1
|
Gulyás Z, Székely A, Kulman K, Kocsy G. Light-Dependent Regulatory Interactions between the Redox System and miRNAs and Their Biochemical and Physiological Effects in Plants. Int J Mol Sci 2023; 24:8323. [PMID: 37176028 PMCID: PMC10179207 DOI: 10.3390/ijms24098323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Light intensity and spectrum play a major role in the regulation of the growth, development, and stress response of plants. Changes in the light conditions affect the formation of reactive oxygen species, the activity of the antioxidants, and, consequently, the redox environment in the plant tissues. Many metabolic processes, thus the biogenesis and function of miRNAs, are redox-responsive. The miRNAs, in turn, can modulate various components of the redox system, and this process is also associated with the alteration in the intensity and spectrum of the light. In this review, we would like to summarise the possible regulatory mechanisms by which the alterations in the light conditions can influence miRNAs in a redox-dependent manner. Daily and seasonal fluctuations in the intensity and spectral composition of the light can affect the expression of miRNAs, which can fine-tune the various physiological and biochemical processes due to their effect on their target genes. The interactions between the redox system and miRNAs may be modulated by light conditions, and the proposed function of this regulatory network and its effect on the various biochemical and physiological processes will be introduced in plants.
Collapse
Affiliation(s)
- Zsolt Gulyás
- Agricultural Institute, Centre for Agricultural Research ELKH, Department of Biological Resources, 2462 Martonvásár, Hungary
| | - András Székely
- Agricultural Institute, Centre for Agricultural Research ELKH, Department of Biological Resources, 2462 Martonvásár, Hungary
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Kitti Kulman
- Agricultural Institute, Centre for Agricultural Research ELKH, Department of Biological Resources, 2462 Martonvásár, Hungary
| | - Gábor Kocsy
- Agricultural Institute, Centre for Agricultural Research ELKH, Department of Biological Resources, 2462 Martonvásár, Hungary
| |
Collapse
|
2
|
Islam W, Waheed A, Idrees A, Rashid J, Zeng F. Role of plant microRNAs and their corresponding pathways in fluctuating light conditions. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119304. [PMID: 35671849 DOI: 10.1016/j.bbamcr.2022.119304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 01/03/2023]
Abstract
In recent years, it has been established that microRNAs (miRNAs) are critical for various plant physiological regulations in numerous species. Next-generation sequencing technologies have aided to our understandings related to the critical role of miRNAs during environmental stress conditions and plant development. Light influences not just miRNA accumulation but also their biological activities via regulating miRNA gene transcription, biosynthesis, and RNA-induced silencing complex (RISC) activity. Light-regulated routes, processes, and activities can all be affected by miRNAs. Here, we will explore how light affects miRNA gene expression and how conserved and novel miRNAs exhibit altered expression across different plant species in response to variable light quality. Here, we will mainly discuss recent advances in understanding how miRNAs are involved in photomorphogenesis, and photoperiod-dependent plant biological processes such as cell proliferation, metabolism, chlorophyll pigment synthesis and axillary bud growth. The review concludes by presenting future prospects via hoping that light-responsive miRNAs can be exploited in a better way to engineer economically important crops to ensure future food security.
Collapse
Affiliation(s)
- Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Abdul Waheed
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Atif Idrees
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | | | - Fanjiang Zeng
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Yang Y, Qiu Y, Ye W, Sun G, Li H. RNA sequencing-based exploration of the effects of far-red light on microRNAs involved in the shade-avoidance response of D. officinale. PeerJ 2023; 11:e15001. [PMID: 36967993 PMCID: PMC10035421 DOI: 10.7717/peerj.15001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Dendrobium officinale (D. officinale) has remarkable medicinal functions and high economic value. The shade-avoidance response to far-red light importantly affects the D. officinale productivity. However, the regulatory mechanism of miRNAs involved in the far-red light-avoidance response is unknown. Previous studies have found that, in D. officinale, 730 nm (far-red) light can promote the accumulation of plant metabolites, increase leaf area, and accelerate stem elongation. Here, the effects of far-red light on D. officinale were analysed via RNA-seq. KEGG analysis of miRNA target genes revealed various far-red light response pathways, among which the following played central roles: the one-carbon pool by folate; ascorbate and aldarate; cutin, suberine and wax biosynthesis; and sulfur metabolism. Cytoscape analysis of DE miRNA targets showed that novel_miR_484 and novel_miR_36 were most likely involved in the effects of far-red light on the D. officinale shade avoidance. Content verification revealed that far-red light promotes the accumulation of one-carbon compounds and ascorbic acid. Combined with qPCR validation results, the results showed that miR395b, novel_miR_36, novel_miR_159, novel_miR_178, novel_miR_405, and novel_miR_435 may participate in the far-red light signalling network through target genes, regulating the D. officinale shade avoidance. These findings provide new ideas for the efficient production of D. officinale.
