1
|
Cai F, Jin X, Han L, Wang X, Shao C, Zhao Y, Mei J, Yu D, Ke L, Sun Y. The Multidrug and toxin compound extrusion gene GhTT12 promotes the accumulation of both proanthocyanidins and anthocyanins in Gossypium hirsutum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109483. [PMID: 39798438 DOI: 10.1016/j.plaphy.2025.109483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/12/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
The pigments present in the fibers of naturally colored cotton provide excellent antibacterial and environmentally friendly properties, making these colored fibers increasingly favored by the textile industry and consumers. Proanthocyanidins (PAs), the critical pigments responsible for the color of brown cotton fiber, are produced on the endoplasmic reticulum and subsequently transported to the vacuole for polymerization and/or storage. Previous studies have identified GhTT12 as a potential transmembrane transporter of PAs in Gossypium hirsutum, with GhTT12 being a homolog of Arabidopsis Transparent Testa 12 (TT12). Here, we analyzed the spatiotemporal expression pattern of GhTT12, silenced and transiently overexpressed GhTT12 in cotton to confirm its biological function. The GhTT12 protein contains two Multidrug and toxic compound extrusion (MATE) domains and 12 transmembrane helices, and the GhTT12 gene displayed predominant expressions in flowers and fibers of cotton that had higher contents of PAs, particularly in brown cotton, suggesting that GhTT12 may play a role in the transport of PAs in cotton. Silencing or transient overexpression of GhTT12 in cotton resulted in decreased or increased accumulation levels of PAs and anthocyanins (Ans), respectively, accompanied by correspondingly down- or up-regulation of genes involved in PAs synthesis (GhANR) and oxidative polymerization (GhTT10). These findings indicate that GhTT12 may also participate in the biosynthesis of PAs and Ans. Moreover, the silencing of GhTT12 led to a lightening of the color of brown cotton fibers, probably due to the reductions in both PAs content and PAs oxidation. Overall, this study, along with previous research, provides compelling evidence to support the hypothesis that GhTT12 transports PAs and Ans while also regulating their biosynthesis and oxidative polymerization, thereby promoting the accumulation of PAs and Ans in cotton and ultimately affecting the fiber coloration.
Collapse
Affiliation(s)
- Fangfang Cai
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Xin Jin
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Linshan Han
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Xiaoli Wang
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Changsheng Shao
- Hangzhou Vocational & Technical College, Hangzhou, 310018, China.
| | - Yanyan Zhao
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Jun Mei
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Dongliang Yu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Liping Ke
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Yuqiang Sun
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Pernecker M, Ciarimboli G. Regulation of renal organic cation transporters. FEBS Lett 2024; 598:2328-2347. [PMID: 38831380 DOI: 10.1002/1873-3468.14943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024]
Abstract
Transporters for organic cations (OCs) facilitate exchange of positively charged molecules through the plasma membrane. Substrates for these transporters encompass neurotransmitters, metabolic byproducts, drugs, and xenobiotics. Consequently, these transporters actively contribute to the regulation of neurotransmission, cellular penetration and elimination process for metabolic products, drugs, and xenobiotics. Therefore, these transporters have significant physiological, pharmacological, and toxicological implications. In cells of renal proximal tubules, the vectorial secretion pathways for OCs involve expression of organic cation transporters (OCTs) and multidrug and toxin extrusion proteins (MATEs) on basolateral and apical membrane domains, respectively. This review provides an overview of documented regulatory mechanisms governing OCTs and MATEs. Additionally, regulation of these transporters under various pathological conditions is summarized. The expression and functionality of OCTs and MATEs are subject to diverse pre- and post-translational modifications, providing insights into their regulation in various pathological conditions. Typically, in diseases, downregulation of transporter expression is observed, probably as a protective mechanism to prevent additional damage to kidney tissue. This regulation may be attributed to the intricate network of modifications these transporters undergo, shedding light on their dynamic responses in pathological contexts.
Collapse
Affiliation(s)
- Moritz Pernecker
- Experimental Nephrology, Department of Internal Medicine D, University Hospital Münster, Germany
| | - Giuliano Ciarimboli
- Experimental Nephrology, Department of Internal Medicine D, University Hospital Münster, Germany
| |
Collapse
|
3
|
Ma S, Guo Y, Zhang T, Liu D, Wang L, Hu R, Zhou D, Zhou Y, Chen Q, Yu L. Comprehensive Identification and Expression Analysis of the Multidrug and Toxic Compound Extrusion (MATE) Gene Family in Brachypodium distachyon. PLANTS (BASEL, SWITZERLAND) 2024; 13:2586. [PMID: 39339561 PMCID: PMC11434668 DOI: 10.3390/plants13182586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
The Multidrug and Toxic Compound Extrusion (MATE) proteins serve as pivotal transporters responsible for the extrusion of metabolites, thereby playing a significant role in both plant development and the detoxification of toxins. The MATE gene family within the Brachypodium distachyon, which is an important model organism of the Poaceae family, remains largely unexplored. Here, a comprehensive identification and analysis of MATE genes that complement B. distachyon were conducted. The BdMATE genes were systematically categorized into five distinct groups, predicated on an assessment of their phylogenetic affinities and protein structure. Furthermore, our investigation revealed that dispersed duplication has significantly contributed to the expansion of the BdMATE genes, with tandem and segmental duplications showing important roles, suggesting that the MATE genes in Poaceae species have embarked on divergent evolutionary trajectories. Examination of ω values demonstrated that BdMATE genes underwent purifying selection throughout the evolutionary process. Furthermore, collinearity analysis has confirmed a high conservation of MATE genes between B. distachyon and rice. The cis-regulatory elements analysis within BdMATEs promoters, coupled with expression patterns, suggests that BdMATEs play important roles during plant development and in response to phytohormones. Collectively, the findings presented establish a foundational basis for the subsequent detailed characterization of the MATE gene family members in B. distachyon.
Collapse
Affiliation(s)
- Sirui Ma
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yixian Guo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Tianyi Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Di Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Linna Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ruiwen Hu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Demian Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ying Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Qinfang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Lujun Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
4
|
Chen SY, Zhang ZS, Zhang ZY, Sun LQ, Fan SJ, Zhang GH, Wu J, Xia JQ, Yu J, Hou SW, Qin P, Li SG, Xiang CB. Loss of OsMATE6 Function Enhances Drought Resistance Without Yield Penalty by Regulating Stomatal Closure in Rice. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39248638 DOI: 10.1111/pce.15133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/29/2024] [Accepted: 08/18/2024] [Indexed: 09/10/2024]
Abstract
Drought is one of the most severe environmental factors limiting plant growth and crop yield, necessitating the identification of genes that enhance drought resistance for crop improvement. Through screening an ethyl methyl sulfonate-mutagenized rice mutant library, we isolated the PEG tolerance mutant 97-1 (ptm97-1), which displays enhanced resistance to osmotic and drought stress, and increased yield under drought conditions. A point mutation in OsMATE6 was identified as being associated with the drought-resistant phenotype of ptm97-1. The role of OsMATE6 in conferring drought resistance was confirmed by additional OsMATE6 knockout mutants. OsMATE6 is expressed in guard cells, shoots and roots and the OsMATE6-GFP fusion protein predominantly localizes to the plasma membrane. Our ABA efflux assays suggest that OsMATE6 functions as an ABA efflux transporter; mutant protoplasts exhibited a slower ABA release rate compared to the wild type. We hypothesize that OsMATE6 regulates ABA levels in guard cells, influencing stomatal closure and enhancing drought resistance. Notably, OsMATE6 knockout mutants demonstrated greater yields under field drought conditions compared to wild-type plants, highlighting OsMATE6 as a promising candidate for improving crop drought resistance.
Collapse
Affiliation(s)
- Si-Yan Chen
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, The Innovation Academy of Seed Design, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Zi-Sheng Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, The Innovation Academy of Seed Design, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Zheng-Yi Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, The Innovation Academy of Seed Design, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Liang-Qi Sun
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, The Innovation Academy of Seed Design, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Shi-Jun Fan
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, The Innovation Academy of Seed Design, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Guo-Hua Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jie Wu
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, The Innovation Academy of Seed Design, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Jin-Qiu Xia
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, The Innovation Academy of Seed Design, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Jing Yu
- School of Life Science, Lanzhou University, Lanzhou, Gansu, China
| | - Sui-Wen Hou
- School of Life Science, Lanzhou University, Lanzhou, Gansu, China
| | - Peng Qin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shi-Gui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Cheng-Bin Xiang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, The Innovation Academy of Seed Design, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
5
|
Amin A, Naim MD, Islam N, Mollah MNH. Genome-wide identification and characterization of DTX family genes highlighting their locations, functions, and regulatory factors in banana (Musa acuminata). PLoS One 2024; 19:e0303065. [PMID: 38843276 PMCID: PMC11156367 DOI: 10.1371/journal.pone.0303065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/19/2024] [Indexed: 06/09/2024] Open
Abstract
The detoxification efflux carriers (DTX) are a significant group of multidrug efflux transporter family members that play diverse functions in all kingdoms of living organisms. However, genome-wide identification and characterization of DTX family transporters have not yet been performed in banana, despite its importance as an economic fruit plant. Therefore, a detailed genome-wide analysis of DTX family transporters in banana (Musa acuminata) was conducted using integrated bioinformatics and systems biology approaches. In this study, a total of 37 DTX transporters were identified in the banana genome and divided into four groups (I, II, III, and IV) based on phylogenetic analysis. The gene structures, as well as their proteins' domains and motifs, were found to be significantly conserved. Gene ontology (GO) annotation revealed that the predicted DTX genes might play a vital role in protecting cells and membrane-bound organelles through detoxification mechanisms and the removal of drug molecules from banana cells. Gene regulatory analyses identified key transcription factors (TFs), cis-acting elements, and post-transcriptional regulators (miRNAs) of DTX genes, suggesting their potential roles in banana. Furthermore, the changes in gene expression levels due to pathogenic infections and non-living factor indicate that banana DTX genes play a role in responses to both biotic and abiotic stresses. The results of this study could serve as valuable tools to improve banana quality by protecting them from a range of environmental stresses.
Collapse
Affiliation(s)
- Al Amin
- Department of Statistics, Bioinformatics Laboratory, Faculty of Science, University of Rajshahi, Rajshahi, Bangladesh
- Department of Zoology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Darun Naim
- Department of Botany, Faculty of Biological Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Nurul Islam
- Department of Zoology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Nurul Haque Mollah
- Department of Statistics, Bioinformatics Laboratory, Faculty of Science, University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
6
|
Ma L, Yuan J, Qin H, Zhang M, Zhang F, Yu F, Tian Z, Wang G. GmMATE100 Is Involved in the Import of Soyasaponins A and B into Vacuoles in Soybean Plants ( Glycine max L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9994-10004. [PMID: 38648468 DOI: 10.1021/acs.jafc.4c01774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Triterpenoid saponins, synthesized via the mevalonic acid (MVA) pathway in the cytoplasm, provide protection against pathogens and pests in plants and health benefits for humans. However, the mechanisms by which triterpenoid saponins are transported between cellular compartments remain uncharacterized. Here, we characterize a tonoplast localized multidrug and toxic compound extrusion transporter, GmMATE100 (encoded by Glyma.18G143700), from soybean (Glycine max L.). GmMATE100 is co-expressed with soyasaponin biosynthetic genes, and its expression was induced by MeJA treatment, which also led to soyasaponin accumulation in soybean roots. GmMATE100 efficiently transports multiple type-B soyasaponins as well as type-A soyasaponins with low affinity from the cytosol to the vacuole in a yeast system. The GmMATE100 loss-of-function mutant showed a significant decrease in type-A and type-B soyasaponin contents in soybean roots. This study not only characterized the first soybean triterpenoid saponin transporter but also provided new knowledge for the rational engineering of soyasaponin content and composition in soybean plants to modulate their levels within crop environments.
