1
|
Karami O, Rahimi A, Khan M, Bemer M, Hazarika RR, Mak P, Compier M, van Noort V, Offringa R. A suppressor of axillary meristem maturation promotes longevity in flowering plants. NATURE PLANTS 2020; 6:368-376. [PMID: 32284551 DOI: 10.1038/s41477-020-0637-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 03/11/2020] [Indexed: 05/27/2023]
Abstract
Post-embryonic development and longevity of flowering plants are, for a large part, determined by the activity and maturation state of stem cell niches formed in the axils of leaves, the so-called axillary meristems (AMs)1,2. The genes that are associated with AM maturation and underlie the differences between monocarpic (reproduce once and die) annual and the longer-lived polycarpic (reproduce more than once) perennial plants are still largely unknown. Here we identify a new role for the Arabidopsis AT-HOOK MOTIF NUCLEAR LOCALIZED 15 (AHL15) gene as a suppressor of AM maturation. Loss of AHL15 function accelerates AM maturation, whereas ectopic expression of AHL15 suppresses AM maturation and promotes longevity in monocarpic Arabidopsis and tobacco. Accordingly, in Arabidopsis grown under longevity-promoting short-day conditions, or in polycarpic Arabidopsis lyrata, expression of AHL15 is upregulated in AMs. Together, our results indicate that AHL15 and other AHL clade-A genes play an important role, directly downstream of flowering genes (SOC1, FUL) and upstream of the flowering-promoting hormone gibberellic acid, in suppressing AM maturation and extending the plant's lifespan.
Collapse
Affiliation(s)
- Omid Karami
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Arezoo Rahimi
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Majid Khan
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
- Institute of Biotechnology and Genetic Engineering, University of Agriculture Peshawar, Peshawar, Pakistan
| | - Marian Bemer
- Laboratory of Molecular Biology and B.U. Bioscience, Wageningen University and Research, Wageningen, the Netherlands
| | | | - Patrick Mak
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
- Sanquin Plasma Products BV, Department of Product Development, Amsterdam, the Netherlands
| | - Monique Compier
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
- Rijk Zwaan, De Lier, the Netherlands
| | - Vera van Noort
- KU Leuven, Centre of Microbial and Plant Genetics, Leuven, Belgium
- Bioinformatics and Genomics, Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Remko Offringa
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
2
|
Walden N, Lucek K, Willi Y. Lineage‐specific adaptation to climate involves flowering time in North American
Arabidopsis lyrata. Mol Ecol 2020; 29:1436-1451. [DOI: 10.1111/mec.15338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/16/2019] [Accepted: 12/10/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Nora Walden
- Department of Environmental Sciences University of Basel Basel Switzerland
- Centre for Organismal Studies Heidelberg University of Heidelberg Heidelberg Germany
| | - Kay Lucek
- Department of Environmental Sciences University of Basel Basel Switzerland
| | - Yvonne Willi
- Department of Environmental Sciences University of Basel Basel Switzerland
| |
Collapse
|
3
|
Kemi U, Leinonen PH, Savolainen O, Kuittinen H. Inflorescence shoot elongation, but not flower primordia formation, is photoperiodically regulated in Arabidopsis lyrata. ANNALS OF BOTANY 2019; 124:91-102. [PMID: 31321402 PMCID: PMC6676387 DOI: 10.1093/aob/mcz035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 02/22/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS Photoperiod contains information about the progress of seasons. Plants use the changing photoperiod as a cue for the correct timing of important life history events, including flowering. Here the effect of photoperiod on flowering in four Arabidopsis lyrata populations originating from different latitudes was studied, as well as expression levels of candidate genes for governing the between-population differences. METHODS Flowering of plants from four A. lyrata populations was studied in three different photoperiods after vernalization. Flowering development was separated into three steps: flower primordia formation, inflorescence shoot elongation and opening of the first flower. Circadian expression rhythms of the A. lyrata homologues of GIGANTEA (GI), FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1), CONSTANS (CO) and FLOWERING LOCUS T (FT) were studied in three of the populations in the intermediate (14 h) photoperiod treatment. KEY RESULTS Most plants in all populations formed visible flower primordia during vernalization. Further inflorescence development after vernalization was strongly inhibited by short days in the northern European population (latitude 61°N), only slightly in the central European population (49°N) and not at all in the North American populations (36°N and 42°N). In the 14 h daylength, where all plants from the three southernmost populations but only 60 % of the northernmost population flowered, the circadian expression rhythm of the A. lyrata FT was only detected in the southern populations, suggesting differentiation in the critical daylength for activation of the long-day pathway. However, circadian expression rhythms of A. lyrata GI, FKF1 and CO were similar between populations. CONCLUSIONS The results indicate that in A. lyrata, transition to flowering can occur through pathways independent of long days, but elongation of inflorescences is photoperiodically regulated.