Collapse
Affiliation(s)
- Yifan Yang
- College of Architectural Engineering, Sanming University, Sanming, China
| | - Yuqiang Qiu
- Xiamen Institute of Technology, Xiamen, China
| | - Wei Ye
- The Institute of Medicinal Plant, Sanming Academy of Agricultural Science, Sanming, China
| | - Gang Sun
- College of Resources and Chemical Engineering, Sanming University, Sanming, China
| | - Hansheng Li
- College of Architectural Engineering, Sanming University, Sanming, China
| |
Collapse
|
4
|
Pashkovskiy P, Kreslavski V, Khudyakova A, Pojidaeva ES, Kosobryukhov A, Kuznetsov V, Allakhverdiev SI. Independent Responses of Photosynthesis and Plant Morphology to Alterations of PIF Proteins and Light-Dependent MicroRNA Contents in Arabidopsis thaliana pif Mutants Grown under Lights of Different Spectral Compositions. Cells 2022; 11:cells11243981. [PMID: 36552745 PMCID: PMC9776988 DOI: 10.3390/cells11243981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
The effects of the quality of light on the content of phytochrome interacting factors (PIFs) such as PIF3, PIF4 and PIF5, as well as the expression of various light-dependent microRNAs, in adult Arabidopsis thaliana pif mutant plants (pif4, pif5, pif3pif5, pif4pif5, pif3pif4pif5) were studied. We demonstrate that under blue light, the pif4 mutant had maximal expression of most of the studied microRNAs (miR163, miR319, miR398, miR408, miR833) when the PIF4 protein in plants was reduced. This finding indicates that the PIF4 protein is involved in the downregulation of this group of microRNAs. This assumption is additionally confirmed by the fact that under the RL spectrum in pif5 mutants, practically the same miRNAs decrease expression against the background of an increase in the amount of PIF4 protein. Unlike the WT and other mutants, the pif4 mutant responded to the BL spectrum not only by activating the expression of light-dependent miRNAs, but also by a significant increase in the expression of transcription factors and key light signalling genes. These molecular reactions do not affect the activity of photosynthesis but may be involved in the formation of a light quality-dependent phenotype.
Collapse
Affiliation(s)
- Pavel Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Vladimir Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow 142290, Russia
| | - Alexandra Khudyakova
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow 142290, Russia
| | - Elena S. Pojidaeva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Anatoliy Kosobryukhov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow 142290, Russia
| | - Vladimir Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
- Correspondence:
| | - Suleyman I. Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| |
Collapse
|
5
|
Tan M, Niu J, Peng DZ, Cheng Q, Luan MB, Zhang ZQ. Clone and Function Verification of the OPR gene in Brassica napus Related to Linoleic Acid Synthesis. BMC PLANT BIOLOGY 2022; 22:192. [PMID: 35410118 PMCID: PMC9003975 DOI: 10.1186/s12870-022-03549-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/16/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Fatty acid composition and content affect rapeseed oil quality. Fatty acid synthesis-related genes in rapeseed have been studied globally by researchers. Nevertheless, rapeseed oil is mainly composed of seven different fatty acids (FA), and each fatty acid was regulated by different genes. Furthermore, different FA affect each other, which needs continuous and in-depth research to obtain more clear results in Brassica napus. RESULTS In this paper, broad-scale miRNA expression profiles were constructed and 21 differentially expressed miRNAs were detected. GO enrichment analysis showed that most up-regulated proteins were involved in transcription factor activity and catalytic activity. KEGG pathway enrichment analysis indicated that 20 pathways involving 36 target genes were enriched, of which the bna00592 pathway may be involved in fatty acid metabolism. The results were verified using a quantitative real-time PCR (RT-qPCR) analysis, we found that the target gene of bna-miR156b > c > g was the OPR (12-oxo-phytodienoic acid reductase). Four copies of OPR gene were found, and the over-expression vectors (pCAMBIA1300-35 s-OPR and pCAMBIA1300-RNAi-OPR) were constructed to verify their functions. In T1 and T2 generation, the content of linoleic acid (LA) increased significantly in OE but deceased in OPRi. CONCLUSIONS This is the first study to provide four copies of the OPR gene that regulates LA metabolism, can be used for the molecular mechanism of LA and optimizing fatty acid profiles in oilseed for breeding programs.
Collapse
Affiliation(s)
- Min Tan
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Juan Niu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Duo Zi Peng
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Qian Cheng
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Ming Bao Luan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China.
| | - Zhen Qian Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
6
|
Ma X, Zhao F, Zhou B. The Characters of Non-Coding RNAs and Their Biological Roles in Plant Development and Abiotic Stress Response. Int J Mol Sci 2022; 23:ijms23084124. [PMID: 35456943 PMCID: PMC9032736 DOI: 10.3390/ijms23084124] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023] Open
Abstract
Plant growth and development are greatly affected by the environment. Many genes have been identified to be involved in regulating plant development and adaption of abiotic stress. Apart from protein-coding genes, more and more evidence indicates that non-coding RNAs (ncRNAs), including small RNAs and long ncRNAs (lncRNAs), can target plant developmental and stress-responsive mRNAs, regulatory genes, DNA regulatory regions, and proteins to regulate the transcription of various genes at the transcriptional, posttranscriptional, and epigenetic level. Currently, the molecular regulatory mechanisms of sRNAs and lncRNAs controlling plant development and abiotic response are being deeply explored. In this review, we summarize the recent research progress of small RNAs and lncRNAs in plants, focusing on the signal factors, expression characters, targets functions, and interplay network of ncRNAs and their targets in plant development and abiotic stress responses. The complex molecular regulatory pathways among small RNAs, lncRNAs, and targets in plants are also discussed. Understanding molecular mechanisms and functional implications of ncRNAs in various abiotic stress responses and development will benefit us in regard to the use of ncRNAs as potential character-determining factors in molecular plant breeding.
