinn, Estonia
| | - Dandan Zhang
- Laboratory of Cotton Diseases, The Institute of Food Science and Technology, Chinese Academy of Agricultural SciencesBeijing, China
| | - Tinggang Li
- Laboratory of Cotton Diseases, The Institute of Food Science and Technology, Chinese Academy of Agricultural SciencesBeijing, China
| | - Xiaofeng Dai
- Laboratory of Cotton Diseases, The Institute of Food Science and Technology, Chinese Academy of Agricultural SciencesBeijing, China
- *Correspondence: Xiaofeng Dai
| |
Collapse
|
42
|
Li F, Fan K, Ma F, Yue E, Bibi N, Wang M, Shen H, Hasan MMU, Wang X. Genomic Identification and Comparative Expansion Analysis of the Non-Specific Lipid Transfer Protein Gene Family in Gossypium. Sci Rep 2016; 6:38948. [PMID: 27976679 PMCID: PMC5157027 DOI: 10.1038/srep38948] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 11/16/2016] [Indexed: 11/16/2022] Open
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) are involved in many biological processes. In this study, 51, 47 and 91 nsLTPs were identified in Gossypium arboreum, G. raimondii and their descendant allotetraploid G. hirsutum, respectively. All the nsLTPs were phylogenetically divided into 8 distinct subfamilies. Besides, the recent duplication, which is considered cotton-specific whole genome duplication, may have led to nsLTP expansion in Gossypium. Both tandem and segmental duplication contributed to nsLTP expansion in G. arboreum and G. hirsutum, while tandem duplication was the dominant pattern in G. raimondii. Additionally, the interspecific orthologous gene pairs in Gossypium were identified. Some GaLTPs and GrLTPs lost their orthologs in the At and Dt subgenomes, respectively, of G. hirsutum. The distribution of these GrLTPs and GaLTPs within each subfamily was complementary, suggesting that the loss and retention of nsLTPs in G. hirsutum might not be random. Moreover, the nsLTPs in the At and Dt subgenomes might have evolved symmetrically. Furthermore, both intraspecific and interspecific orthologous genes showed considerable expression variation, suggesting that their functions were strongly differentiated. Our results lay an important foundation for expansion and evolutionary analysis of the nsLTP family in Gossypium, and advance nsLTP studies in other plants, especially polyploid plants.
Collapse
Affiliation(s)
- Feng Li
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Kai Fan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, People’s Republic of China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Fanglu Ma
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Erkui Yue
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Noreen Bibi
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, People’s Republic of China
- Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Ming Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Hao Shen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Md Mosfeq-Ul Hasan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Xuede Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, People’s Republic of China
| |
Collapse
|
43
|
Häffner E, Diederichsen E. Belowground Defence Strategies Against Verticillium Pathogens. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-42319-7_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Li P, Quan X, Jia G, Xiao J, Cloutier S, You FM. RGAugury: a pipeline for genome-wide prediction of resistance gene analogs (RGAs) in plants. BMC Genomics 2016; 17:852. [PMID: 27806688 PMCID: PMC5093994 DOI: 10.1186/s12864-016-3197-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/25/2016] [Indexed: 11/10/2022] Open
Abstract
Background Resistance gene analogs (RGAs), such as NBS-encoding proteins, receptor-like protein kinases (RLKs) and receptor-like proteins (RLPs), are potential R-genes that contain specific conserved domains and motifs. Thus, RGAs can be predicted based on their conserved structural features using bioinformatics tools. Computer programs have been developed for the identification of individual domains and motifs from the protein sequences of RGAs but none offer a systematic assessment of the different types of RGAs. A user-friendly and efficient pipeline is needed for large-scale genome-wide RGA predictions of the growing number of sequenced plant genomes. Results An integrative pipeline, named RGAugury, was developed to automate RGA prediction. The pipeline first identifies RGA-related protein domains and motifs, namely nucleotide binding site (NB-ARC), leucine rich repeat (LRR), transmembrane (TM), serine/threonine and tyrosine kinase (STTK), lysin motif (LysM), coiled-coil (CC) and Toll/Interleukin-1 receptor (TIR). RGA candidates are identified and classified into four major families based on the presence of combinations of these RGA domains and motifs: NBS-encoding, TM-CC, and membrane associated RLP and RLK. All time-consuming analyses of the pipeline are paralleled to improve performance. The pipeline was evaluated using the well-annotated Arabidopsis genome. A total of 98.5, 85.2, and 100 % of the reported NBS-encoding genes, membrane associated RLPs and RLKs were validated, respectively. The pipeline was also successfully applied to predict RGAs for 50 sequenced plant genomes. A user-friendly web interface was implemented to ease command line operations, facilitate visualization and simplify result management for multiple datasets. Conclusions RGAugury is an efficiently integrative bioinformatics tool for large scale genome-wide identification of RGAs. It is freely available at Bitbucket: https://bitbucket.org/yaanlpc/rgaugury. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3197-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pingchuan Li
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, R6M 1Y5, Canada
| | - Xiande Quan
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, R6M 1Y5, Canada
| | - Gaofeng Jia
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, R6M 1Y5, Canada.,University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Jin Xiao
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, R6M 1Y5, Canada.,National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
| | - Frank M You
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, R6M 1Y5, Canada.
