1
|
Vlasova V, Lapina T, Cheng Q, Ermilova E. Loss of PII-dependent control of arginine biosynthesis in Dunaliella salina. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 351:112327. [PMID: 39581352 DOI: 10.1016/j.plantsci.2024.112327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/19/2024] [Accepted: 11/22/2024] [Indexed: 11/26/2024]
Abstract
In cyanobacteria and most Archaeplastida, Arg regulates its formation via allosteric inhibition of the controlling enzyme, N-acetyl-L-glutamate kinase (NAGK) that requires PII protein to properly sense the feedback inhibitor. Although PII expression has been shown to be reduced in Dunaliella salina compared to other green algae, the potential impact of this protein on DsNAGK activity remains unclear. We here performed coupled enzyme assay and surface plasmon resonance analysis and show that DsNAGK is activated by NAG and inhibited by Arg but is not controlled by DsPII. Moreover, DsPII has likely lost its function as an effective glutamine sensor. Replacement of the C-terminus from DsPII with the C-terminus from Chlamydomonas PII restored sensitivity to glutamine in a recombinant DsPII protein, demonstrating the importance of C-terminal residues close to the Q-loop for PII functions. The findings are discussed in the context of the relationship between NAGK control and the acquisition of salinity tolerance during evolution.
Collapse
Affiliation(s)
- Vitalina Vlasova
- Biological Faculty, Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg 199034, Russia
| | - Tatiana Lapina
- Biological Faculty, Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg 199034, Russia
| | - Qi Cheng
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Hebei Agricultural University, 2596 Lekai South Street, Baoding, Hebei 071001, China
| | - Elena Ermilova
- Biological Faculty, Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg 199034, Russia.
| |
Collapse
|
2
|
Tachikawa H. Intracluster reaction dynamics of NO+(H2O)n. J Chem Phys 2024; 161:094306. [PMID: 39230376 DOI: 10.1063/5.0221836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024] Open
Abstract
Nitric oxide (NO) and NO-water clusters play crucial roles in the D-region of the atmosphere because it is postulated that NO+ reacts with H2O to produce nitrous acid (HONO) and H3O+. HONO is the major precursor of the hydroxyl radicals leading to the formation of secondary pollutants. The sources of atmospheric HONO, however, are not fully understood. Previously, the sequential H2O addition reaction, H2O + NO+(H2O)n, and the bi-molecular collision reaction, NO+ + (H2O)n, have been investigated by both experiments and theoretical calculations to determine the formation mechanism of HONO. However, the photo-reactions from NO(H2O)n neutral clusters were not considered for the formation mechanism of HONO. In this study, the intra-cluster reactions of NO+(H2O)n clusters, following ionization of the parent neutral cluster of NO(H2O)n, were investigated using the direct ab initio molecular dynamics method. When n = 4, [NO+(H2O)4]ver [vertical ionization state of NO(H2O)n] yielded HONO and hydrated H3O+ after the intra-cluster reaction, and the reaction time was calculated to be 150 fs. The reaction is expressed as [NO+(H2O)n]ver → HONO + H3O+(H2O)n-2 (reactive) (n > 3). Larger clusters of [NO+(H2O)n]ver (n = 5-8) also yield HONO. In contrast, in smaller clusters (n = 1-3), only solvent re-orientation around NO+ occurred after the ionization: [NO+(H2O)n]ver → NO+(H2O)n (solvent re-orientation) (n = 1-3). The hydration energy of H3O+, which depends on the cluster size (n), plays an important role in promoting the formation of HONO. The reaction mechanism is discussed based on theoretical results.