Collapse
Affiliation(s)
- Xu Ma
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China;
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Fei Zhao
- Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
- Correspondence: (F.Z.); (B.Z.); Tel.: +86-0538-8243-965 (F.Z.); +86-0451-8219-1738 (B.Z.)
| | - Bo Zhou
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China;
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Correspondence: (F.Z.); (B.Z.); Tel.: +86-0538-8243-965 (F.Z.); +86-0451-8219-1738 (B.Z.)
| |
Collapse
|
7
|
WANG S, XU J, WANG Z, LI Z, YI L, YAO L, WANG X. Gene screening for fatty acid synthesis of flax based on transcriptome sequencing. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.93721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shuyan WANG
- Inner Mongolia Agricultural University, China
| | - Jun XU
- Inner Mongolia Agricultural University, China
| | - Zhuo WANG
- Inner Mongolia Grass Digital Ecological Industry Co., LTD, China
| | - Zhiwei LI
- Inner Mongolia Agricultural University, China
| | - Liuxi YI
- Inner Mongolia Agricultural University, China
| | - Lijun YAO
- Inner Mongolia Agricultural University, China
| | - Xia WANG
- Inner Mongolia Agricultural University, China
| |
Collapse
|
8
|
Mallet J, Laufs P, Leduc N, Le Gourrierec J. Photocontrol of Axillary Bud Outgrowth by MicroRNAs: Current State-of-the-Art and Novel Perspectives Gained From the Rosebush Model. FRONTIERS IN PLANT SCIENCE 2021; 12:770363. [PMID: 35173747 PMCID: PMC8841825 DOI: 10.3389/fpls.2021.770363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/13/2021] [Indexed: 05/05/2023]
Abstract
Shoot branching is highly dependent on environmental factors. While many species show some light dependence for branching, the rosebush shows a strict requirement for light to allow branching, making this species an excellent model to further understand how light impinges on branching. Here, in the first part, we provide a review of the current understanding of how light may modulate the complex regulatory network of endogenous factors like hormones (SL, IAA, CK, GA, and ABA), nutrients (sugar and nitrogen), and ROS to control branching. We review the regulatory contribution of microRNAs (miRNAs) to branching in different species, highlighting the action of such evolutionarily conserved factors. We underline some possible pathways by which light may modulate miRNA-dependent regulation of branching. In the second part, we exploit the strict light dependence of rosebush for branching to identify putative miRNAs that could contribute to the photocontrol of branching. For this, we first performed a profiling of the miRNAs expressed in early light-induced rosebush buds and next tested whether they were predicted to target recognized regulators of branching. Thus, we identified seven miRNAs (miR156, miR159, miR164, miR166, miR399, miR477, and miR8175) that could target nine genes (CKX1/6, EXPA3, MAX4, CYCD3;1, SUSY, 6PFK, APX1, and RBOHB1). Because these genes are affecting branching through different hormonal or metabolic pathways and because expression of some of these genes is photoregulated, our bioinformatic analysis suggests that miRNAs may trigger a rearrangement of the regulatory network to modulate branching in response to light environment.
Collapse
Affiliation(s)
- Julie Mallet
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Patrick Laufs
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Nathalie Leduc
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - José Le Gourrierec
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
- *Correspondence: José Le Gourrierec,
| |
Collapse
|
9
|
Tiwari B, Habermann K, Arif MA, Top O, Frank W. Identification of Small RNAs During High Light Acclimation in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:656657. [PMID: 34211484 PMCID: PMC8239388 DOI: 10.3389/fpls.2021.656657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/21/2021] [Indexed: 05/19/2023]
Abstract
The biological significance of non-coding RNAs (ncRNAs) has been firmly established to be important for the regulation of genes involved in stress acclimation. Light plays an important role for the growth of plants providing the energy for photosynthesis; however, excessive light conditions can also cause substantial defects. Small RNAs (sRNAs) are a class of non-coding RNAs that regulate transcript levels of protein-coding genes and mediate epigenetic silencing. Next generation sequencing facilitates the identification of small non-coding RNA classes such as miRNAs (microRNAs) and small-interfering RNAs (siRNAs), and long non-coding RNAs (lncRNAs), but changes in the ncRNA transcriptome in response to high light are poorly understood. We subjected Arabidopsis plants to high light conditions and performed a temporal in-depth study of the transcriptome data after 3 h, 6 h, and 2 days of high light treatment. We identified a large number of high light responsive miRNAs and sRNAs derived from NAT gene pairs, lncRNAs and TAS transcripts. We performed target predictions for differentially expressed miRNAs and correlated their expression levels through mRNA sequencing data. GO analysis of the targets revealed an overrepresentation of genes involved in transcriptional regulation. In A. thaliana, sRNA-mediated regulation of gene expression in response to high light treatment is mainly carried out by miRNAs and sRNAs derived from NAT gene pairs, and from lncRNAs. This study provides a deeper understanding of sRNA-dependent regulatory networks in high light acclimation.