Collapse
Affiliation(s)
- Liya Ma
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, People's Republic of China
| | - Jia Yuan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Hao Qin
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Mengxia Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China
| | - Fengxia Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Fang Yu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China
| | - Zhixi Tian
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, People's Republic of China
| | - Guodong Wang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, People's Republic of China
| |
Collapse
|
7
|
Mu Z, Liang Z, Yang J, Wei S, Zhao Y, Zhou H. Identification and analysis of MATE protein family in Gleditsia sinensis. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23249. [PMID: 38621016 DOI: 10.1071/fp23249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
Many studies have shown that multidrug and toxic compound extrusion (MATE) is a new secondary transporter family that plays a key role in secondary metabolite transport, the transport of plant hormones and disease resistance in plants. However, detailed information on this family in Gleditsia sinensis has not yet been reported. In the present study, a total of 45 GsMATE protein members were identified and analysed in detail, including with gene classification, phylogenetic evaluation and conserved motif determination. Phylogenetic analysis showed that GsMATE proteins were divided into six subfamilies. Additionally, in order to understand these members' regulatory roles in growth and development in G. sinensis , the GsMATEs expression profiles in different tissues and different developmental stages of thorn were examined in transcriptome data. The results of this study demonstrated that the expression of all MATE genes varies in roots, stems and leaves. Notably, the expression levels of GsMATE26 , GsMATE32 and GsMATE43 differ most in the early stages of thorn development, peaking at higher levels than in later stages. Our results provide a foundation for further functional characterisation of this important class of transporter family in G. sinensis .
Collapse
Affiliation(s)
- Zisiye Mu
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Zhun Liang
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Jing Yang
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Shixiang Wei
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Yang Zhao
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Heying Zhou
- College of Forestry, Guizhou University, Guiyang 550025, China
| |
Collapse
|
8
|
Shen H, Hou Y, Wang X, Li Y, Wu J, Lou H. Genome-Wide Identification, Expression Analysis under Abiotic Stress and Co-Expression Analysis of MATE Gene Family in Torreya grandis. Int J Mol Sci 2024; 25:3859. [PMID: 38612669 PMCID: PMC11012001 DOI: 10.3390/ijms25073859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
The multidrug and toxin efflux (MATE) family participates in numerous biological processes and plays important roles in abiotic stress responses. However, information about the MATE family genes in Torreya grandis remains unclear. In this study, our genome-wide investigation identified ninety MATE genes in Torreya grandis, which were divided into five evolutionary clades. TgMATE family members are located on eleven chromosomes, and a total of thirty TgMATEs exist in tandem duplication. The promoter analysis showed that most TgMATEs contain the cis-regulatory elements associated with stress and hormonal responses. In addition, we discovered that most TgMATE genes responded to abiotic stresses (aluminum, drought, high temperatures, and low temperatures). Weighted correlation network analysis showed that 147 candidate transcription factor genes regulated the expression of 14 TgMATE genes, and it was verified through a double-luciferase assay. Overall, our findings offer valuable information for the characterization of the TgMATE gene mechanism in responding to abiotic stress and exhibit promising prospects for the stress tolerance breeding of Torreya grandis.
Collapse
Affiliation(s)
| | | | | | | | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (H.S.); (Y.H.); (X.W.); (Y.L.)
| | - Heqiang Lou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (H.S.); (Y.H.); (X.W.); (Y.L.)
| |
Collapse
|
9
|
Gao P, Han R, Xu H, Wei Y, Yu Y. Identification of MATE Family and Characterization of GmMATE13 and GmMATE75 in Soybean's Response to Aluminum Stress. Int J Mol Sci 2024; 25:3711. [PMID: 38612522 PMCID: PMC11011378 DOI: 10.3390/ijms25073711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
The multidrug and toxic compound extrusion (MATE) proteins are coding by a secondary transporter gene family, and have been identified to participate in the modulation of organic acid exudation for aluminum (Al) resistance. The soybean variety Glycine max "Tamba" (TBS) exhibits high Al tolerance. The expression patterns of MATE genes in response to Al stress in TBS and their specific functions in the context of Al stress remain elusive. In this study, 124 MATE genes were identified from the soybean genome. The RNA-Seq results revealed significant upregulation of GmMATE13 and GmMATE75 in TBS upon exposure to high-dose Al3+ treatment and both genes demonstrated sequence homology to citrate transporters of other plants. Subcellular localization showed that both proteins were located in the cell membrane. Transgenic complementation experiments of Arabidopsis mutants, atmate, with GmMATE13 or GmMATE75 genes enhanced the Al tolerance of the plant due to citrate secretion. Taken together, this study identified GmMATE13 and GmMATE75 as citrate transporter genes in TBS, which could improve citrate secretion and enhance Al tolerance. Our findings provide genetic resources for the development of plant varieties that are resistant to Al toxicity.
Collapse
Affiliation(s)
- Pengxiang Gao
- Center for Plant Environmental Sensing, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China;
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Rongrong Han
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (R.H.); (H.X.); (Y.Y.)
| | - Hui Xu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (R.H.); (H.X.); (Y.Y.)
| | - Yunmin Wei
- Center for Plant Environmental Sensing, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China;
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (R.H.); (H.X.); (Y.Y.)
| | - Yongxiong Yu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (R.H.); (H.X.); (Y.Y.)
| |
Collapse
|
10
|
Mathew D, Valsalan R, Shijili M. Genome-wide mining and characterization of MATE transporters in Coriandrum sativum L. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2024; 13:155-164. [PMID: 38915458 PMCID: PMC11194028 DOI: 10.22099/mbrc.2024.49840.1954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Multidrug and Toxic Compound Extrusion (MATE) proteins are responsible for the transport of a wide range of metabolites out of plant cells. This helps to protect the cells from toxins and other harmful compounds. MATE proteins also play a role in plant development, by regulating the transport of hormones and other signalling molecules. They transport a wide variety of substances, including organic acids, plant hormones, flavonoids, alkaloids, terpenes and other secondary metabolites. MATE proteins are thought to play similar roles in Coriander, in addition to stress responses. The MATE genes in the coriander genome have been identified and characterized. Detailed genome homology search and domain identification analysis have identified 91 MATE proteins in the genome assembly of coriander. A phylogenetic analysis of the identified proteins divided them into five major clades. The functions of the transporters in each cluster were predicted based on the clustering pattern of the functionally characterized proteins. The amino acid sequences, exon-intron structures and motif details of all the 91 proteins are identified and described. This is the first work on the MATE transporters in coriander and the results deliver clues for the molecular mechanisms behind the stress responses and secondary metabolite transport in coriander.
Collapse
Affiliation(s)
- Deepu Mathew
- Bioinformatics Centre, Kerala Agricultural University, Thrissur-680 656, India
| | - Ravisankar Valsalan
- Bioinformatics Centre, Kerala Agricultural University, Thrissur-680 656, India
| | - M Shijili
- Bioinformatics Centre, Kerala Agricultural University, Thrissur-680 656, India
| |
Collapse
|
11
|
Zheng Z, Gao J, Wang C, Peng H, Zeng J, Chen F. Genome-wide identification and expression pattern analysis of the MATE gene family in carmine radish (Raphanus sativus L.). Gene 2023; 887:147734. [PMID: 37625557 DOI: 10.1016/j.gene.2023.147734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Carmine radish (Raphanus sativus L.) is famousforcontaininganaturalredpigment(redradishpigment) that grown in Fuling, Chongqing City, China. MATE (multidrug and toxic compound extrusion), as an integral member of the multidrug efflux transporter family, has various functions in plants. However, noinformationhasbeenavailableaboutcharacteristicsoftheMATEgenefamily in carmine radish. In this study, total of 85 candidate MATE gene family members classifiedinto 4 groups were identified and foundtobewidelyandrandomlydistributedindifferent genome. Synteny analysis revealed that twenty-one segmental and ten tandem duplications acted as important regulators for the expansion of RsMATE genes. The Ka/Ks ratios of RsMATE indicated that RsMATE may have undergone intense purification in the radish genome. Cis-acting element analysis of RsMATE in the promoter region indicated that RsMATE were mainly related to the abiotic stress response and phytohormone. Quantitative real-time polymerase chain reaction (qRT-PCR) showed that RsMATE40-b, RsMATE16-b and RsMATE13-a genes were significantly expressed under ABA (abscisic acid) and NaCl stress treatments respectively. In addition, the expression patterns of fifteen key RsMATE genes were investigated in 'XCB' (Xichangbai) and 'HX' (Hongxin) roots under Cadmium (Cd) stress for different treatment times using qRT-PCR, of those, RsMATE49-b, RsMATE33 and RsMATE26 transcripts were strongly altered at different time points in XCB responsive to Cd stress,compared to HX. This study will provide valuable insights for studying the functional characterization of the MATE gene in carmine radish and other plants.
Collapse
Affiliation(s)
- Zhangfei Zheng
- School of Biological and Food Engineering, Chongqing Three Gorges University, WanZhou, 404100 Chongqing, China; School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Fuling, 408100 Chongqing, China
| | - Jian Gao
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Fuling, 408100 Chongqing, China.
| | - Chuanyi Wang
- School of Biological and Food Engineering, Chongqing Three Gorges University, WanZhou, 404100 Chongqing, China; School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Fuling, 408100 Chongqing, China
| | - Hua Peng
- Research Centre for Tourism Agriculture Development, Sichuan Tourism College, Chengdu 610100, Sichuan, China
| | - Jing Zeng
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Fuling, 408100 Chongqing, China
| | - Fabo Chen
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Fuling, 408100 Chongqing, China
| |
Collapse
|
12
|
Zhou C, Lin Q, Ren Y, Lan J, Miao R, Feng M, Wang X, Liu X, Zhang S, Pan T, Wang J, Luo S, Qian J, Luo W, Mou C, Nguyen T, Cheng Z, Zhang X, Lei C, Zhu S, Guo X, Wang J, Zhao Z, Liu S, Jiang L, Wan J. A CYP78As-small grain4-coat protein complex Ⅱ pathway promotes grain size in rice. THE PLANT CELL 2023; 35:4325-4346. [PMID: 37738653 PMCID: PMC10689148 DOI: 10.1093/plcell/koad239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/11/2023] [Accepted: 08/11/2023] [Indexed: 09/24/2023]
Abstract
CYP78A, a cytochrome P450 subfamily that includes rice (Oryza sativa L.) BIG GRAIN2 (BG2, CYP78A13) and Arabidopsis thaliana KLUH (KLU, CYP78A5), generate an unknown mobile growth signal (referred to as a CYP78A-derived signal) that increases grain (seed) size. However, the mechanism by which the CYP78A pathway increases grain size remains elusive. Here, we characterized a rice small grain mutant, small grain4 (smg4), with smaller grains than its wild type due to restricted cell expansion and cell proliferation in spikelet hulls. SMG4 encodes a multidrug and toxic compound extrusion (MATE) transporter. Loss of function of SMG4 causes smaller grains while overexpressing SMG4 results in larger grains. SMG4 is mainly localized to endoplasmic reticulum (ER) exit sites (ERESs) and partially localized to the ER and Golgi. Biochemically, SMG4 interacts with coat protein complex Ⅱ (COPⅡ) components (Sar1, Sec23, and Sec24) and CYP78As (BG2, GRAIN LENGTH 3.2 [GL3.2], and BG2-LIKE 1 [BG2L1]). Genetically, SMG4 acts, at least in part, in a common pathway with Sar1 and CYP78As to regulate grain size. In summary, our findings reveal a CYP78As-SMG4-COPⅡ regulatory pathway for grain size in rice, thus providing new insights into the molecular and genetic regulatory mechanism of grain size.
Collapse
Affiliation(s)
- Chunlei Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qibing Lin
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Lan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Rong Miao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Miao Feng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengzhong Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Tian Pan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiachang Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Sheng Luo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinsheng Qian
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenfan Luo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changling Mou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Thanhliem Nguyen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhijun Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shanshan Zhu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhichao Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shijia Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
13
|
Liu Y, Wu X, Sun C, Chen W, Zhang M, Liu N, Zhang Q, Xu L, Luo Z. Preferential transport activity of DkDTX5/MATE5 affects the formation of different astringency in persimmon. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2304-2319. [PMID: 37526209 DOI: 10.1111/jipb.13550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/07/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023]
Abstract
Proanthocyanidins (PAs) are specialized metabolites that influence persimmon fruit quality. Normal astringent (A)-type and non-astringent (NA)-type mutants show significant variation in PA accumulation, but the influencing mechanism remains unclear. In this study, among the six identified DTXs/MATEs proteins associated with PA accumulation, we observed that allelic variation and preferential transport by DkDTX5/MATE5 induced variation in PA accumulation for A-type and NA-type fruit. The expression pattern of DkDTX5/MATE5 was correlated with PA accumulation in NA-type fruit. Upregulation and downregulation of DkDTX5/MATE5 promoted and inhibited PA accumulation, respectively, in the NA-type fruit. Interestingly, transporter assays of Xenopus laevis oocytes indicated that DkDTX5/MATE5 preferentially transported the PA precursors catechin, epicatechin, and epicatechin gallate, resulting in their increased ratios relative to the total PAs, which was the main source of variation in PA accumulation between the A-type and NA-type. The allele lacking Ser-84 in DkDTX5/MATE5 was identified as a dominantly expressed gene in the A-type and lost its transport function. Site-directed mutagenesis revealed that DkDTX5/MATE5 binds to PA precursors via Ser-84. These findings clarify the association between the transporter function of DkDTX5/MATE5 and PA variation, and can contribute to the breeding of new cultivars with improved fruit quality.