Collapse
Affiliation(s)
- Ulla Kemi
- Department of Ecology and Genetics, University of Oulu, FIN-90014 Oulu, Finland
- Max Planck Institute for Plant Breeding Research, Carl von Linné Weg, Cologne, Germany
| | - Päivi H Leinonen
- Department of Ecology and Genetics, University of Oulu, FIN-90014 Oulu, Finland
- Biodiversity Unit, University of Turku, Turku, Finland
| | - Outi Savolainen
- Department of Ecology and Genetics, University of Oulu, FIN-90014 Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Helmi Kuittinen
- Department of Ecology and Genetics, University of Oulu, FIN-90014 Oulu, Finland
| |
Collapse
|
4
|
Hämälä T, Mattila TM, Savolainen O. Local adaptation and ecological differentiation under selection, migration, and drift in Arabidopsis lyrata. Evolution 2018; 72:1373-1386. [PMID: 29741234 DOI: 10.1111/evo.13502] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/03/2018] [Indexed: 12/19/2022]
Abstract
How the balance between selection, migration, and drift influences the evolution of local adaptation has been under intense theoretical scrutiny. Yet, empirical studies that relate estimates of local adaptation to quantification of gene flow and effective population sizes have been rare. Here, we conducted a reciprocal transplant trial, a common garden trial, and a whole-genome-based demography analysis to examine these effects among Arabidopsis lyrata populations from two altitudinal gradients in Norway. Demography simulations indicated that populations within the two gradients are connected by gene flow (0.1 < 4Ne m < 11) and have small effective population sizes (Ne < 6000), suggesting that both migration and drift can counteract local selection. However, the three-year field experiments showed evidence of local adaptation at the level of hierarchical multiyear fitness, attesting to the strength of differential selection. In the lowland habitat, local superiority was associated with greater fecundity, while viability accounted for fitness differences in the alpine habitat. We also demonstrate that flowering time differentiation has contributed to adaptive divergence between these locally adapted populations. Our results show that despite the estimated potential of gene flow and drift to hinder differentiation, selection among these A. lyrata populations has resulted in local adaptation.
Collapse
Affiliation(s)
- Tuomas Hämälä
- Department of Ecology and Genetics, University of Oulu, FI-90014 Oulu, Finland
- Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland
| | - Tiina M Mattila
- Department of Ecology and Genetics, University of Oulu, FI-90014 Oulu, Finland
| | - Outi Savolainen
- Department of Ecology and Genetics, University of Oulu, FI-90014 Oulu, Finland
- Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland
| |
Collapse
|
5
|
Hughes PW. Between semelparity and iteroparity: Empirical evidence for a continuum of modes of parity. Ecol Evol 2017; 7:8232-8261. [PMID: 29075446 PMCID: PMC5648687 DOI: 10.1002/ece3.3341] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/24/2017] [Indexed: 01/19/2023] Open
Abstract
The number of times an organism reproduces (i.e., its mode of parity) is a fundamental life-history character, and evolutionary and ecological models that compare the relative fitnesses of different modes of parity are common in life-history theory and theoretical biology. Despite the success of mathematical models designed to compare intrinsic rates of increase (i.e., density-independent growth rates) between annual-semelparous and perennial-iteroparous reproductive schedules, there is widespread evidence that variation in reproductive allocation among semelparous and iteroparous organisms alike is continuous. This study reviews the ecological and molecular evidence for the continuity and plasticity of modes of parity-that is, the idea that annual-semelparous and perennial-iteroparous life histories are better understood as endpoints along a continuum of possible strategies. I conclude that parity should be understood as a continuum of different modes of parity, which differ by the degree to which they disperse or concentrate reproductive effort in time. I further argue that there are three main implications of this conclusion: (1) that seasonality should not be conflated with parity; (2) that mathematical models purporting to explain the general evolution of semelparous life histories from iteroparous ones (or vice versa) should not assume that organisms can only display either an annual-semelparous life history or a perennial-iteroparous one; and (3) that evolutionary ecologists should base explanations of how different life-history strategies evolve on the physiological or molecular basis of traits underlying different modes of parity.
Collapse
Affiliation(s)
- Patrick William Hughes
- Department of Plant Breeding and GeneticsMax Planck Institute for Plant Breeding ResearchKölnGermany
| |
Collapse
|
6
|
Hämälä T, Mattila TM, Leinonen PH, Kuittinen H, Savolainen O. Role of seed germination in adaptation and reproductive isolation in Arabidopsis lyrata. Mol Ecol 2017; 26:3484-3496. [PMID: 28393414 DOI: 10.1111/mec.14135] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/25/2017] [Accepted: 03/29/2017] [Indexed: 12/25/2022]
Abstract
Seed germination is an important developmental and life history stage. Yet, the evolutionary impact of germination has mainly been studied in the context of dormancy, or for its role in reproductive isolation between species. Here, we aim to examine multiple consequences of genetic divergence on germination traits between two Arabidopsis lyrata subspecies: ssp. petraea (Eurasia) and ssp. lyrata (North America). Postdormancy germination time, a potentially adaptive trait, showed differentiation between the populations, and quantitative trait loci (QTL) mapping revealed that the trait variation is mainly controlled by two antagonistic loci. These QTL areas contain several candidate genes with known function in postdormancy germination in A. thaliana. The sequence variation of three genes was consistent with differential selection, and they also included fixed nonsynonymous substitutions with potential to account for the phenotypic differentiation. We further show that the divergence between the subspecies has led to a slight but significant reduction in hybrid germination proportions, indicating incipient reproductive isolation. Comparison of reciprocal F1 and F2 progenies suggests that Bateson-Dobzhansky-Muller incompatibilities likely act through uniparentally inherited factors. Examination of genomewide transmission ratio distortion further revealed that cytonuclear interactions cause substantial pregermination inviability in the hybrids. These results confirm that seed germination has adaptive potential beyond the dormancy stage and that hybrid seed inviability can be one of the first reproductive barriers to arise during divergence.
Collapse
Affiliation(s)
- Tuomas Hämälä
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Tiina M Mattila
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Päivi H Leinonen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Helmi Kuittinen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Outi Savolainen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|