Collapse
|
10
|
BrmiR828 Targets BrPAP1, BrMYB82, and BrTAS4 Involved in the Light Induced Anthocyanin Biosynthetic Pathway in Brassica rapa. Int J Mol Sci 2020; 21:ijms21124326. [PMID: 32560581 PMCID: PMC7352941 DOI: 10.3390/ijms21124326] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 11/17/2022] Open
Abstract
Comprehensive research in various plants shows that the metabolic pathway of anthocyanin biosynthesis is affected by environmental factors and regulated by microRNAs through post-transcriptional regulation. In seedlings of Brassica rapa Tsuda, the accumulation of anthocyanin is induced by light. However, the roles of BrmiR828 in the light-induced synthesis of anthocyanin in Brassica rapa remain to be explored. Here, a primary transcript of BrmiR828 was identified to be located on the chromosomes of the A03 sub-genome. Five candidate MYB family genes were predicted as targets of BrmiR828 in the database of Brassica rapa (BRAD, V1.1) by using psRNATarget. The transcript abundance of mature BrmiR828 was reduced in seedlings of Brassica rapa Tsuda under blue light irradiation comparing with dark treatment. However, Real-time PCR showed the transcript level of the five candidate targets, Bra004162, Bra022602, Bra001917, Bra029113, and Bra039763 was up-regulated when the seedlings exposed to blue or UV-A light. Trans-acting siRNA gene 4 (BrTAS4) was also identified to have a higher transcript level under blue and UV-A light irradiation than that in dark treatment. RNA ligase mediated 5′amplification of cDNA ends (RLM-5′ RACE) showed that BrmiR828 can splice the mRNA of Bra039763, Bra022602, and BrTAS4 on binding sites. Phylogenetic analysis of candidate BrMYBs targets along with MYBs from Arabidopsis thaliana showed that Bra039763, Bra004162, Bra001917, Bra029113, and Bra022602 are classified to the same group with AtMYB75, AtMYB114, AtMYB90, AtMYB113, and AtMYB82 which are involved in the anthocyanin biosynthetic pathway. As a result, light-induced down-regulation of BrmiR828 can target BrTAS4, BrPAP1 (Bra039763), MYB82 (Bra022602) to negatively regulate their transcript levels leading to the accumulation of MYB transcription factors that positively regulate anthocyanin biosynthesis in light-exposed seedlings of Brassica rapa.
Collapse
|
11
|
Li W, Tan L, Zou Y, Tan X, Huang J, Chen W, Tang Q. The Effects of Ultraviolet A/B Treatments on Anthocyanin Accumulation and Gene Expression in Dark-Purple Tea Cultivar 'Ziyan' ( Camellia sinensis). Molecules 2020; 25:molecules25020354. [PMID: 31952238 PMCID: PMC7024295 DOI: 10.3390/molecules25020354] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/20/2022] Open
Abstract
‘Ziyan’ is a novel anthocyanin-rich tea cultivar with dark purple young shoots. However, how its anthocyanin accumulation is affected by environmental factors, such as ultraviolet (UV), remains unclear. In this study, we observed that UV light treatments stimulated anthocyanin accumulation in ‘Ziyan’ leaves, and we further analyzed the underlying mechanisms at gene expression and enzyme activity levels. In addition, the catechins and chlorophyll contents of young shoots under different light treatments were also changed. The results showed that the contents of total anthocyanins and three major anthocyanin molecules, i.e., delphinidin, cyanidin, and pelargonidin, were significantly higher in leaves under UV-A, UV-B, and UV-AB treatments than those under white light treatment alone. However, the total catechins and chlorophyll contents in these purple tea plant leaves displayed the opposite trends. The anthocyanin content was the highest under UV-A treatment, which was higher by about 66% than control. Compared with the white light treatment alone, the enzyme activities of chalcone synthase (CHS), flavonoid 3′,5′-hydroxylase (F3′5′H), and anthocyanidin synthase (ANS) under UV treatments increased significantly, whereas the leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR) activities reduced. There was no significant difference in dihydroflavonol 4-reductase (DFR) activity under all treatments. Comparative transcriptome analyses unveiled that there were 565 differentially expressed genes (DEGs) of 29,648 genes in three pair-wise comparisons (white light versus UV-A, W vs. UV-A; white light versus UV-B, W vs. UV-A; white light versus UV-AB, W vs. UV-AB). The structural genes in anthocyanin pathway such as flavanone 3-hydroxylase (F3H), F3′5′H, DFR, and ANS, and regulatory gene TT8 were upregulated under UV-A treatment; F3′5′H, DFR, ANS, and UFGT and regulatory genes EGL1 and TT2 were upregulated under UV-AB treatment. However, most structural genes involved in phenylpropanoid and flavonoid pathways were downregulated under UV-B treatment compared with control. The expression of LAR and ANR were repressed in all UV treatments. Our results indicated that UV-A and UV-B radiations can induce anthocyanin accumulation in tea plant ‘Ziyan’ by upregulating the structural and regulatory genes involved in anthocyanin biosynthesis. In addition, UV radiation repressed the expression levels of LAR, ANR, and FLS, resulting in reduced ANR activity and a metabolic flux shift toward anthocyanin biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qian Tang
- Correspondence: ; Tel.: +86-028-8629-1748
| |
Collapse
|
12
|
Dong F, Wang C, Dong Y, Hao S, Wang L, Sun X, Liu S. Differential expression of microRNAs in tomato leaves treated with different light qualities. BMC Genomics 2020; 21:37. [PMID: 31931707 PMCID: PMC6958596 DOI: 10.1186/s12864-019-6440-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 12/29/2019] [Indexed: 11/12/2022] Open
Abstract
Background Light is the main source of energy and, as such, is one of the most important environmental factors for plant growth, morphogenesis, and other physiological responses. MicroRNAs (miRNAs) are endogenous non-coding RNAs that contain 21–24 nucleotides (nt) and play important roles in plant growth and development as well as stress responses. However, the role of miRNAs in the light response is less studied. We used tomato seedlings that were cultured in red light then transferred to blue light for 2 min to identify miRNAs related to light response by high-throughput sequencing. Results A total of 108 known miRNAs and 141 predicted novel miRNAs were identified in leaf samples from tomato leaves treated with the different light qualities. Among them, 15 known and 5 predicted novel miRNAs were differentially expressed after blue light treatment compared with the control (red light treatment). KEGG enrichment analysis showed that significantly enriched pathways included zeatin biosynthesis (ko00908), homologous recombination (ko03440), and plant hormone signal transduction (ko04075). Zeatin biosynthesis and plant hormone signal transduction are related to plant hormones, indicating that plant hormones play important roles in the light response. Conclusion Our results provide a theoretical basis for further understanding the role of miRNAs in the light response of plants.