Collapse
Affiliation(s)
- Ying Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chenfeng Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenxing Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Niannian Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinglin Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liqing Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhengrong Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
14
|
Yadav R, Singh G, Santal AR, Singh NP. Omics approaches in effective selection and generation of potential plants for phytoremediation of heavy metal from contaminated resources. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117730. [PMID: 36921476 DOI: 10.1016/j.jenvman.2023.117730] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/27/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Soil and water pollution, rapid industrialization, contaminated irrigation-water, increased waste-production and surge in agricultural land leads to the accumulation of Heavy Metals (HM) with time. HM contamination has raised concern over the past years and new remediation strategies are required to deal with it. HM-contaminated soil is often used for the production of food, which makes a gateway for toxic metals into the food-chain, thereby affecting food security and human health. To avoid HM-toxicity, decontamination of important resources is essential. Therefore, exploring phytoremediation for the removal, decomposition and detoxification of hazardous metals from HM-contaminated sites is of great significance. Hyper-accumulator plants can efficiently remove HMs. However, despite many hyper-accumulator plant species, there is a research gap in the studies of phytotechnology. Hence biotechnological efforts advocating omics studies i.e. genomics, transcriptomics, proteomics, metabolomics and phenomics are in order, the purpose being to select and enhance a plant's potential for the process of phytoremediation to be more effective. There is a need to study newly developed high-efficiency hyper-accumulator plants as HM-decontaminator candidates for phytoremediation and phytomining. Therefore, this review focuses on various strategies and bio-technological methods for the removal of HM contaminants from sites, with emphasis on the advancement of phytoremediation, along with applications in cleaning up various toxic pollutants.
Collapse
Affiliation(s)
- Renu Yadav
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Gagandeep Singh
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Anita Rani Santal
- Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| | - Nater Pal Singh
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
15
|
Saad KR, Kumar G, Puthusseri B, Srinivasa SM, Giridhar P, Shetty NP. Genome-wide identification of MATE, functional analysis and molecular dynamics of DcMATE21 involved in anthocyanin accumulation in Daucus carota. PHYTOCHEMISTRY 2023; 210:113676. [PMID: 37059287 DOI: 10.1016/j.phytochem.2023.113676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Anthocyanins are a subclass of flavonoids that are synthesized in the endoplasmic reticulum and then transported to the vacuole in plants. Multidrug and toxic compound extrusion transporters (MATE) is a family of membrane transporters that transport ions and secondary metabolites, such as anthocyanins, in plants. Although various studies on MATE transporters have been carried out on different plant species, this is the first comprehensive report to mine the Daucus carota genome to identify the MATE gene family. Our study identified 45 DcMATEs through genome-wide analysis and detected five segmental and six tandem duplications from the genome. The chromosome distribution, phylogenetic analysis, and cis-regulatory elements revealed the structural diversity and numerous functions associated with the DcMATEs. In addition, we analyzed RNA-seq data obtained from the European Nucleotide Archive to screen for the expression of DcMATEs involved in anthocyanin biosynthesis. Among the identified DcMATEs, DcMATE21 correlated with anthocyanin content in the different D. carota varieties. In addition, the expression of DcMATE21 and anthocyanin biosynthesis genes was correlated under abscisic acid, methyl jasmonate, sodium nitroprusside, salicylic acid, and phenylalanine treatments, which were substantiated by anthocyanin accumulation in the in vitro cultures. Further molecular membrane dynamics of DcMATE21 with anthocyanin (cyanidin-3-glucoside) identified the binding pocket, showing extensive H-bond interactions with 10 crucial amino acids present in the transmembrane helix of 7, 8, and 10 of DcMATE21. The current investigation, using RNA-seq, in vitro cultures, and molecular dynamics studies revealed the involvement of DcMATE21 in anthocyanin accumulation in vitro cultures of D. carota.
Collapse
Affiliation(s)
- Kirti R Saad
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020, Karnataka, India.
| | - Gyanendra Kumar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020, Karnataka, India.
| | - Bijesh Puthusseri
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020, Karnataka, India.
| | - Sudhanva M Srinivasa
- Faculty of Natural Sciences, Adichunchanagiri University, BG Nagara, 571448, Karnataka, India.
| | - Parvatam Giridhar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020, Karnataka, India.
| | - Nandini P Shetty
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020, Karnataka, India.
| |
Collapse
|
16
|
Shijili M, Valsalan R, Mathew D. Genome wide identification and characterization of MATE family genes in mangrove plants. Genetica 2023:10.1007/s10709-023-00186-w. [PMID: 37014491 DOI: 10.1007/s10709-023-00186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Multidrug and Toxic Compound Extrusion (MATE) proteins are essential transporters that extrude metabolites and participate in plant development and cellular detoxification. MATE transporters, which play crucial roles in the survival of mangrove plants under highly challenged environments, by specialized salt extrusion mechanisms, are mined from their genomes and reported here for the first time. Through homology search and domain prediction in the genome assemblies of Avicennia marina, Bruguiera sexangula, Ceriops zippeliana, Kandelia obovata, Rhizophora apiculata and Ceriops tagal, 74, 68, 66, 66, 63 and 64 MATE proteins, respectively were identified. The phylogenetic analysis divided the identified proteins into five major clusters and following the clustering pattern of the functionally characterized proteins, functions of the transporters in each cluster were predicted. Amino acid sequences, exon-intron structure, motif details and subcellular localization pattern for all the 401 proteins are described. The custom designed repeat masking libraries generated for each of these genomes, which will be of extensive use for the researchers worldwide, are also provided in this paper. This is the first study on the MATE genes in mangroves and the results provide comprehensive information on the molecular mechanisms enabling the survival of mangroves under hostile conditions.
Collapse
Affiliation(s)
- M Shijili
- Bioinformatics Centre, Kerala Agricultural University, Thrissur, 680 656, India
| | - Ravisankar Valsalan
- Bioinformatics Centre, Kerala Agricultural University, Thrissur, 680 656, India
| | - Deepu Mathew
- Bioinformatics Centre, Kerala Agricultural University, Thrissur, 680 656, India.
| |
Collapse
|
17
|
Sun C, Wang Y, Yang X, Tang L, Wan C, Liu J, Chen C, Zhang H, He C, Liu C, Wang Q, Zhang K, Zhang W, Yang B, Li S, Zhu J, Sun Y, Li W, Zhou Y, Wang P, Deng X. MATE transporter GFD1 cooperates with sugar transporters, mediates carbohydrate partitioning and controls grain-filling duration, grain size and number in rice. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:621-634. [PMID: 36495424 PMCID: PMC9946139 DOI: 10.1111/pbi.13976] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/13/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
More than half of the world's food is provided by cereals, as humans obtain >60% of daily calories from grains. Producing more carbohydrates is always the final target of crop cultivation. The carbohydrate partitioning pathway directly affects grain yield, but the molecular mechanisms and biological functions are poorly understood, including rice (Oryza sativa L.), one of the most important food sources. Here, we reported a prolonged grain filling duration mutant 1 (gfd1), exhibiting a long grain-filling duration, less grain number per panicle and bigger grain size without changing grain weight. Map-based cloning and molecular biological analyses revealed that GFD1 encoded a MATE transporter and expressed high in vascular tissues of the stem, spikelet hulls and rachilla, but low in the leaf, controlling carbohydrate partitioning in the stem and grain but not in the leaf. GFD1 protein was partially localized on the plasma membrane and in the Golgi apparatus, and was finally verified to interact with two sugar transporters, OsSWEET4 and OsSUT2. Genetic analyses showed that GFD1 might control grain-filling duration through OsSWEET4, adjust grain size with OsSUT2 and synergistically modulate grain number per panicle with both OsSUT2 and OsSWEET4. Together, our work proved that the three transporters, which are all initially classified in the major facilitator superfamily family, could control starch storage in both the primary sink (grain) and temporary sink (stem), and affect carbohydrate partitioning in the whole plant through physical interaction, giving a new vision of sugar transporter interactome and providing a tool for rice yield improvement.
Collapse
Affiliation(s)
- Changhui Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research InstituteSichuan Agricultural UniversityChengduChina
- College of Agricultural Science, Panxi Crops Research and Utilization Key Laboratory of Sichuan ProvinceXichang UniversityLiangshanChina
| | - Xiaorong Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Lu Tang
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| | - Chunmei Wan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Jiqing Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Congping Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Hongshan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Changcai He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Chuanqiang Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Qian Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Kuan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Wenfeng Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research InstituteSichuan Agricultural UniversityChengduChina
- College of Agricultural Science, Panxi Crops Research and Utilization Key Laboratory of Sichuan ProvinceXichang UniversityLiangshanChina
| | - Bin Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Shuangcheng Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Jun Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yongjian Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yihua Zhou
- College of Agricultural Science, Panxi Crops Research and Utilization Key Laboratory of Sichuan ProvinceXichang UniversityLiangshanChina
| | - Pingrong Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Xiaojian Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research InstituteSichuan Agricultural UniversityChengduChina
| |
Collapse
|
18
|
Luo J, Cai Z, Huang R, Wu Y, Liu C, Huang C, Liu P, Liu G, Dong R. Integrated multi-omics reveals the molecular mechanisms underlying efficient phosphorus use under phosphate deficiency in elephant grass ( Pennisetum purpureum). FRONTIERS IN PLANT SCIENCE 2022; 13:1069191. [PMID: 36618667 PMCID: PMC9817030 DOI: 10.3389/fpls.2022.1069191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Phosphorus (P) is an essential macronutrient element for plant growth, and deficiency of inorganic phosphate (Pi) limits plant growth and yield. Elephant grass (Pennisetum purpureum) is an important fodder crop cultivated widely in tropical and subtropical areas throughout the world. However, the mechanisms underlying efficient P use in elephant grass under Pi deficiency remain poorly understood. In this study, the physiological and molecular responses of elephant grass leaves and roots to Pi deficiency were investigated. The results showed that dry weight, total P concentration, and P content decreased in Pi-deprived plants, but that acid phosphatase activity and P utilization efficiency (PUE) were higher than in Pi-sufficient plants. Regarding Pi starvation-responsive (PSR) genes, transcriptomics showed that 59 unigenes involved in Pi acquisition and transport (especially 18 purple acid phosphatase and 27 phosphate transporter 1 unigenes) and 51 phospholipase unigenes involved in phospholipids degradation or Pi-free lipids biosynthesis, as well as 47 core unigenes involved in the synthesis of phenylpropanoids and flavonoids, were significantly up-regulated by Pi deprivation in leaves or roots. Furthermore, 43 unigenes related to Pi-independent- or inorganic pyrophosphate (PPi)-dependent bypass reactions were markedly up-regulated in Pi-deficient leaves, especially five UDP-glucose pyrophosphorylase and 15 phosphoenolpyruvate carboxylase unigenes. Consistent with PSR unigene expression changes, metabolomics revealed that Pi deficiency significantly increased metabolites of Pi-free lipids, phenylpropanoids, and flavonoids in leaves and roots, but decreased phospholipid metabolites. This study reveals the mechanisms underlying the responses to Pi starvation in elephant grass leaves and roots, which provides candidate unigenes involved in efficient P use and theoretical references for the development of P-efficient elephant grass varieties.
Collapse
Affiliation(s)
- Jiajia Luo
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zeping Cai
- College of Forestry and College of Tropical Crops, Hainan University, Haikou, China
| | - Rui Huang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yuanhang Wu
- College of Forestry and College of Tropical Crops, Hainan University, Haikou, China
| | - Chun Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- College of Forestry and College of Tropical Crops, Hainan University, Haikou, China
| | - Chunqiong Huang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Pandao Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Guodao Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Rongshu Dong
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
19
|
Li X, Jia Y, Sun M, Ji Z, Zhang H, Qiu D, Cai Q, Xia Y, Yuan X, Chen X, Shen Z. MINI BODY1, encoding a MATE/DTX family transporter, affects plant architecture in mungbean ( Vigna radiata L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1064685. [PMID: 36466236 PMCID: PMC9714821 DOI: 10.3389/fpls.2022.1064685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
It has been shown that multidrug and toxic compound extrusion/detoxification (MATE/DTX) family transporters are involved in the regulation of plant development and stress response. Here, we characterized the mini body1 (mib1) mutants in mungbean, which gave rise to increased branches, pentafoliate compound leaves, and shortened pods. Map-based cloning revealed that MIB1 encoded a MATE/DTX family protein in mungbean. qRT-PCR analysis showed that MIB1 was expressed in all tissues of mungbean, with the highest expression level in the young inflorescence. Complementation assays in Escherichia coli revealed that MIB1 potentially acted as a MATE/DTX transporter in mungbean. It was found that overexpression of the MIB1 gene partially rescued the shortened pod phenotype of the Arabidopsis dtx54 mutant. Transcriptomic analysis of the shoot buds and young pods revealed that the expression levels of several genes involved in the phytohormone pathway and developmental regulators were altered in the mib1 mutants. Our results suggested that MIB1 plays a key role in the control of plant architecture establishment in mungbean.