| |
Collapse
|
45
|
Tran DM, Clément-Demange A, Déon M, Garcia D, Le Guen V, Clément-Vidal A, Soumahoro M, Masson A, Label P, Le MT, Pujade-Renaud V. Genetic Determinism of Sensitivity to Corynespora cassiicola Exudates in Rubber Tree (Hevea brasiliensis). PLoS One 2016; 11:e0162807. [PMID: 27736862 PMCID: PMC5063417 DOI: 10.1371/journal.pone.0162807] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/29/2016] [Indexed: 11/19/2022] Open
Abstract
An indirect phenotyping method was developed in order to estimate the susceptibility of rubber tree clonal varieties to Corynespora Leaf Fall (CLF) disease caused by the ascomycete Corynespora cassiicola. This method consists in quantifying the impact of fungal exudates on detached leaves by measuring the induced electrolyte leakage (EL%). The tested exudates were either crude culture filtrates from diverse C. cassiicola isolates or the purified cassiicolin (Cas1), a small secreted effector protein produced by the aggressive isolate CCP. The test was found to be quantitative, with the EL% response proportional to toxin concentration. For eight clones tested with two aggressive isolates, the EL% response to the filtrates positively correlated to the response induced by conidial inoculation. The toxicity test applied to 18 clones using 13 toxinic treatments evidenced an important variability among clones and treatments, with a significant additional clone x treatment interaction effect. A genetic linkage map was built using 306 microsatellite markers, from the F1 population of the PB260 x RRIM600 family. Phenotyping of the population for sensitivity to the purified Cas1 effector and to culture filtrates from seven C. cassiicola isolates revealed a polygenic determinism, with six QTL detected on five chromosomes and percentages of explained phenotypic variance varying from 11 to 17%. Two common QTL were identified for the CCP filtrate and the purified cassiicolin, suggesting that Cas1 may be the main effector of CCP filtrate toxicity. The CCP filtrate clearly contrasted with all other filtrates. The toxicity test based on Electrolyte Leakage Measurement offers the opportunity to assess the sensitivity of rubber genotypes to C. cassiicola exudates or purified effectors for genetic investigations and early selection, without risk of spreading the fungus in plantations. However, the power of this test for predicting field susceptibility of rubber clones to CLF will have to be further investigated.
Collapse
Affiliation(s)
- Dinh Minh Tran
- Rubber Research Institute of Vietnam, Ho Chi Minh City, Vietnam
- CIRAD, UMR-AGAP, F-34398 Montpellier, France
| | | | - Marine Déon
- UCA, INRA, UMR PIAF, 63000 Clermont-Ferrand, France
| | | | | | | | - Mouman Soumahoro
- Société Africaine de Plantations d'Hévéas, 01 BP 1322 Abidjan 01, Côte d’Ivoire
| | - Aurélien Masson
- Société des Caoutchoucs de Grand-Béréby, Grand-Béréby, Côte d’Ivoire
| | | | - Mau Tuy Le
- Rubber Research Institute of Vietnam, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
46
|
Toueni M, Ben C, Le Ru A, Gentzbittel L, Rickauer M. Quantitative Resistance to Verticillium Wilt in Medicago truncatula Involves Eradication of the Fungus from Roots and Is Associated with Transcriptional Responses Related to Innate Immunity. FRONTIERS IN PLANT SCIENCE 2016; 7:1431. [PMID: 27746789 PMCID: PMC5041324 DOI: 10.3389/fpls.2016.01431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/08/2016] [Indexed: 05/07/2023]
Abstract
Resistance mechanisms to Verticillium wilt are well-studied in tomato, cotton, and Arabidopsis, but much less in legume plants. Because legume plants establish nitrogen-fixing symbioses in their roots, resistance to root-attacking pathogens merits particular attention. The interaction between the soil-borne pathogen Verticillium alfalfae and the model legume Medicago truncatula was investigated using a resistant (A17) and a susceptible (F83005.5) line. As shown by histological analyses, colonization by the pathogen was initiated similarly in both lines. Later on, the resistant line A17 eliminated the fungus, whereas the susceptible F83005.5 became heavily colonized. Resistance in line A17 does not involve homologs of the well-characterized tomato Ve1 and V. dahliae Ave1 genes. A transcriptomic study of early root responses during initial colonization (i.e., until 24 h post-inoculation) similarly was performed. Compared to the susceptible line, line A17 displayed already a significantly higher basal expression of defense-related genes prior to inoculation, and responded to infection with up-regulation of only a small number of genes. Although fungal colonization was still low at this stage, the susceptible line F83005.5 exhibited a disorganized response involving a large number of genes from different functional classes. The involvement of distinct phytohormone signaling pathways in resistance as suggested by gene expression patterns was supported by experiments with plant hormone pretreatment before fungal inoculation. Gene co-expression network analysis highlighted five main modules in the resistant line, whereas no structured gene expression was found in the susceptible line. One module was particularly associated to the inoculation response in A17. It contains the majority of differentially expressed genes, genes associated with PAMP perception and hormone signaling, and transcription factors. An in silico analysis showed that a high number of these genes also respond to other soil-borne pathogens in M. truncatula, suggesting a core of transcriptional response to root pathogens. Taken together, the results suggest that resistance in M. truncatula line A17 might be due to innate immunity combining preformed defense and PAMP-triggered defense mechanisms, and putative involvement of abscisic acid.