Collapse
Affiliation(s)
- Fei Dong
- Vegetable and Flower Research Institute of Shandong Academy of Agricultural Sciences / Shandong Key Laboratory of Greenhouse Vegetable Biology / Shandong Branch of National Vegetable Improvement Center / Vegetable Science Observation and Experimental Station in Huang-Huai District of the Ministry of Agriculture, Jinan, 250100, China.,College of Horticulture Science and Engineering, Shandong Agricultural University, Tai An, 271018, China
| | - Chuanzeng Wang
- Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yuhui Dong
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai An, 271018, China
| | - Shuqin Hao
- Shandong Agriculture and Engineering University, Jinan, 250100, China
| | - Lixia Wang
- Shenyang Agriculture University, Shenyang, 110866, China
| | - Xiudong Sun
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai An, 271018, China. .,State Key Laboratory of Crop Biology, Tai An, 271018, China. .,Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Tai An, 271018, China.
| | - Shiqi Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai An, 271018, China. .,State Key Laboratory of Crop Biology, Tai An, 271018, China. .,Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Tai An, 271018, China.
| |
Collapse
|
13
|
Li H, Chen X, Wang Y, Yao D, Lin Y, Lai Z. Exploration of the effect of blue light on microRNAs involved in the accumulation of functional metabolites of longan embryonic calli through RNA-sequencing. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1533-1547. [PMID: 30142690 DOI: 10.1002/jsfa.9329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/08/2018] [Accepted: 08/19/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The regulation of functional metabolites under light by structural genes and regulatory genes is understood but the roles of microRNAs in this pathway have rarely been reported and their regulation network is not yet clear. RESULTS Blue light was most conducive to promoting the synthesis of some functional metabolites in longan embryonic callus (ECs). In this study, we sequenced three small RNA libraries of constructed longan ECs under different light qualities (dark, blue, and white). A total of 29 and 22 miRNAs were differentially expressed in the dark versus blue (DB) and dark versus white (DW) combinations, respectively. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, most of the differentially expressed miRNA target genes were involved in plant hormone signal transduction, mitogen-activated protein kinase (MAPK) signaling, biosynthesis of unsaturated fatty acids, and so on. Cytoscape analysis of the target genes of miRNAs indicated that miR396b-5p and miR5139 had the most target genes in DB. Moreover, this study also found that miR171f_3 targeted DELLA, miR390e targeted BRI1, miR396b-5p targeted EBF1/2 and EIN3; these miRNAs participated in the blue light signaling network through their target genes and regulated the accumulation of longan functional metabolites. CONCLUSIONS The results of the study revealed that the expressions of phase-specific miRNAs vary with the change of functional metabolites in longan ECs. This study provides new insights into the molecular mechanisms that allow light to influence plant metabolism. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hansheng Li
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaohui Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yun Wang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Deheng Yao
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
14
|
The Role of UV-B light on Small RNA Activity During Grapevine Berry Development. G3-GENES GENOMES GENETICS 2019; 9:769-787. [PMID: 30647106 PMCID: PMC6404619 DOI: 10.1534/g3.118.200805] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
We explored the effects of ultraviolet B radiation (UV-B) on the developmental dynamics of microRNAs and phased small-interfering-RNA (phasi-RNAs)-producing loci by sequencing small RNAs in vegetative and reproductive organs of grapevine (Vitis vinifera L.). In particular, we tested different UV-B conditions in in vitro-grown plantlets (high-fluence exposition) and in berries from field-grown (radiation filtering) and greenhouse-grown (low- and high-fluence expositions) adult plants throughout fruit development and ripening. The functional significance of the observed UV-coordinated miRNA responses was supported by degradome evidences of ARGONAUTE (AGO)-programmed slicing of mRNAs. Co-expression patterns of the up-regulated miRNAs miR156, miR482, miR530, and miR828 with cognate target gene expressions in response to high-fluence UV-B was tested by q-RT-PCR. The observed UV-response relationships were also interrogated against two published UV-stress and developmental transcriptome datasets. Together, the dynamics observed between miRNAs and targets suggest that changes in target abundance are mediated transcriptionally and, in some cases, modulated post-transcriptionally by miRNAs. Despite the major changes in target abundance are being controlled primarily by those developmental effects that are similar between treatments, we show evidence for novel miRNA-regulatory networks in grape. A model is proposed where high-fluence UV-B increases miR168 and miR530 that target ARGONAUTE 1 (AGO1) and a Plus-3 domain mRNA, respectively, while decreasing miR403 that targets AGO2, thereby coordinating post-transcriptional gene silencing activities by different AGOs. Up-regulation of miR3627/4376 could facilitate anthocyanin accumulation by antagonizing a calcium effector, whereas miR395 and miR399, induced by micronutrient deficiencies known to trigger anthocyanin accumulation, respond positively to UV-B radiation. Finally, increases in the abundance of an anthocyanin-regulatory MYB-bHLH-WD40 complex elucidated in Arabidopsis, mediated by UV-B-induced changes in miR156/miR535, could contribute to the observed up-regulation of miR828. In turn, miR828 would regulate the AtMYB113-ortologues MYBA5, A6 and A7 (and thereby anthocyanins) via a widely conserved and previously validated auto-regulatory loop involving miR828 and phasi TAS4abc RNAs.