Collapse
Affiliation(s)
- Xin Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yahui Jia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingzhu Sun
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zikun Ji
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Hui Zhang
- National experimental Teaching Center for Plant Production, Nanjing Agricultural University, Nanjing, China
| | - Dan Qiu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qiao Cai
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yan Xia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
20
|
Islam NS, Duwadi K, Chen L, Pajak A, McDowell T, Marsolais F, Dhaubhadel S. Global analysis of common bean multidrug and toxic compound extrusion transporters (PvMATEs): PvMATE8 and pinto bean seed coat darkening. FRONTIERS IN PLANT SCIENCE 2022; 13:1046597. [PMID: 36438155 PMCID: PMC9686396 DOI: 10.3389/fpls.2022.1046597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
In common bean (Phaseolus vulgaris L.), postharvest seed coat darkening is an undesirable trait that affects crop value. The increased accumulation of proanthocyanidins (PAs) in the seed coat results in darker seeds in many market classes of colored beans after harvest. The precursors of PAs are synthesized in the cytoplasm, and subsequently get glycosylated and then transported to the vacuoles where polymerization occurs. Thus, vacuolar transporters play an important role in the accumulation of PAs. Here, we report that common bean genome contains 59 multidrug and toxic compound extrusion genes (PvMATEs). Phylogenetic analysis of putative PvMATEs with functionally characterized MATEs from other plant species categorized them into substrate-specific clades. Our data demonstrate that a vacuolar transporter PvMATE8 is expressed at a higher level in the pinto bean cultivar CDC Pintium (regular darkening) compared to 1533-15 (slow darkening). PvMATE8 localizes in the vacuolar membrane and rescues the PA deficient (tt12) mutant phenotype in Arabidopsis thaliana. Analysis of PA monomers in transgenic seeds together with wild-type and mutants suggests a possible feedback regulation of PA biosynthesis and accumulation. Identification of PvMATE8 will help better understand the mechanism of PA accumulation in common bean.
Collapse
Affiliation(s)
- Nishat S. Islam
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Kishor Duwadi
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Ling Chen
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Aga Pajak
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Tim McDowell
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Frédéric Marsolais
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Sangeeta Dhaubhadel
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
21
|
The Role of Transmembrane Proteins in Plant Growth, Development, and Stress Responses. Int J Mol Sci 2022; 23:ijms232113627. [PMID: 36362412 PMCID: PMC9655316 DOI: 10.3390/ijms232113627] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Transmembrane proteins participate in various physiological activities in plants, including signal transduction, substance transport, and energy conversion. Although more than 20% of gene products are predicted to be transmembrane proteins in the genome era, due to the complexity of transmembrane domains they are difficult to reliably identify in the predicted protein, and they may have different overall three-dimensional structures. Therefore, it is challenging to study their biological function. In this review, we describe the typical structures of transmembrane proteins and their roles in plant growth, development, and stress responses. We propose a model illustrating the roles of transmembrane proteins during plant growth and response to various stresses, which will provide important references for crop breeding.
Collapse
|
22
|
Wang S, Cao X, Meng X, Aili M, Dou Q, Wang Y, Wahab AT, Chen S, Sun W, Wan H, Chen W. Characterization and expression analysis of MATEs in Cannabis sativa L. reveals genes involving in cannabinoid synthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:1021088. [PMID: 36311070 PMCID: PMC9606718 DOI: 10.3389/fpls.2022.1021088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The medicinal plant Cannabis sativa L. (C. sativa) accumulates plant cytotoxic but medicinally important cannabinoids in glandular trichomes and flowers of female plants. Although the major biosynthetic pathway of cannabinoids has been revealed, their transportation mechanism is still unknown. Multidrug and toxic compound extrusion proteins (MATEs) can transport plant metabolites, ions and phytohormones intra and inter-cellularly. MATEs could have the potential to translocate cannabinoids or their synthetic intermediates to cellular compartment, thus protecting them from unwanted modifications and cytotoxicity. In this study, we performed a genome-wide identification and expression analysis of Cannabis sativa MATEs (CsMATEs) and revealed 42 CsMATEs that were classified phylogenetically into four conserved subfamilies. Forty-two CsMATEs were unevenly distributed on 10 chromosomes, with 50% CsMATEs were physically adjacent to at least one another CsMATEs and 83% CsMATEs localized on plasma membrane. Tandem duplication is the major evolutionary driving force for CsMATEs expansion. Real-time quantitative PCR revealed CsMATE23, CsMATE28 and CsMATE34 mainly expressed in flower, whereas CsMATE17 and CsMATE27 showed strong transcription in root. Light responsive cis-acting element was most abundant in promoters of CsMATE23, CsMATE28 and CsMATE34. Finally, the contents of cannabinoids and corresponding biosynthetic intermediates as well as expressions of CsMATE28 and CsMATE34 were determined under UV-B treatment, among which strong correlation was found. Our results indicates that CsMATEs might involve in biosynthesis of cannabinoids and has the potential to be used in heterologous production of cannabinoids.
Collapse
Affiliation(s)
- Sifan Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue Cao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangxiao Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Maimaiti Aili
- Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, China
| | - Qin Dou
- Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, China
| | - Yan Wang
- Hussain Ebrahim Jamal Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Atia Tul Wahab
- Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huihua Wan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weiqiang Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, China
| |
Collapse
|
23
|
Sun M, Sun S, Jia Z, Ma W, Mao C, Ou C, Wang J, Zhang H, Hong L, Li M, Jia S, Mao P. Genome-Wide Analysis and Expression Profiling of Glutathione Reductase Gene Family in Oat ( Avena sativa) Indicate Their Responses to Abiotic Stress during Seed Imbibition. Int J Mol Sci 2022; 23:ijms231911650. [PMID: 36232950 PMCID: PMC9569478 DOI: 10.3390/ijms231911650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/07/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
Abiotic stress disturbs plant cellular redox homeostasis, inhibiting seed germination and plant growth. This is a crucial limitation to crop yield. Glutathione reductase (GR) is an important component of the ascorbate-glutathione (AsA-GSH) cycle which is involved in multiple plant metabolic processes. In the present study, GRs in A. sativa (AsGRs) were selected to explore their molecular characterization, phylogenetic relationship, and RNA expression changes during seed imbibition under abiotic stress. Seven AsGR genes were identified and mapped on six chromosomes of A, C, and D subgenomes. Phylogenetic analysis and subcellular localization of AsGR proteins divided them into two sub-families, AsGR1 and AsGR2, which were predicted to be mainly located in cytoplasm, mitochondrion, and chloroplast. Cis-elements relevant to stress and hormone responses are distributed in promoter regions of AsGRs. Tissue-specific expression profiling showed that AsGR1 genes were highly expressed in roots, leaves, and seeds, while AsGR2 genes were highly expressed in leaves and seeds. Both AsGR1 and AsGR2 genes showed a decreasing-increasing expression trend during seed germination under non-stress conditions. In addition, their responses to drought, salt, cold, copper, H2O2, and ageing treatments were quite different during seed imbibition. Among the seven AsGR genes, AsGR1-A, AsGR1-C, AsGR2-A, and AsGR2-D responded more significantly, especially under drought, ageing, and H2O2 stress. This study has laid the ground for the functional characterization of GR and the improvement of oat stress tolerance and seed vigor.
Collapse
|
24
|
Debnath S, Mohanta D, Perveen K, Husain FM, Kesari KK, Ashraf MS, Mukerjee N, Rahin SA. Structural and Functional Characterization at the Molecular Level of the MATE Gene Family in Wheat in Silico. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:9289007. [PMID: 39281829 PMCID: PMC11401716 DOI: 10.1155/2022/9289007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 09/18/2024]
Abstract
A series of multidrug extransporters known as the multidrug and potentially toxic extrusion (MATE) genes are found in all living things and are crucial for the removal of heavy metal ions, metalloids, exogenous xenobiotics, endogenous secondary metabolites, and other toxic substances from the cells. However, there has only been a small amount of them in silico analysis of the MATE family of genes in plant species. In the current study, the MATE gene family was characterized in silico where two families and seven subfamilies based on their evolutionary relationships were proposed. Plant breeders may use TraesCS1D02G030400, TraesCS4B02G244400, and TraesCS1A02G029900 genes for marker-assisted or transgenic breeding to develop novel cultivars since these genes have been hypothesized from protein-protein interaction study to play a critical role in the transport of toxic chemicals across cells. The exon number varies from 01 to 14. One exon has TraesCS1A02G188100, TraesCS5B02G562500, TraesCS6A02G256400, and TraesCS6D02G384300 genes, while 14 exons have only two genes that are TraesCS6A02G418800 and TraesCS6D02G407900. Biological stress (infestations of disease) affects the expression of most of the MATE genes, with the gene TraesCS5D02G355500 having the highest expression level in the wheat expression browser tool. Using the Grain interpretation search engine tool, it is found that the vast bulk of MATE genes are voiced throughout biotic environmental stresses caused by disease pests, with the genotype TraesCS5B02G326600.1 from family 1 exhibiting the greatest level of expression throughout Fusarium head blight infection by Fusarium graminearum after 4 days of infection. The researchers constructed 39 ternary plots, each with a distinct degree of expression under biotic and abiotic stress settings, and observed that 44% of the triplets have imbalanced outputs (extreme values) due to their higher tissue specificity and increased intensity.
Collapse
Affiliation(s)
- Sandip Debnath
- Department of Genetics and Plant Breeding, Institute of Agriculture, Visva-Bharati University, Sriniketan 731236, West Bengal, India
| | - Deepika Mohanta
- Department of Genetics and Plant Breeding, Institute of Agriculture, Visva-Bharati University, Sriniketan 731236, West Bengal, India
| | - Kahkashan Perveen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh-11495, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, Riyadh 11421, Saudi Arabia
| | - Kavindra Kumar Kesari
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 11000 (Otakaari 1B), Espoo, Finland
| | - Mohd Shaikhul Ashraf
- Department of Botany, HKM Govt. Degree College Bandipora, Bandipora, Kashmir 193505, India
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, West Bengal, Kolkata 700118, India
| | | |
Collapse
|
25
|
Genetic dissection of grain iron and zinc, and thousand kernel weight in wheat (Triticum aestivum L.) using genome-wide association study. Sci Rep 2022; 12:12444. [PMID: 35858934 PMCID: PMC9300641 DOI: 10.1038/s41598-022-15992-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/04/2022] [Indexed: 01/13/2023] Open
Abstract
Genetic biofortification is recognized as a cost-effective and sustainable strategy to reduce micronutrient malnutrition. Genomic regions governing grain iron concentration (GFeC), grain zinc concentration (GZnC), and thousand kernel weight (TKW) were investigated in a set of 280 diverse bread wheat genotypes. The genome-wide association (GWAS) panel was genotyped using 35 K Axiom Array and phenotyped in five environments. The GWAS analysis showed a total of 17 Bonferroni-corrected marker-trait associations (MTAs) in nine chromosomes representing all the three wheat subgenomes. The TKW showed the highest MTAs (7), followed by GZnC (5) and GFeC (5). Furthermore, 14 MTAs were identified with more than 10% phenotypic variation. One stable MTA i.e. AX-95025823 was identified for TKW in both E4 and E5 environments along with pooled data, which is located at 68.9 Mb on 6A chromosome. In silico analysis revealed that the SNPs were located on important putative candidate genes such as Multi antimicrobial extrusion protein, F-box domain, Late embryogenesis abundant protein, LEA-18, Leucine-rich repeat domain superfamily, and C3H4 type zinc finger protein, involved in iron translocation, iron and zinc homeostasis, and grain size modifications. The identified novel MTAs will be validated to estimate their effects in different genetic backgrounds for subsequent use in marker-assisted selection. The identified SNPs will be valuable in the rapid development of biofortified wheat varieties to ameliorate the malnutrition problems.