Collapse
Affiliation(s)
- Maoulida Toueni
- EcoLab, Université de Toulouse, CNRS, INPT, UPSToulouse, France
| | - Cécile Ben
- EcoLab, Université de Toulouse, CNRS, INPT, UPSToulouse, France
| | - Aurélie Le Ru
- Research Federation “Agrobiosciences, Interactions et Biodiversité”Castanet-Tolosan, France
| | | | | |
Collapse
|
47
|
Identification of SET Domain-Containing Proteins in Gossypium raimondii and Their Response to High Temperature Stress. Sci Rep 2016; 6:32729. [PMID: 27601353 PMCID: PMC5013442 DOI: 10.1038/srep32729] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 08/15/2016] [Indexed: 11/26/2022] Open
Abstract
SET (Su(var), E(z), and Trithorax) domain-containing proteins play an important role in plant development and stress responses through modifying lysine methylation status of histone. Gossypium raimondii may be the putative contributor of the D-subgenome of economical crops allotetraploid G. hirsutum and G. barbadense and therefore can potentially provide resistance genes. In this study, we identified 52 SET domain-containing genes from G. raimondii genome. Based on conserved sequences, these genes are grouped into seven classes and are predicted to catalyze the methylation of different substrates: GrKMT1 for H3K9me, GrKMT2 and GrKMT7 for H3K4me, GrKMT3 for H3K36me, GrKMT6 for H3K27me, but GrRBCMT and GrS-ET for nonhistones substrate-specific methylation. Seven pairs of GrKMT and GrRBCMT homologous genes are found to be duplicated, possibly one originating from tandem duplication and five from a large scale or whole genome duplication event. The gene structure, domain organization and expression patterns analyses suggest that these genes’ functions are diversified. A few of GrKMTs and GrRBCMTs, especially for GrKMT1A;1a, GrKMT3;3 and GrKMT6B;1 were affected by high temperature (HT) stress, demonstrating dramatically changed expression patterns. The characterization of SET domain-containing genes in G. raimondii provides useful clues for further revealing epigenetic regulation under HT and function diversification during evolution.
Collapse
|
48
|
Genome-wide identification and characterization of the homeodomain-leucine zipper I family of genes in cotton ( Gossypium spp.). ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.plgene.2016.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Zambounis A, Ganopoulos I, Kalivas A, Tsaftaris A, Madesis P. Identification and evidence of positive selection upon resistance gene analogs in cotton ( Gossypium hirsutum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2016; 22:415-421. [PMID: 27729728 PMCID: PMC5039151 DOI: 10.1007/s12298-016-0362-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 05/24/2023]
Abstract
Upland cotton (Gossypium hirsutum L.) is an important fiber crop species, which is intensively plagued by a plethora of phytopathogenic fungi such as Fusarium oxysporum f. sp. vasinfectum (Fov) causing severe wilt disease. Resistance gene analogs (RGAs) are the largest class of potential resistance (R) genes depicting highly conserved domains and structures in plants. Additionally, RGAs are pivotal components of breeding projects towards host disease resistance, serving as useful functional markers linked to R genes. In this study, a cloning approach based on conserved RGAs motifs was used in order to amplify 38 RGAs from two upland cotton cultivars differing in their Fov susceptibility. Besides, we assessed the phylogenetic expansion and the evolutionary pressures acting upon 127 RGA homologues, which were previously deposited in GenBank along with the 38 RGAs from this study. A total of 165 RGAs sequences were clustered according to their BLAST(P) similarities in ten paralogous genes groups (PGGs). These RGAs exhibited intensive signs of positive selection as it was revealed by inferring various maximum likelihood analyses. The results showed robust signs of positive selection, acting in almost all PGGs across the phylogeny. The evolutionary analysis revealed the existence of 42 positively selected residue sites across the PGG lineages, putatively affecting their ligand-binding specificities. As RGAs derived markers are in close linkage to R genes, these results could be used in ongoing breeding programs of upland cotton.