Collapse
|
15
|
Cao J, Gulyás Z, Kalapos B, Boldizsár Á, Liu X, Pál M, Yao Y, Galiba G, Kocsy G. Identification of a redox-dependent regulatory network of miRNAs and their targets in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:85-99. [PMID: 30260414 DOI: 10.1093/jxb/ery339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
Reactive oxygen species and antioxidants have an important role in the regulation of plant growth and development under both optimal and stress conditions. In this study, we investigate a possible redox control of miRNAs in wheat (Triticum aestivum ssp. aestivum). Treatment of seedlings with 10 mM H2O2 via the roots for 24 h resulted in decreased glutathione content, increased half-cell reduction potential of the glutathione disulphide/glutathione redox pair, and greater ascorbate peroxidase activity compared to the control plants. These changes were accompanied by alterations in the miRNA transcript profile, with 70 miRNAs being identified with at least 1.5-fold difference in their expression between control and treated (0, 3, 6 h) seedlings. Degradome sequencing identified 86 target genes of these miRNAs, and 6722 possible additional target genes were identified using bioinformatics tools. The H2O2-responsiveness of 1647 target genes over 24 h of treatment was also confirmed by transcriptome analysis, and they were mainly found to be related to the control of redox processes, transcription, and protein phosphorylation and degradation. In a time-course experiment (0-24 h of treatment) a correlation was found between the levels of glutathione, other antioxidants, and the transcript levels of the H2O2-responsive miRNAs and their target mRNAs. This relationship together with bioinformatics modelling of the regulatory network indicated glutathione-related redox control of miRNAs and their targets, which allows the adjustment of the metabolism to changing environmental conditions.
Collapse
Affiliation(s)
- Jie Cao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, China
| | - Zsolt Gulyás
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Balázs Kalapos
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, Deák Ferenc str. 16., Hungary
| | - Ákos Boldizsár
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Xinye Liu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, China
| | - Magda Pál
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, China
| | - Gábor Galiba
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, Deák Ferenc str. 16., Hungary
| | - Gábor Kocsy
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| |
Collapse
|
16
|
Kondhare KR, Malankar NN, Devani RS, Banerjee AK. Genome-wide transcriptome analysis reveals small RNA profiles involved in early stages of stolon-to-tuber transitions in potato under photoperiodic conditions. BMC PLANT BIOLOGY 2018; 18:284. [PMID: 30445921 PMCID: PMC6238349 DOI: 10.1186/s12870-018-1501-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/25/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Small RNAs (sRNAs), especially miRNAs, act as crucial regulators of plant growth and development. Two other sRNA groups, trans-acting short-interfering RNAs (tasiRNAs) or phased siRNAs (phasiRNAs), are also emerging as potential regulators of plant development. Stolon-to-tuber transition in potato is an important developmental phase governed by many environmental, biochemical and hormonal cues. Among different environmental factors, photoperiod has a major influence on tuberization. Several mobile signals, mRNAs, proteins and transcription factors have been widely studied for their role in tuber formation in potato, however, no information is yet available that describes the molecular signals governing the early stages of stolon transitions or cell-fate changes at the stolon tip before it matures to potato. Stolon could be an interesting model for studying below ground organ development and we hypothesize that small RNAs might be involved in regulation of stolon-to-tuber transition process in potato. Also, there is no literature that describes the phased siRNAs in potato development. RESULTS We performed sRNA profiling of early stolon stages (4, 7 and 10 d) under long-day (LD; 16 h light, 8 h dark) and short-day (SD; 8 h light, 16 h dark) photoperiodic conditions. Altogether, 7 (out of 324) conserved and 12 (out of 311) novel miRNAs showed differential expression in early stolon stages under SD vs LD photoperiodic conditions. Key target genes (StGRAS, StTCP2/4 and StPTB6) exhibited differential expression in early stolon stages under SD vs LD photoperiodic conditions, indicative of their potential role in tuberization. Out of 830 TAS-like loci identified, 24 were cleaved by miRNAs to generate 190 phased siRNAs. Some of them targeted crucial tuberization genes such as StPTB1, POTH1 and StCDPKs. Two conserved TAS loci, referred as StTAS3 and StTAS5, which share close conservation with members of the Solanaceae family, were identified in our analysis. One TAS-like locus (StTm2) was validated for phased siRNA generation and one of its siRNA was predicted to cleave an important tuber marker gene StGA2ox1. CONCLUSION Our study suggests that sRNAs and their selective target genes could be associated with the regulation of early stages of stolon-to-tuber transitions in a photoperiod-dependent manner in potato.