Collapse
|
26
|
Watanabe M, Otagaki S, Matsumoto S, Shiratake K. Genome-Wide Analysis of Multidrug and Toxic Compound Extruction Transporters in Grape. FRONTIERS IN PLANT SCIENCE 2022; 13:892638. [PMID: 35909729 PMCID: PMC9330396 DOI: 10.3389/fpls.2022.892638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Grape (Vitis vinifera L.) is an important fruit crop in the world. It is used as a table grape and is also used for raisin and wine production. Grape berries accumulate secondary metabolites, such as anthocyanins, tannins, and resveratrol, which are known as functional compounds for human health. Multidrug and toxic compound extrusion transporter (MATEs) transport secondary metabolites. MATEs also transport other solutes, including organic acids, and toxic xenobiotics, depending on cation gradient and play various roles in plants. MATE comprises 300-500 amino acid residues and possesses a MATE domain and 8-12 transmembrane domains. In the present study, 59 MATE genes were identified in the grape genome, and phylogenetic analysis revealed the presence of four groups of grape MATEs (Group 1-4). Their information, such as gene structures, protein motifs, predicted subcellular localizations, and gene IDs of four genome annotations, that is, CRIBI v1, CRIBI v2, Genoscope, and Vcost v3, were annotated. The transport substrates and physiological functions of grape MATEs were estimated based on their homology with the analyzed MATEs in other plant species. Group 1 may transport toxic compounds and alkaloids, Group 2 may transport polyphenolic compounds, Group 3 may transport organic acids, and Group 4 may transport plant hormones related to signal transduction. In addition to the known anthocyanin transporters, VvMATE37 and VvMATE39, a novel anthocyanin transporter, VvMATE38 in Group 2, was suggested as a key transporter for anthocyanin accumulation in grape berry skin. VvMATE46, VvMATE47, and VvMATE49 in Group 3 may contribute to Al3+ detoxification and Fe2+/Fe3+ translocation via organic acid transport. This study provides helpful and fundamental information for grape MATE studies and resolves the confusion of gene IDs in different genome annotations.
Collapse
|
27
|
Nimmy MS, Kumar V, Suthanthiram B, Subbaraya U, Nagar R, Bharadwaj C, Jain PK, Krishnamurthy P. A Systematic Phylogenomic Classification of the Multidrug and Toxic Compound Extrusion Transporter Gene Family in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:774885. [PMID: 35371145 PMCID: PMC8970042 DOI: 10.3389/fpls.2022.774885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Multidrug and toxic compound extrusion (MATE) transporters comprise a multigene family that mediates multiple functions in plants through the efflux of diverse substrates including organic molecules, specialized metabolites, hormones, and xenobiotics. MATE classification based on genome-wide studies remains ambiguous, likely due to a lack of large-scale phylogenomic studies and/or reference sequence datasets. To resolve this, we established a phylogeny of the plant MATE gene family using a comprehensive kingdom-wide phylogenomic analysis of 74 diverse plant species. We identified more than 4,000 MATEs, which were classified into 14 subgroups based on a systematic bioinformatics pipeline using USEARCH, blast+ and synteny network tools. Our classification was performed using a four-step process, whereby MATEs sharing ≥ 60% protein sequence identity with a ≤ 1E-05 threshold at different sequence lengths (either full-length, ≥ 60% length, or ≥ 150 amino acids) or retaining in the similar synteny blocks were assigned to the same subgroup. In this way, we assigned subgroups to 95.8% of the identified MATEs, which we substantiated using synteny network clustering analysis. The subgroups were clustered under four major phylogenetic groups and named according to their clockwise appearance within each group. We then generated a reference sequence dataset, the usefulness of which was demonstrated in the classification of MATEs in additional species not included in the original analysis. Approximately 74% of the plant MATEs exhibited synteny relationships with angiosperm-wide or lineage-, order/family-, and species-specific conservation. Most subgroups evolved independently, and their distinct evolutionary trends were likely associated with the development of functional novelties or the maintenance of conserved functions. Together with the systematic classification and synteny network profiling analyses, we identified all the major evolutionary events experienced by the MATE gene family in plants. We believe that our findings and the reference dataset provide a valuable resource to guide future functional studies aiming to explore the key roles of MATEs in different aspects of plant physiology. Our classification framework can also be readily extendable to other (super) families.
Collapse
Affiliation(s)
| | - Vinod Kumar
- Department of Molecular Biology and Genetic Engineering, Bihar Agricultural University, Bhagalpur, India
| | | | - Uma Subbaraya
- Crop Improvement Division, ICAR–National Research Centre for Banana, Tiruchirappalli, India
| | - Ramawatar Nagar
- ICAR–National Institute for Plant Biotechnology, New Delhi, India
| | | | | | | |
Collapse
|
28
|
Panahabadi R, Ahmadikhah A, McKee LS, Ingvarsson PK, Farrokhi N. Genome-wide association study for lignocellulosic compounds and fermentable sugar in rice straw. THE PLANT GENOME 2022; 15:e20174. [PMID: 34806838 DOI: 10.1002/tpg2.20174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Cellulose and lignin are the two main components of secondary plant cell walls with substantial impact on stalk in the field and on straw during industrial processing. The amount of fermentable sugar that can be accessed is another important parameter affecting various industrial applications. In the present study, genetic variability of rice (Oryza sativa L.) genotypes for cellulose, lignin, and fermentable sugars contents was analyzed in rice straw. A genome-wide association study of 33,484 single nucleotide polymorphisms (SNPs) with a minor allele frequency (MAF) >0.05 was performed. The genome-wide association study identified seven, three, and three genomic regions to be significantly associated with cellulose, lignin, and fermentable sugar contents, respectively. Candidate genes in the associated genomic regions were enzymes mainly involved in cell wall metabolism. Novel SNP markers associated with cellulose were tagged to GH16, peroxidase, GT6, GT8, and CSLD2. For lignin content, Villin protein, OsWAK1/50/52/53, and GH16 were identified. For fermentable sugar content, UTP-glucose-1-phosphate uridylyltransferase, BRASSINOSTEROID INSENSITIVE 1, and receptor-like protein kinase 5 were found. The results of this study should improve our understanding of the genetic basis of the factors that might be involved in biosynthesis, turnover, and modification of major cell wall components and saccharides in rice straw.
Collapse
Affiliation(s)
- Rahele Panahabadi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti Univ., Tehran, Iran
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, 106 91, Sweden
| | | | - Lauren S McKee
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, 106 91, Sweden
- Wallenberg Wood Science Centre, Teknikringen 56-58, Stockholm, 100 44, Sweden
| | - Pär K Ingvarsson
- Linnean Centre for Plant Biology, Dep. of Plant Biology, Swedish Univ. of Agricultural Sciences, Uppsala, Sweden
| | - Naser Farrokhi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti Univ., Tehran, Iran
| |
Collapse
|
29
|
Cheng S, Zhu B, Luo F, Lin X, Sun C, You Y, Yi C, Xu B, Wang J, Lu Y, Hu W. Comparative transcriptome profiles of Schistosoma japonicum larval stages: Implications for parasite biology and host invasion. PLoS Negl Trop Dis 2022; 16:e0009889. [PMID: 35025881 PMCID: PMC8791509 DOI: 10.1371/journal.pntd.0009889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 01/26/2022] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Schistosoma japonicum is prevalent in Asia with a wide mammalian host range, which leads to highly harmful zoonotic parasitic diseases. Most previous transcriptomic studies have been performed on this parasite, but mainly focus on stages inside the mammalian host. Moreover, few larval transcriptomic data are available in public databases. Here we mapped the detailed transcriptome profiles of four S. japonicum larval stages including eggs, miracidia, sporocysts and cercariae, providing a comprehensive development picture outside of the mammalian host. By analyzing the stage-specific/enriched genes, we identified functional genes associated with the biological characteristic at each stage: e.g. we observed enrichment of genes necessary for DNA replication only in sporocysts, while those involved in proteolysis were upregulated in sporocysts and/or cercariae. This data indicated that miracidia might use leishmanolysin and neprilysin to penetrate the snail, while elastase (SjCE2b) and leishmanolysin might contribute to the cercariae invasion. The expression profile of stem cell markers revealed potential germinal cell conversion during larval development. Additionally, our analysis indicated that tandem duplications had driven the expansion of the papain family in S. japonicum. Notably, all the duplicated cathepsin B-like proteases were highly expressed in cercariae. Utilizing our 3rd version of S. japonicum genome, we further characterized the alternative splicing profiles throughout these four stages. Taken together, the present study provides compressive gene expression profiles of S. japonicum larval stages and identifies a set of genes that might be involved in intermediate and definitive host invasion.
Collapse
Affiliation(s)
- Shaoyun Cheng
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Bingkuan Zhu
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Fang Luo
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Xiying Lin
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Chengsong Sun
- Anhui Provincial Institute of Parasitic Diseases, Hefei, China
| | - Yanmin You
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Cun Yi
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Bin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
| | - Jipeng Wang
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Yan Lu
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Wei Hu
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
30
|
Ren Z, Bai F, Xu J, Wang L, Wang X, Zhang Q, Feng C, Niu Q, Zhang L, Song J, Bao F, Liu L, He Y, Ma L, Tian W, Hou C, Li L. A chloride efflux transporter, BIG RICE GRAIN 1, is involved in mediating grain size and salt tolerance in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:2150-2163. [PMID: 34647689 DOI: 10.1101/2021.03.07.434240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/10/2021] [Indexed: 05/18/2023]
Abstract
Grain size is determined by the size and number of cells in the grain. The regulation of grain size is crucial for improving crop yield; however, the genes and molecular mechanisms that control grain size remain elusive. Here, we report that a member of the detoxification efflux carrier /Multidrug and Toxic Compound Extrusion (DTX/MATE) family transporters, BIG RICE GRAIN 1 (BIRG1), negatively influences grain size in rice (Oryza sativa L.). BIRG1 is highly expressed in reproductive organs and roots. In birg1 grain, the outer parenchyma layer cells of spikelet hulls are larger than in wild-type (WT) grains, but the cell number is unaltered. When expressed in Xenopus laevis oocytes, BIRG1 exhibits chloride efflux activity. Consistent with this role of BIRG1, the birg1 mutant shows reduced tolerance to salt stress at a toxic chloride level. Moreover, grains from birg1 plants contain a higher level of chloride than those of WT plants when grown under normal paddy field conditions, and the roots of birg1 accumulate more chloride than those of WT under saline conditions. Collectively, the data suggest that BIRG1 in rice functions as a chloride efflux transporter that is involved in mediating grain size and salt tolerance by controlling chloride homeostasis.
Collapse
Affiliation(s)
- Zhijie Ren
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Fenglin Bai
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Jingwen Xu
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Li Wang
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Xiaohan Wang
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Qian Zhang
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Changxin Feng
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Qi Niu
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Liying Zhang
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Jiali Song
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Fang Bao
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Liangyu Liu
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Yikun He
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Ligeng Ma
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Wang Tian
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Congcong Hou
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Legong Li
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| |
Collapse
|
31
|
Ren Z, Bai F, Xu J, Wang L, Wang X, Zhang Q, Feng C, Niu Q, Zhang L, Song J, Bao F, Liu L, He Y, Ma L, Tian W, Hou C, Li L. A chloride efflux transporter, BIG RICE GRAIN 1, is involved in mediating grain size and salt tolerance in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:2150-2163. [PMID: 34647689 DOI: 10.1111/jipb.13178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Grain size is determined by the size and number of cells in the grain. The regulation of grain size is crucial for improving crop yield; however, the genes and molecular mechanisms that control grain size remain elusive. Here, we report that a member of the detoxification efflux carrier /Multidrug and Toxic Compound Extrusion (DTX/MATE) family transporters, BIG RICE GRAIN 1 (BIRG1), negatively influences grain size in rice (Oryza sativa L.). BIRG1 is highly expressed in reproductive organs and roots. In birg1 grain, the outer parenchyma layer cells of spikelet hulls are larger than in wild-type (WT) grains, but the cell number is unaltered. When expressed in Xenopus laevis oocytes, BIRG1 exhibits chloride efflux activity. Consistent with this role of BIRG1, the birg1 mutant shows reduced tolerance to salt stress at a toxic chloride level. Moreover, grains from birg1 plants contain a higher level of chloride than those of WT plants when grown under normal paddy field conditions, and the roots of birg1 accumulate more chloride than those of WT under saline conditions. Collectively, the data suggest that BIRG1 in rice functions as a chloride efflux transporter that is involved in mediating grain size and salt tolerance by controlling chloride homeostasis.