Collapse
Affiliation(s)
- Antonios Zambounis
- Laboratory of Genetics and Plant Breeding, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 261, 54124 Thessaloníki, Greece
| | - Ioannis Ganopoulos
- Laboratory of Forest Genetics and Tree Breeding, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 238, 54006 Thessaloníki, Greece
| | - Apostolos Kalivas
- Plant Breeding and Phytogenetic Resources Institute, Hellenic Agricultural Organization “Demeter”, 5700 Thermi, Thessaloníki, Greece
| | - Athanasios Tsaftaris
- Laboratory of Genetics and Plant Breeding, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 261, 54124 Thessaloníki, Greece
- Institute of Applied Biosciences, CERTH, 570 01 Thermi, Thessaloníki, Greece
| | - Panagiotis Madesis
- Institute of Applied Biosciences, CERTH, 570 01 Thermi, Thessaloníki, Greece
| |
Collapse
|
50
|
Wang C, Ulloa M, Shi X, Yuan X, Saski C, Yu JZ, Roberts PA. Sequence composition of BAC clones and SSR markers mapped to Upland cotton chromosomes 11 and 21 targeting resistance to soil-borne pathogens. FRONTIERS IN PLANT SCIENCE 2015; 6:791. [PMID: 26483808 PMCID: PMC4591483 DOI: 10.3389/fpls.2015.00791] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 09/11/2015] [Indexed: 05/24/2023]
Abstract
Genetic and physical framework mapping in cotton (Gossypium spp.) were used to discover putative gene sequences involved in resistance to common soil-borne pathogens. Chromosome (Chr) 11 and its homoeologous Chr 21 of Upland cotton (G. hirsutum) are foci for discovery of resistance (R) or pathogen-induced R (PR) genes underlying QTLs involved in response to root-knot nematode (Meloidogyne incognita), reniform nematode (Rotylenchulus reniformis), Fusarium wilt (Fusarium oxysporum f.sp. vasinfectum), Verticillium wilt (Verticillium dahliae), and black root rot (Thielaviopsis basicola). Simple sequence repeat (SSR) markers and bacterial artificial chromosome (BAC) clones from a BAC library developed from the Upland cotton Acala Maxxa were mapped on Chr 11 and Chr 21. DNA sequence through Gene Ontology (GO) of 99 of 256 Chr 11 and 109 of 239 Chr 21 previously mapped SSRs revealed response elements to internal and external stimulus, stress, signaling process, and cell death. The reconciliation between genetic and physical mapping of gene annotations from new DNA sequences of 20 BAC clones revealed 467 (Chr 11) and 285 (Chr 21) G. hirsutum putative coding sequences, plus 146 (Chr 11) and 98 (Chr 21) predicted genes. GO functional profiling of Unigenes uncovered genes involved in different metabolic functions and stress response elements (SRE). Our results revealed that Chrs 11 and 21 harbor resistance gene rich genomic regions. Sequence comparisons with the ancestral diploid D5 (G. raimondii), A2 (G. arboreum) and domesticated tetraploid TM-1 AD1 (G. hirsutum) genomes revealed abundance of transposable elements and confirmed the richness of resistance gene motifs in these chromosomes. The sequence information of SSR markers and BAC clones and the genetic mapping of BAC clones provide enhanced genetic and physical frameworks of resistance gene-rich regions of the cotton genome, thereby aiding discovery of R and PR genes and breeding for resistance to cotton diseases.
Collapse
Affiliation(s)
- Congli Wang
- Department of Nematology, University of California, RiversideRiverside, CA, USA
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of SciencesHarbin, China
| | - Mauricio Ulloa
- Plant Stress and Germplasm Development Research Unit, USA - Agricultural Research ServiceLubbock, TX, USA
| | - Xinyi Shi
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of SciencesHarbin, China
| | - Xiaohui Yuan
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of SciencesHarbin, China
| | | | - John Z. Yu
- USA - Agricultural Research Service, Southern Plains Agricultural Research Center, College StationTX, USA
| | - Philip A. Roberts
- Department of Nematology, University of California, RiversideRiverside, CA, USA
| |
Collapse
|