Collapse
Affiliation(s)
- Kirtikumar Ramesh Kondhare
- Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune, Maharashtra 411008 India
| | - Nilam Namdeo Malankar
- Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune, Maharashtra 411008 India
| | - Ravi Suresh Devani
- Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune, Maharashtra 411008 India
| | - Anjan Kumar Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune, Maharashtra 411008 India
| |
Collapse
|
17
|
Sánchez-Retuerta C, Suaréz-López P, Henriques R. Under a New Light: Regulation of Light-Dependent Pathways by Non-coding RNAs. FRONTIERS IN PLANT SCIENCE 2018; 9:962. [PMID: 30140270 PMCID: PMC6095000 DOI: 10.3389/fpls.2018.00962] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/14/2018] [Indexed: 05/18/2023]
Abstract
The biological relevance of non-protein coding RNAs in the regulation of critical plant processes has been firmly established in recent years. This has been mostly achieved with the discovery and functional characterization of small non-coding RNAs, such as small interfering RNAs and microRNAs (miRNAs). However, recent next-generation sequencing techniques have widened our view of the non-coding RNA world, which now includes long non-coding RNAs (lncRNAs). Small and lncRNAs seem to diverge in their biogenesis and mode of action, but growing evidence highlights their relevance in developmental processes and in responses to particular environmental conditions. Light can affect MIRNA gene transcription, miRNA biogenesis, and RNA-induced silencing complex (RISC) activity, thus controlling not only miRNA accumulation but also their biological function. In addition, miRNAs can mediate several light-regulated processes. In the lncRNA world, few reports are available, but they already indicate a role in the regulation of photomorphogenesis, cotyledon greening, and photoperiod-regulated flowering. In this review, we will discuss how light controls MIRNA gene expression and the accumulation of their mature forms, with a particular emphasis on those miRNAs that respond to different light qualities and are conserved among species. We will also address the role of small non-coding RNAs, particularly miRNAs, and lncRNAs in the regulation of light-dependent pathways. We will mainly focus on the recent progress done in understanding the interconnection between these non-coding RNAs and photomorphogenesis, circadian clock function, and photoperiod-dependent flowering.
Collapse
Affiliation(s)
| | - Paula Suaréz-López
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Rossana Henriques
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
- *Correspondence: Rossana Henriques,
| |
Collapse
|
18
|
Nie S, Zhang M, Zhang L. Genome-wide identification and expression analysis of calmodulin-like (CML) genes in Chinese cabbage (Brassica rapa L. ssp. pekinensis). BMC Genomics 2017; 18:842. [PMID: 29096605 PMCID: PMC5668983 DOI: 10.1186/s12864-017-4240-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/25/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Calmodulin-like (CML) proteins are a primary family of plant-specific Ca2+ sensors that specifically bind to Ca2+ and deliver a Ca2+ signal. CML proteins have been identified and characterized in many plant species, such as the model plant Arabidopsis and rice. Based on considerable evidence, the roles of CML proteins are crucial in plant growth and development and in the response to various external stimuli. Nevertheless, the characterization and expression profiling of CML genes in Chinese cabbage (Brassica rapa L. ssp. pekinensis) remain limited. RESULTS In this study, a genome-wide search and comprehensive analysis were performed, and a total of 79 BrCML genes were identified in Chinese cabbage. Gene structure analysis revealed that these BrCML genes contained two to four conserved EF-hand motifs. Phylogenetic analysis showed that CML homologs between Chinese cabbage and Arabidopsis shared close relationships. The identified BrCML genes were located across ten chromosomes and three different subgenomes of Chinese cabbage. Moreover, 126 pairs of orthologous CML genes were found among Chinese cabbage, Arabidopsis and Brassica oleracea. Expression analysis revealed that the expression of some BrCML genes was tissue-specific and that of some was susceptible to temperature stress. A putative interaction network of BrCML proteins was proposed, which suggested that BrCML2, BrCML6, BrCML15 and BrCML25 were co-expressed and might play roles in flower development and other relevant biological processes of Chinese cabbage. CONCLUSIONS The results of this study increased the understanding and characterization of BrCML genes in Chinese cabbage, and will be a rich resource for further studies to investigate BrCML protein function in various developmental processes of Chinese cabbage.
Collapse
Affiliation(s)
- Shanshan Nie
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Minjuan Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Lugang Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| |
Collapse
|
19
|
Bai JF, Wang YK, Wang P, Duan WJ, Yuan SH, Sun H, Yuan GL, Ma JX, Wang N, Zhang FT, Zhang LP, Zhao CP. Uncovering Male Fertility Transition Responsive miRNA in a Wheat Photo-Thermosensitive Genic Male Sterile Line by Deep Sequencing and Degradome Analysis. FRONTIERS IN PLANT SCIENCE 2017; 8:1370. [PMID: 28848574 PMCID: PMC5550412 DOI: 10.3389/fpls.2017.01370] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/24/2017] [Indexed: 05/30/2023]
Abstract
MicroRNAs (miRNAs) are endogenous small RNAs which play important negative regulatory roles at both the transcriptional and post-transcriptional levels in plants. Wheat is the most commonly cultivated plant species worldwide. In this study, RNA-seq analysis was used to examine the expression profiles of miRNA in the spikelets of photo-thermosenisitive genic male sterile (PTGMS) wheat line BS366 during male fertility transition. Through mapping on their corresponding precursors, 917-7,762 novel miRNAs were found in six libraries. Six novel miRNAs were selected for examination of their secondary structures and confirmation by stem-loop RT-PCR. In a differential expression analysis, 20, 22, and 58 known miRNAs exhibited significant differential expression between developmental stages 1 (secondary sporogenous cells had formed), 2 (all cells layers were present and mitosis had ceased), and 3 (meiotic division stage), respectively, of fertile and sterile plants. Some of these differential expressed miRNAs, such as tae-miR156, tae-miR164, tae-miR171, and tae-miR172, were shown to be associated with their targets. These targets were previously reported to be related to pollen development and/or male sterility, indicating that these miRNAs and their targets may be involved in the regulation of male fertility transition in the PTGMS wheat line BS366. Furthermore, target genes of miRNA cleavage sites were validated by degradome sequencing. In this study, a possible signal model for the miRNA-mediated signaling pathway during the process of male fertility transition in the PTGMS wheat line BS366 was developed. This study provides a new perspective for understanding the roles of miRNAs in male fertility in PTGMS lines of wheat.