Collapse
Affiliation(s)
- Zhijie Ren
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Fenglin Bai
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Jingwen Xu
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Li Wang
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Xiaohan Wang
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Qian Zhang
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Changxin Feng
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Qi Niu
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Liying Zhang
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Jiali Song
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Fang Bao
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Liangyu Liu
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Yikun He
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Ligeng Ma
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Wang Tian
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Congcong Hou
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Legong Li
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| |
Collapse
|
32
|
Manzoor MA, Li G, Abdullah M, Han W, Wenlong H, Yang Z, Xinya W, Yu Z, Xiaofeng F, Qing J, Shafique MS, Cai Y. Genome-wide investigation and comparative analysis of MATE gene family in Rosaceae species and their regulatory role in abiotic stress responses in Chinese pear (Pyrus bretschneideri). PHYSIOLOGIA PLANTARUM 2021; 173:1163-1178. [PMID: 34363225 DOI: 10.1111/ppl.13511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/18/2021] [Accepted: 07/21/2021] [Indexed: 05/12/2023]
Abstract
The Multidrug and Toxic Compound Extrusion (MATE) protein belongs to a secondary transporter gene family, which plays a primary role in transporting many kinds of substrates such as organic compounds, secondary metabolites, and phytohormones. MATE protein members exist in both prokaryotes and eukaryotes. However, evolution and comprehensive analysis of the MATE genes has not been performed in Rosaceae species. In the present study, a total of 404 MATEs genes were identified from six Rosaceae genomes (Prunus avium, Pyrus bretschneideri, Prunus persica, Fragaria vesca, Prunus mume, and Malus domestica) and classified into eight main subfamilies (I-VII) based on structural and phylogenetic analysis. Microcollinearity analysis showed that whole-genome duplication events might play a vital role in the expansion of the MATE genes family. The Ka/Ks analysis, chromosomal localization, subcellular localization, and molecular characteristics (length, weight, and pI) were performed using various bioinformatics tools. Furthermore, different subfamilies have different introns-exons structures, cis-acting elements, and conserved motifs analysis, indicating functional divergence in the MATE family. Subsequently, RNA-seq analysis and real-time qRT-PCR were conducted during Chinese pear fruit development. Moreover, PbMATE genes were significantly expressed under hormonal treatments of MeJA (methyl jasmonate), SA (salicylic acid), and ABA (abscisic acid). Overall, our results provide helpful insights into the functions, expansion complexity, and evolutions of the MATE genes in Chinese pear and five Rosaceae species.
Collapse
Affiliation(s)
| | - Guohui Li
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Muhammad Abdullah
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Wang Han
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Han Wenlong
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Zhang Yang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Wang Xinya
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Zhao Yu
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Feng Xiaofeng
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Jin Qing
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | | | - Yongping Cai
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
33
|
Nogia P, Pati PK. Plant Secondary Metabolite Transporters: Diversity, Functionality, and Their Modulation. FRONTIERS IN PLANT SCIENCE 2021; 12:758202. [PMID: 34777438 PMCID: PMC8580416 DOI: 10.3389/fpls.2021.758202] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/01/2021] [Indexed: 05/04/2023]
Abstract
Secondary metabolites (SMs) play crucial roles in the vital functioning of plants such as growth, development, defense, and survival via their transportation and accumulation at the required site. However, unlike primary metabolites, the transport mechanisms of SMs are not yet well explored. There exists a huge gap between the abundant presence of SM transporters, their identification, and functional characterization. A better understanding of plant SM transporters will surely be a step forward to fulfill the steeply increasing demand for bioactive compounds for the formulation of herbal medicines. Thus, the engineering of transporters by modulating their expression is emerging as the most viable option to achieve the long-term goal of systemic metabolic engineering for enhanced metabolite production at minimum cost. In this review article, we are updating the understanding of recent advancements in the field of plant SM transporters, particularly those discovered in the past two decades. Herein, we provide notable insights about various types of fully or partially characterized transporters from the ABC, MATE, PUP, and NPF families including their diverse functionalities, structural information, potential approaches for their identification and characterization, several regulatory parameters, and their modulation. A novel perspective to the concept of "Transporter Engineering" has also been unveiled by highlighting its potential applications particularly in plant stress (biotic and abiotic) tolerance, SM accumulation, and removal of anti-nutritional compounds, which will be of great value for the crop improvement program. The present study creates a roadmap for easy identification and a better understanding of various transporters, which can be utilized as suitable targets for transporter engineering in future research.
Collapse
Affiliation(s)
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
34
|
Zhang W, Liao L, Xu J, Han Y, Li L. Genome-wide identification, characterization and expression analysis of MATE family genes in apple (Malus × domestica Borkh). BMC Genomics 2021; 22:632. [PMID: 34461821 PMCID: PMC8406601 DOI: 10.1186/s12864-021-07943-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As an important group of the multidrug efflux transporter family, the multidrug and toxic compound extrusion (MATE) family has a wide range of functions and is distributed in all kingdoms of living organisms. However, only two MATE genes in apple have been analyzed and genome-wide comprehensive analysis of MATE family is needed. RESULTS In this study, a total of 66 MATE (MdMATE) candidates encoding putative MATE transporters were identified in the apple genome. These MdMATE genes were classified into four groups by phylogenetic analysis with MATE genes in Arabidopsis. Synteny analysis reveals that whole genome duplication (WGD) and segmental duplication events played a major role in the expansion of MATE gene family in apple. MdMATE genes show diverse expression patterns in different tissues/organs and developmental stages. Analysis of cis-regulatory elements in MdMATE promoter regions indicates that the function of MdMATE genes is mainly related to stress response. Besides, the changes of gene expression levels upon different pathogen infections reveal that MdMATE genes are involved in biotic stress response. CONCLUSIONS In this work, we systematically identified MdMATE genes in apple genome using a set of bioinformatics approaches. Our comprehensive analysis provided valuable resources for improving disease resistance in apple and further functional characterization of MATE genes in other species.
Collapse
Affiliation(s)
- Weihan Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Liao Liao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
| | - Jinsheng Xu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
| | - Li Li
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China. .,Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
35
|
Du Z, Su Q, Wu Z, Huang Z, Bao J, Li J, Tu H, Zeng C, Fu J, He H. Genome-wide characterization of MATE gene family and expression profiles in response to abiotic stresses in rice (Oryza sativa). BMC Ecol Evol 2021; 21:141. [PMID: 34243710 PMCID: PMC8268253 DOI: 10.1186/s12862-021-01873-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/29/2021] [Indexed: 01/09/2023] Open
Abstract
Multidrug and toxic compound extrusion (MATE) proteins are involved in many physiological functions of plant growth and development. Although an increasing number of MATE proteins have been identified, the understanding of MATE proteins is still very limited in rice. In this study, 46 MATE proteins were identified from the rice (Oryza sativa) genome by homology searches and domain prediction. The rice MATE family was divided into four subfamilies based on the phylogenetic tree. Tandem repeats and fragment replication contribute to the expansion of the rice MATE gene family. Gene structure and cis-regulatory elements reveal the potential functions of MATE genes. Analysis of gene expression showed that most of MATE genes were constitutively expressed and the expression patterns of genes in different tissues were analyzed using RNA-seq. Furthermore, qRT-PCR-based analysis showed differential expression patterns in response to salt and drought stress. The analysis results of this study provide comprehensive information on the MATE gene family in rice and will aid in understanding the functional divergence of MATE genes.
Collapse
Affiliation(s)
- Zhixuan Du
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qitao Su
- School of Life Sciences, Jinggangshan University, Ji'an, 343009, China
| | - Zheng Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhou Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jianzhong Bao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jianbin Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Hang Tu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chuihai Zeng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Junru Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
36
|
Ali S, Tyagi A, Bae H. Ionomic Approaches for Discovery of Novel Stress-Resilient Genes in Plants. Int J Mol Sci 2021; 22:7182. [PMID: 34281232 PMCID: PMC8267685 DOI: 10.3390/ijms22137182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 01/03/2023] Open
Abstract
Plants, being sessile, face an array of biotic and abiotic stresses in their lifespan that endanger their survival. Hence, optimized uptake of mineral nutrients creates potential new routes for enhancing plant health and stress resilience. Recently, minerals (both essential and non-essential) have been identified as key players in plant stress biology, owing to their multifaceted functions. However, a realistic understanding of the relationship between different ions and stresses is lacking. In this context, ionomics will provide new platforms for not only understanding the function of the plant ionome during stresses but also identifying the genes and regulatory pathways related to mineral accumulation, transportation, and involvement in different molecular mechanisms under normal or stress conditions. This article provides a general overview of ionomics and the integration of high-throughput ionomic approaches with other "omics" tools. Integrated omics analysis is highly suitable for identification of the genes for various traits that confer biotic and abiotic stress tolerance. Moreover, ionomics advances being used to identify loci using qualitative trait loci and genome-wide association analysis of element uptake and transport within plant tissues, as well as genetic variation within species, are discussed. Furthermore, recent developments in ionomics for the discovery of stress-tolerant genes in plants have also been addressed; these can be used to produce more robust crops with a high nutritional value for sustainable agriculture.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea;
| | - Anshika Tyagi
- National Institute for Plant Biotechnology, New Delhi 110012, India;
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea;
| |
Collapse
|
37
|
Velázquez-Márquez S, De-la-Cruz IM, Tapia-López R, Núñez-Farfán J. Tropane alkaloids and terpenes synthase genes of Datura stramonium (Solanaceae). PeerJ 2021; 9:e11466. [PMID: 34178440 PMCID: PMC8212831 DOI: 10.7717/peerj.11466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Background Plants have evolved physical–chemical defense to prevent/diminish damage by their enemies. Chemical defense involves the synthesis’ pathways of specialized toxic, repellent, or anti-nutritive metabolites to herbivores. Molecular evolutionary studies have revealed the origin of new genes, acquisition and functional diversification along time in different plant lineages. Methods Using bioinformatic tools we analyze gene divergence of tropane alkaloids (TAs) and terpene synthases (TPSs) in Datura stramonium and other species of Solanaceae; compared gene and amino acids sequence of TAs and TPSs on genomes, cDNA and proteins sequences of Viridiplantae. We analyzed two recently assembled genomes of D. stramonium (Ticumán and Teotihuacán), transcriptomes of Datura metel and genomes of other Solanaceae. Hence, we analyzed variation of TAs and TPSs to infer genes involved in plant defense and plant responses before stress. We analyzed protein modeling and molecular docking to predict interactions between H6H and ligand; we translated the sequences (Teo19488, Tic8550 and Tic8549) obtained from the two genomes of D. stramonium by using Swiss-Model and Ramachandran plot and MolProbity structure validation of Teo19488 protein model. Results For TAs, we detected an expansion event in the tropinone reductase II (TRII) and the ratio synonymous/non-synonymous substitutions indicate positive selection. In contrast, a contraction event and negative selection was detected in tropinone reductase I (TRI). In Hy-oscyamine 6 b-hydroxylase (H6H), enzyme involved in the production of tropane alkaloids atropine and scopolamine, the synonymous/non-synonymous substitution ratio in its dominion indicates positive selection. For terpenes (TPS), we found 18 DsTPS in D. stramomiun and seven in D. metel; evolutionary analyses detected positive selection in TPS10.1 and TPS10.2 of D. stramonium and D. metel. Comparison of copies of TPSs in D. stramonium detected variation among them in the binding site. Duplication events and differentiation of TAs and TPSs of D. stramonium, as compared to other Solanaceae, suggest their possible involvement on adaptive evolution of defense to herbivores. Protein modeling and docking show that the three protein structures obtained of DsH6H from Teo19488, Tic-8550 and Tic8549 maintain the same interactions and the union site of 2OG-FeII_Oxy with the Hy-o ligand as in 6TTM of D. metel. Conclusion Our results indicate differences in the number of gene copies involved in the synthesis of tropane alkaloids, between the genomes of D. stramonium from two Mexican populations. More copies of genes related to the synthesis of tropane alkaloids (TRI, TRII, H6H, PMT) are found in D. stramonium as compared to Viridiplantae. Likewise, for terpene synthases (TPS), TPS-10 is duplicated in D. stramonium and D. metel. Further studies should be directed to experimentally assess gain (overexpression) or loss (silencing) of function of duplicated genes.
Collapse
Affiliation(s)
- Sabina Velázquez-Márquez
- Laboratorio de Genética Ecológica y Evolución, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, DF, Mexico
| | - Iván M De-la-Cruz
- Laboratorio de Genética Ecológica y Evolución, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, DF, Mexico
| | - Rosalinda Tapia-López
- Laboratorio de Genética Ecológica y Evolución, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, DF, Mexico
| | - Juan Núñez-Farfán
- Laboratorio de Genética Ecológica y Evolución, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, DF, Mexico
| |
Collapse
|
38
|
Huang Y, He G, Tian W, Li D, Meng L, Wu D, He T. Genome-Wide Identification of MATE Gene Family in Potato ( Solanum tuberosum L.) and Expression Analysis in Heavy Metal Stress. Front Genet 2021; 12:650500. [PMID: 34127928 PMCID: PMC8196238 DOI: 10.3389/fgene.2021.650500] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/08/2021] [Indexed: 01/16/2023] Open
Abstract
A genome-wide identification and expression analysis of multidrug and toxic compound extrusion (MATE) gene family in potato was carried out to explore the response of MATE proteins to heavy meta stress. In this study, we identified 64 MATE genes from potato genome, which are located on 12 chromosomes, and are divided into I–IV subfamilies based on phylogenetic analysis. According to their order of appearance on the chromosomes, they were named from StMATE1–64. Subcellular location prediction showed that 98% of them are located on the plasma membrane as transporters. Synteny analysis showed that five pairs of collinearity gene pairs belonged to members of subfamily I and subfamily II had two pairs indicating that the duplication is of great significance to the evolution of genes in subfamilies I and II. Gene exon–intron structures and motif composition are more similar in the same subfamily. Every StMATE gene contained at least one cis-acting element associated with regulation of hormone transport. The relative expression levels of eight StMATE genes were significantly upregulated under Cu2+ stress compared with the non-stress condition (0 h). After Cd2+ stress for 24 h, the expression levels of StMATE33 in leaf tissue were significantly increased, indicating its crucial role in the process of Cd2+ stress. Additionally, StMATE18/60/40/33/5 were significantly induced by Cu2+ stress, while StMATE59 (II) was significantly induced by Ni2+ stress. Our study initially explores the biological functions of StMATE genes in the regulation of heavy metal stress, further providing a theoretical basis for studying the subsequent molecular mechanisms in detail.
Collapse
Affiliation(s)
- Yun Huang
- College of Agricultural, Guizhou University, Guiyang, China
| | - Guandi He
- Institute of Agro-Bioengineering, Guizhou University, Guiyang, China.,Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Life Sciences, Guizhou University, Guiyang, China
| | - Weijun Tian
- College of Agricultural, Guizhou University, Guiyang, China
| | - Dandan Li
- College of Agricultural, Guizhou University, Guiyang, China
| | - Lulu Meng
- College of Agricultural, Guizhou University, Guiyang, China
| | - Danxia Wu
- College of Agricultural, Guizhou University, Guiyang, China
| | - Tengbing He
- College of Agricultural, Guizhou University, Guiyang, China.,Institute of New Rural Development, Guizhou University, Guiyang, China
| |
Collapse
|
39
|
Mackon E, Ma Y, Jeazet Dongho Epse Mackon GC, Usman B, Zhao Y, Li Q, Liu P. Computational and Transcriptomic Analysis Unraveled OsMATE34 as a Putative Anthocyanin Transporter in Black Rice ( Oryza sativa L.) Caryopsis. Genes (Basel) 2021; 12:583. [PMID: 33923742 PMCID: PMC8073145 DOI: 10.3390/genes12040583] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
Anthocyanin is a flavonoid compound with potential antioxidant properties beneficial to human health and sustains plant growth and development under different environmental stresses. In black rice, anthocyanin can be found in the stems, leaves, stigmas, and caryopsis. Although the anthocyanin biosynthesis in rice has been extensively studied, limited knowledge underlying the storage mechanism and transporters is available. This study undertook the complementation of computational and transcriptome analysis to decipher a potential multidrug and toxic compound extrusion (MATE) gene candidate for anthocyanin transportation in black rice caryopsis. The phylogenetic analysis showed that OsMATE34 has the same evolutionary history and high similarities with VvAM1, VvAM3, MtMATE2, SlMATE/MTP77, RsMATE8, AtFFT, and AtTT12 involved in anthocyanin transportation. RNA sequencing analysis in black caryopsis (Bc; Bc11, Bc18, Bc25) and white caryopsis (Wc; Wc11, Wc18, Wc25), respectively, at 11 days after flowering (DAF), 18 DAF, and 25 DAF revealed a total of 36,079 expressed genes, including 33,157 known genes and 2922 new genes. The differentially expressed genes (DEGs) showed 15,573 genes commonly expressed, with 1804 and 1412 genes uniquely expressed in Bc and Wc, respectively. Pairwise comparisons showed 821 uniquely expressed genes out of 15,272 DEGs for Wc11 vs. Bc11, 201 uniquely expressed genes out of 16,240 DEGs for Wc18 vs. Bc18, and 2263 uniquely expressed genes out of 16,240 DEGs for Wc25 vs. Bc25. Along with anthocyanin biosynthesis genes (OsPAL, OsCHS, OsCHI, OsF3H, OsDFR, OsANS, and OsUFGT/Os3GT), OsMATE34 expression was significantly upregulated in all Bc but not in Wc. OsMATE34 expression was similar to OsGSTU34, a transporter of anthocyanin in rice leaves. Taken together, our results highlighted OsMATE34 (Os08g0562800) as a candidate anthocyanin transporter in rice caryopsis. This study provides a new finding and a clue to enhance the accumulation of anthocyanin in rice caryopsis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Piqing Liu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530005, China; (E.M.); (Y.M.); (G.C.J.D.E.M.); (B.U.); (Y.Z.); (Q.L.)
| |
Collapse
|
40
|
Ali E, Saand MA, Khan AR, Shah JM, Feng S, Ming C, Sun P. Genome-wide identification and expression analysis of detoxification efflux carriers (DTX) genes family under abiotic stresses in flax. PHYSIOLOGIA PLANTARUM 2021; 171:483-501. [PMID: 32270877 DOI: 10.1111/ppl.13105] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 05/19/2023]
Abstract
The detoxification efflux carriers (DTX)/multidrug and toxic compound extrusion (MATE) transporters encompass an ancient gene family of secondary transporters involved in the process of plant detoxification. A genome-wide analysis of these transporters was carried out in order to better understand the transport of secondary metabolites in flaxseed genome (Linum usitassimum). A total of 73 genes coding for DTX/MATE transporters were identified. Gene structure, protein domain and motif organization were found to be notably conserved over the distinct phylogenetic groups, showing the evolutionary significant role of each class. Gene ontology (GO) annotation revealed a link to transporter activities, response to stimulus and localizations. The presence of various hormone and stress-responsive cis-regulatory elements in promoter regions could be directly correlated with the alteration of their transcripts. Tertiary structure showed conservation for pore size and constrains in the pore, which indicate their involvement in the exclusion of toxic substances from the cell. MicroRNA target analysis revealed that LuDTXs genes were targeted by different classes of miRNA families. Twelve LuDTX genes were chosen for further quantitative real-time polymerase chain reaction analysis in response to cold, salinity and cadmium stress at 0, 6, 12 and 24 hours after treatment. Altogether, the identified members of the DTX gene family, their expression profile, phylogenetic and miRNAs analysis might provide opportunities for future functional validation of this important gene family in flax.
Collapse
Affiliation(s)
- Essa Ali
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, 310014, China
| | - Mumtaz Ali Saand
- Department of Botany, Shah Abdul Latif University, Sindh, 66020, Pakistan
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China
| | - Ali Raza Khan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | | | - Simin Feng
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, 310014, China
| | - Cai Ming
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, 310014, China
| | - Peilong Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, 310014, China
| |
Collapse
|
41
|
Identification and Expression of the Multidrug and Toxic Compound Extrusion (MATE) Gene Family in Capsicum annuum and Solanum tuberosum. PLANTS 2020; 9:plants9111448. [PMID: 33120967 PMCID: PMC7716203 DOI: 10.3390/plants9111448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
Multidrug and Toxic Compound Extrusion (MATE) proteins are essential transporters that extrude metabolites and participate in plant development and the detoxification of toxins. Little is known about the MATE gene family in the Solanaceae, which includes species that produce a broad range of specialized metabolites. Here, we identified and analyzed the complement of MATE genes in pepper (Capsicum annuum) and potato (Solanum tuberosum). We classified all MATE genes into five groups based on their phylogenetic relationships and their gene and protein structures. Moreover, we discovered that tandem duplication contributed significantly to the expansion of the pepper MATE family, while both tandem and segmental duplications contributed to the expansion of the potato MATE family, indicating that MATEs took distinct evolutionary paths in these two Solanaceous species. Analysis of ω values showed that all potato and pepper MATE genes experienced purifying selection during evolution. In addition, collinearity analysis showed that MATE genes were highly conserved between pepper and potato. Analysis of cis-elements in MATE promoters and MATE expression patterns revealed that MATE proteins likely function in many stages of plant development, especially during fruit ripening, and when exposed to multiple stresses, consistent with the existence of functional differentiation between duplicated MATE genes. Together, our results lay the foundation for further characterization of pepper and potato MATE gene family members.
Collapse
|
42
|
Habermann K, Tiwari B, Krantz M, Adler SO, Klipp E, Arif MA, Frank W. Identification of small non-coding RNAs responsive to GUN1 and GUN5 related retrograde signals in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:138-155. [PMID: 32639635 DOI: 10.1111/tpj.14912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 05/03/2023]
Abstract
Chloroplast perturbations activate retrograde signalling pathways, causing dynamic changes of gene expression. Besides transcriptional control of gene expression, different classes of small non-coding RNAs (sRNAs) act in gene expression control, but comprehensive analyses regarding their role in retrograde signalling are lacking. We performed sRNA profiling in response to norflurazon (NF), which provokes retrograde signals, in Arabidopsis thaliana wild type (WT) and the two retrograde signalling mutants gun1 and gun5. The RNA samples were also used for mRNA and long non-coding RNA profiling to link altered sRNA levels to changes in the expression of their cognate target RNAs. We identified 122 sRNAs from all known sRNA classes that were responsive to NF in the WT. Strikingly, 142 and 213 sRNAs were found to be differentially regulated in both mutants, indicating a retrograde control of these sRNAs. Concomitant with the changes in sRNA expression, we detected about 1500 differentially expressed mRNAs in the NF-treated WT and around 900 and 1400 mRNAs that were differentially regulated in the gun1 and gun5 mutants, with a high proportion (~30%) of genes encoding plastid proteins. Furthermore, around 20% of predicted miRNA targets code for plastid-localised proteins. Among the sRNA-target pairs, we identified pairs with an anticorrelated expression as well pairs showing other expressional relations, pointing to a role of sRNAs in balancing transcriptional changes upon retrograde signals. Based on the comprehensive changes in sRNA expression, we assume a considerable impact of sRNAs in retrograde-dependent transcriptional changes to adjust plastidic and nuclear gene expression.
Collapse
Affiliation(s)
- Kristin Habermann
- Plant Molecular Cell Biology, Department Biology I, Ludwig-Maximilians-Universität München, LMU Biocenter, Planegg-Martinsried, 82152, Germany
| | - Bhavika Tiwari
- Plant Molecular Cell Biology, Department Biology I, Ludwig-Maximilians-Universität München, LMU Biocenter, Planegg-Martinsried, 82152, Germany
| | - Maria Krantz
- Department Biologie, Bereich Theoretische Biophysik, Humboldt-Universität Berlin, Berlin, 10115, Germany
| | - Stephan O Adler
- Department Biologie, Bereich Theoretische Biophysik, Humboldt-Universität Berlin, Berlin, 10115, Germany
| | - Edda Klipp
- Department Biologie, Bereich Theoretische Biophysik, Humboldt-Universität Berlin, Berlin, 10115, Germany
| | - M Asif Arif
- Plant Molecular Cell Biology, Department Biology I, Ludwig-Maximilians-Universität München, LMU Biocenter, Planegg-Martinsried, 82152, Germany
| | - Wolfgang Frank
- Plant Molecular Cell Biology, Department Biology I, Ludwig-Maximilians-Universität München, LMU Biocenter, Planegg-Martinsried, 82152, Germany
| |
Collapse
|
43
|
|
44
|
Qiao C, Yang J, Wan Y, Xiang S, Guan M, Du H, Tang Z, Lu K, Li J, Qu C. A Genome-Wide Survey of MATE Transporters in Brassicaceae and Unveiling Their Expression Profiles under Abiotic Stress in Rapeseed. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1072. [PMID: 32825473 PMCID: PMC7569899 DOI: 10.3390/plants9091072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 01/22/2023]
Abstract
The multidrug and toxic compound extrusion (MATE) protein family is important in the export of toxins and other substrates, but detailed information on this family in the Brassicaceae has not yet been reported compared to Arabidopsis thaliana. In this study, we identified 57, 124, 81, 85, 130, and 79 MATE genes in A. thaliana, Brassica napus, Brassica oleracea, Brassica rapa, Brassica juncea, and Brassica nigra, respectively, which were unevenly distributed on chromosomes owing to both tandem and segmental duplication events. Phylogenetic analysis showed that these genes could be classified into four subgroups, shared high similarity and conservation within each group, and have evolved mainly through purifying selection. Furthermore, numerous B. napusMATE genes showed differential expression between tissues and developmental stages and between plants treated with heavy metals or hormones and untreated control plants. This differential expression was especially pronounced for the Group 2 and 3 BnaMATE genes, indicating that they may play important roles in stress tolerance and hormone induction. Our results provide a valuable foundation for the functional dissection of the different BnaMATE homologs in B. napus and its parental lines, as well as for the breeding of more stress-tolerant B. napus genotypes.