Collapse
Affiliation(s)
- Jian-Fang Bai
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Yu-Kun Wang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Peng Wang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- College of Plant Science and Technology, Beijing University of AgricultureBeijing, China
| | - Wen-Jing Duan
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- College of Life Science, Capital Normal UniversityBeijing, China
| | - Shao-Hua Yuan
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Hui Sun
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Guo-Liang Yuan
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Jing-Xiu Ma
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Na Wang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Feng-Ting Zhang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Li-Ping Zhang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Chang-Ping Zhao
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| |
Collapse
|
20
|
Yang JF, Chen YZ, Kawabata S, Li YH, Wang Y. Identification of Light-Independent Anthocyanin Biosynthesis Mutants Induced by Ethyl Methane Sulfonate in Turnip "Tsuda" (Brassica rapa). Int J Mol Sci 2017. [PMID: 28640193 PMCID: PMC5535824 DOI: 10.3390/ijms18071288] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The epidermis of swollen storage roots in purple cultivars of turnip “Tsuda” (Brassica rapa) accumulates anthocyanin in a light-dependent manner, especially in response to UV-A light, of which the mechanism is unclear. In this study, we mutagenized 15,000 seeds by 0.5% (v/v) ethyl methane sulfonate (EMS) and obtained 14 mutants with abnormal anthocyanin production in their epidermis of swollen storage roots. These mutants were classified into two groups: the red mutants with constitutive anthocyanin accumulation in their epidermis of storage roots even in underground parts in darkness and the white mutants without anthocyanin accumulation in the epidermis of storage roots in aboveground parts exposed to sunlight. Test cross analysis demonstrated that w9, w68, w204, r15, r21, r30 and r57 contained different mutations responsible for their phenotypic variations. Further genetic analysis of four target mutants (w9, w68, w204 and r15) indicated that each of them was controlled by a different recessive gene. Intriguingly, the expression profiles of anthocyanin biosynthesis genes, including structural and regulatory genes, coincided with their anthocyanin levels in the epidermis of storage roots in the four target mutants. We proposed that potential genes responsible for the mutations should be upstream factors of the anthocyanin biosynthesis pathway in turnips, which provided resources to further investigate the mechanisms of light-induced anthocyanin accumulation.
Collapse
Affiliation(s)
- Jian-Fei Yang
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Yun-Zhu Chen
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Saneyuki Kawabata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo Tokyo 113-8654, Japan.
| | - Yu-Hua Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| | - Yu Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
21
|
Ramos-Sánchez JM, Triozzi PM, Moreno-Cortés A, Conde D, Perales M, Allona I. Real-time monitoring of PtaHMGB activity in poplar transactivation assays. PLANT METHODS 2017; 13:50. [PMID: 28638438 PMCID: PMC5472981 DOI: 10.1186/s13007-017-0199-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/08/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Precise control of gene expression is essential to synchronize plant development with the environment. In perennial plants, transcriptional regulation remains poorly understood, mainly due to the long time required to perform functional studies. Transcriptional reporters based on luciferase have been useful to study circadian and diurnal regulation of gene expression, both by transcription factors and chromatin remodelers. The high mobility group proteins are considered transcriptional chaperones that also modify the chromatin architecture. They have been found in several species, presenting in some cases a circadian expression of their mRNA or protein. RESULTS Transactivation experiments have been shown as a powerful and fast method to obtain information about the potential role of transcription factors upon a certain reporter. We designed and validated a luciferase transcriptional reporter using the 5' sequence upstream ATG of Populus tremula × alba LHY2 gene. We showed the robustness of this reporter line under long day and continuous light conditions. Moreover, we confirmed that pPtaLHY2::LUC activity reproduces the accumulation of PtaLHY2 mRNA. We performed transactivation studies by transient expression, using the reporter line as a genetic background, unraveling a new function of a high mobility group protein in poplar, which can activate the PtaLHY2 promoter in a gate-dependent manner. We also showed PtaHMGB2/3 needs darkness to produce that activation and exhibits an active degradation after dawn, mediated by the 26S proteasome. CONCLUSIONS We generated a stable luciferase reporter poplar line based on the circadian clock gene PtaLHY2, which can be used to investigate transcriptional regulation and signal transduction pathway. Using this reporter line as a genetic background, we established a methodology to rapidly assess potential regulators of diurnal and circadian rhythms. This tool allowed us to demonstrate that PtaHMGB2/3 promotes the transcriptional activation of our reporter in a gate-dependent manner. Moreover, we added new information about the PtaHMGB2/3 protein regulation along the day. This methodology can be easily adapted to other transcription factors and reporters.
Collapse
Affiliation(s)
- José M. Ramos-Sánchez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Paolo M. Triozzi
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Alicia Moreno-Cortés
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Daniel Conde
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Mariano Perales
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Isabel Allona
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| |
Collapse
|