Collapse
Affiliation(s)
- Cailin Qiao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jing Yang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Yuanyuan Wan
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Sirou Xiang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Mingwei Guan
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Hai Du
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Zhanglin Tang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
45
|
Santos E, Matos M, Benito C. Isolation and characterization of a new MATE gene located in the same chromosome arm of the aluminium tolerance (Alt1) rye locus. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:691-700. [PMID: 32141174 DOI: 10.1111/plb.13107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 03/24/2020] [Indexed: 06/10/2023]
Abstract
Aluminium (Al) toxicity is the major constraint for crop productivity in acid soils. Wild rye species (Secale spp.) exhibit high Al tolerance, being a good source of genes related to this trait. The Alt1 locus located on the 6RS chromosome arm is one of the four main loci controlling Al tolerance in rye and is known to harbour major genes but, so far, none have been found. Through synteny among the short arm of the rye chromosome 6R and the main grass species, we found a candidate MATE gene for the Atl1 locus, later named ScMATE3, which was isolated and characterized in different Secale species. The sequence comparisons revealed both intraspecific and interspecific variability, with high sequence conservation in the Secale genus. SNP with replacement substitution that changed the structure of the protein and can be involved in the Al tolerance trait were found in ScMATE3 gene. The predicted subcellular localization of ScMATE3 is the vacuolar membrane which, together with the phylogenetic relationships performed with other MATE genes of the Poaceae related to Al detoxification, suggest involvement of ScMATE3 in an internal tolerance mechanism. Moreover, expression studies of this gene in rye corroborate its contribution in some Al resistance mechanisms. The ScMATE3 gene is located on the 6RS chromosome arm between the same markers in which the Alt1 locus is involved in Al resistance mechanisms in rye, thus being a good candidate gene for this function.
Collapse
Affiliation(s)
- E Santos
- Department of Genetics and Biotechnology, University of Tras-os-Montes and Alto Douro, Vila Real, Portugal
| | - M Matos
- Department of Genetics and Biotechnology, University of Tras-os-Montes and Alto Douro, Vila Real, Portugal
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Lisboa, Portugal
| | - C Benito
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid (UCM), Madrid, Spain
| |
Collapse
|
46
|
Julião MHM, Silva SR, Ferro JA, Varani AM. A Genomic and Transcriptomic Overview of MATE, ABC, and MFS Transporters in Citrus sinensis Interaction with Xanthomonas citri subsp. citri. PLANTS (BASEL, SWITZERLAND) 2020; 9:E794. [PMID: 32630416 PMCID: PMC7356318 DOI: 10.3390/plants9060794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/08/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023]
Abstract
The multi-antimicrobial extrusion (MATE), ATP-binding cassette (ABC), and major facilitator superfamily (MFS) are the main plant transporters families, playing an essential role in the membrane-trafficking network and plant-defense mechanism. The citrus canker type A (CC), is a devastating disease caused by Xanthomonas citri subsp. citri (Xac), affecting all citrus species. In this work, we performed an in silico analysis of genes and transcripts from MATE, ABC, and MFS families to infer the role of membrane transporters in Citrus-Xac interaction. Using as reference, the available Citrus sinensis genome and the citrus reference transcriptome from CitrusKB database, 67 MATE, 91 MFS, and 143 ABC genes and 82 MATE, 139 MFS, and 226 ABC transcripts were identified and classified into subfamilies. Duplications, alternative-splicing, and potentially non-transcribed transporters' genes were revealed. Interestingly, MATE I and ABC G subfamilies appear differently regulated during Xac infection. Furthermore, Citrus spp. showing distinct levels of CC susceptibility exhibited different sets of transporters transcripts, supporting dissimilar molecular patterns of membrane transporters in Citrus-Xac interaction. According to our findings, 4 MATE, 10 ABC, and 3 MFS are potentially related to plant-defense mechanisms. Overall, this work provides an extensive analysis of MATE, ABC, and MFS transporters' in Citrus-Xac interaction, bringing new insights on membrane transporters in plant-pathogen interactions.
Collapse
Affiliation(s)
| | | | | | - Alessandro M. Varani
- Department of Technology, School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, Brazil; (M.H.M.J.); (S.R.S.); (J.A.F.)
| |
Collapse
|
47
|
Zhang Y, Feng X, Wang L, Su Y, Chu Z, Sun Y. The structure, functional evolution, and evolutionary trajectories of the H +-PPase gene family in plants. BMC Genomics 2020; 21:195. [PMID: 32122295 PMCID: PMC7053079 DOI: 10.1186/s12864-020-6604-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/21/2020] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND The H+-PPase (pyrophosphatase) gene family is an important class of proton transporters that play key roles in plant development and stress resistance. Although the physiological and biochemical functions of H+-PPases are well characterized, the structural evolution and functional differentiation of this gene family remain unclear. RESULTS We identified 124 H+-PPase members from 27 plant species using complete genomic data obtained from algae to angiosperms. We found that all analyzed plants carried H+-PPase genes, and members were not limited to the two main types (type I and II). Differentiation of this gene family occurred early in evolutionary history, probably prior to the emergence of algae. The type I and II H+-PPase genes were retained during the subsequent evolution of higher plants, and their copy numbers increased rapidly in some angiosperms following whole-genome duplication (WGD) events, with obvious expression pattern differentiation among the new copies. We found significant functional divergence between type I and II H+-PPase genes, with both showing evidence for positive selection pressure. We classified angiosperm type I H+-PPases into subtypes Ia and non-Ia, which probably differentiated at an early stage of angiosperm evolution. Compared with non-Ia subtype, the Ia subtype appears to confer some advantage in angiosperms, as it is highly conserved and abundantly expressed, but shows no evidence for positive selection. CONCLUSIONS We hypothesized that there were many types of H+-PPase genes in the plant ancestral genome, and that different plant groups retained different types of these genes. In the early stages of angiosperm evolution, the type I H+-PPase genes differentiated into various subtypes. In addition, the expression pattern varied not only among genes of different types or subtypes, but also among copies of the same subtype. Based on the expression patterns and copy numbers of H+-PPase genes in higher plants, we propose two possible evolutionary trajectories for this gene family.
Collapse
Affiliation(s)
- Yiming Zhang
- College of Life Sciences, Langfang Normal University, Langfang, 065000, China
| | - Xue Feng
- College of Life Sciences, Langfang Normal University, Langfang, 065000, China
| | - Lihui Wang
- College of Plant Protection, Fujian Agricultural and Forestry University, Fuzhou, 350000, China
| | - Yanping Su
- College of Life Sciences, Langfang Normal University, Langfang, 065000, China
| | - Zhuodong Chu
- College of Life Sciences, Langfang Normal University, Langfang, 065000, China
| | - Yanxiang Sun
- College of Life Sciences, Langfang Normal University, Langfang, 065000, China.
| |
Collapse
|
48
|
Chen G, Liang H, Zhao Q, Wu AM, Wang B. Exploiting MATE efflux proteins to improve flavonoid accumulation in Camellia sinensis in silico. Int J Biol Macromol 2019; 143:732-743. [PMID: 31622702 DOI: 10.1016/j.ijbiomac.2019.10.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/04/2019] [Accepted: 10/02/2019] [Indexed: 01/30/2023]
Abstract
Flavonoids in tea plant are the important bioactive compounds for both human health and taste quality. Multidrug and Toxic compound Extrusion (MATE) proteins could improve flavonoid accumulations by transporting and sequestering the flavonoid in vacuoles. We identified 41 putative MATE genes in tea plants. The similar intron-exon structures of tea MATEs clustered within the same gene clade. The correlation analysis of tea flavonoid and transcriptome data showed that TEA006173 might be involve in the tea flavonoid accumulation. The RT-PCR results confirmed that TEA006173 showed high expression in the young leaf tissues. Tertiary structure prediction has shown that TEA006173 contained the 12 helices with three active pockets, comprising 13 critical residues. The present study provided the structural variations and expression patterns of tea MATEs and it would be helpful for taste and nutrient quality improvement in tea plant.
Collapse
Affiliation(s)
- Guanming Chen
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Haohong Liang
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Qi Zhao
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Bo Wang
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
49
|
Singh D, Singh CK, Taunk J, Jadon V, Pal M, Gaikwad K. Genome wide transcriptome analysis reveals vital role of heat responsive genes in regulatory mechanisms of lentil (Lens culinaris Medikus). Sci Rep 2019; 9:12976. [PMID: 31506558 PMCID: PMC6736890 DOI: 10.1038/s41598-019-49496-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/23/2019] [Indexed: 01/29/2023] Open
Abstract
The present study reports the role of morphological, physiological and reproductive attributes viz. membrane stability index (MSI), osmolytes accumulations, antioxidants activities and pollen germination for heat stress tolerance in contrasting genotypes. Heat stress increased proline and glycine betaine (GPX) contents, induced superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione peroxidase (GPX) activities and resulted in higher MSI in PDL-2 (tolerant) compared to JL-3 (sensitive). In vitro pollen germination of tolerant genotype was higher than sensitive one under heat stress. In vivo stressed pollens of tolerant genotype germinated well on stressed stigma of sensitive genotype, while stressed pollens of sensitive genotype did not germinate on stressed stigma of tolerant genotype. De novo transcriptome analysis of both the genotypes showed that number of contigs ranged from 90,267 to 104,424 for all the samples with N50 ranging from 1,755 to 1,844 bp under heat stress and control conditions. Based on assembled unigenes, 194,178 high-quality Single Nucleotide Polymorphisms (SNPs), 141,050 microsatellites and 7,388 Insertion-deletions (Indels) were detected. Expression of 10 genes was evaluated using quantitative Real Time Polymerase Chain Reaction (RT-qPCR). Comparison of differentially expressed genes (DEGs) under different combinations of heat stress has led to the identification of candidate DEGs and pathways. Changes in expression of physiological and pollen phenotyping related genes were also reaffirmed through transcriptome data. Cell wall and secondary metabolite pathways are found to be majorly affected under heat stress. The findings need further analysis to determine genetic mechanism involved in heat tolerance of lentil.
Collapse
Affiliation(s)
- Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Chandan Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Jyoti Taunk
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vasudha Jadon
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Madan Pal
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Kishor Gaikwad
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| |
Collapse
|
50
|
Phylogenetic analysis of upland cotton MATE gene family reveals a conserved subfamily involved in transport of proanthocyanidins. Mol Biol Rep 2018; 46:161-175. [PMID: 30467666 DOI: 10.1007/s11033-018-4457-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/30/2018] [Indexed: 01/02/2023]
Abstract
The multidrug and toxic compound extrusion (MATE) protein belongs to a secondary transporter family, which plays a role in transporting different kinds of substrates like phytohormones and secondary metabolites. In plant, MATE transporters related to the endogenous and exogenous mechanisms of detoxification for secondary metabolites such as alkaloids, flavonoids, anthocyanins and other secondary metabolites have been studied. However, a genome-wide analysis of the MATE family is rarely reported in upland cotton (Gossypium hirsutum L.). In the study, a total of 72 GhMATEs were identified from the genome of upland cotton, which were classified into four subfamilies with possible diverse functions such as transport of proanthocyanidins (PAs), accumulation of alkaloids, extrusion of xenobiotic compounds, regulation of disease resistance and response to abiotic stresses. Meanwhile, the gene structure, evolutionary relationship, physical location, conservative motifs, subcellular localization and gene expression pattern of GhMATEs have been further analysed. Three of these MATE genes (GhMATE12, GhMATE16 and GhMATE38) were identified as candidate genes due to their functions in transport of PA similar to GhTT12. These results provide a new perspective on upland cotton MATE gene family for their potential roles in transport of PA and a theoretical basis for further analyzing the function of MATE genes and improving the fiber quality of brown cotton.
Collapse
|