Collapse
Affiliation(s)
- Hiroto Tachikawa
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita-ku, Sapporo 060-8628, Japan
| |
Collapse
|
3
|
Vlasova V, Lapina T, Statinov V, Ermilova E. N-Acetyl-L-glutamate Kinase of Chlamydomonas reinhardtii: In Vivo Regulation by PII Protein and Beyond. Int J Mol Sci 2023; 24:12873. [PMID: 37629055 PMCID: PMC10454706 DOI: 10.3390/ijms241612873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
N-Acetyl-L-glutamate kinase (NAGK) catalyzes the rate-limiting step in the ornithine/arginine biosynthesis pathway in eukaryotic and bacterial oxygenic phototrophs. NAGK is the most highly conserved target of the PII signal transduction protein in Cyanobacteria and Archaeplastida (red algae and Chlorophyta). However, there is still much to be learned about how NAGK is regulated in vivo. The use of unicellular green alga Chlamydomonas reinhardtii as a model system has already been instrumental in identifying several key regulation mechanisms that control nitrogen (N) metabolism. With a combination of molecular-genetic and biochemical approaches, we show the existence of the complex CrNAGK control at the transcriptional level, which is dependent on N source and N availability. In growing cells, CrNAGK requires CrPII to properly sense the feedback inhibitor arginine. Moreover, we provide primary evidence that CrPII is only partly responsible for regulating CrNAGK activity to adapt to changing nutritional conditions. Collectively, our results suggest that in vivo CrNAGK is tuned at the transcriptional and post-translational levels, and CrPII and additional as yet unknown factor(s) are integral parts of this regulation.
Collapse
Affiliation(s)
| | | | | | - Elena Ermilova
- Biological Faculty, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia; (V.V.); (T.L.); (V.S.)
| |
Collapse
|
4
|
Freudenberg RA, Wittemeier L, Einhaus A, Baier T, Kruse O. Advanced pathway engineering for phototrophic putrescine production. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1968-1982. [PMID: 35748533 PMCID: PMC9491463 DOI: 10.1111/pbi.13879] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The polyamine putrescine (1,4-diaminobutane) contributes to cellular fitness in most organisms, where it is derived from the amino acids ornithine or arginine. In the chemical industry, putrescine serves as a versatile building block for polyamide synthesis. The green microalga Chlamydomonas reinhardtii accumulates relatively high putrescine amounts, which, together with recent advances in genetic engineering, enables the generation of a powerful green cell factory to promote sustainable biotechnology for base chemical production. Here, we report a systematic investigation of the native putrescine metabolism in C. reinhardtii, leading to the first CO2 -based bio-production of putrescine, by employing modern synthetic biology and metabolic engineering strategies. A CRISPR/Cas9-based knockout of key enzymes of the polyamine biosynthesis pathway identified ornithine decarboxylase 1 (ODC1) as a gatekeeper for putrescine accumulation and demonstrated that the arginine decarboxylase (ADC) route is likely inactive and that amine oxidase 2 (AMX2) is mainly responsible for putrescine degradation in C. reinhardtii. A 4.5-fold increase in cellular putrescine levels was achieved by engineered overexpression of potent candidate ornithine decarboxylases (ODCs). We identified unexpected substrate promiscuity in two bacterial ODCs, which exhibited co-production of cadaverine and 4-aminobutanol. Final pathway engineering included overexpression of recombinant arginases for improved substrate availability as well as functional knockout of putrescine degradation, which resulted in a 10-fold increase in cellular putrescine titres and yielded 200 mg/L in phototrophic high cell density cultivations after 10 days.
Collapse
Affiliation(s)
- Robert A. Freudenberg
- Faculty of Biology, Center for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
| | - Luisa Wittemeier
- Faculty of Biology, Center for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
| | - Alexander Einhaus
- Faculty of Biology, Center for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
| | - Thomas Baier
- Faculty of Biology, Center for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
| | - Olaf Kruse
- Faculty of Biology, Center for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
| |
Collapse
|
5
|
Chatterjee P, Schafran P, Li FW, Meeks JC. Nostoc Talks Back: Temporal Patterns of Differential Gene Expression During Establishment of Anthoceros-Nostoc Symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:917-932. [PMID: 35802132 DOI: 10.1094/mpmi-05-22-0101-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Endosymbiotic associations between hornworts and nitrogen-fixing cyanobacteria form when the plant is limited for combined nitrogen (N). We generated RNA-seq data to examine temporal gene expression patterns during the culturing of N-starved Anthoceros punctatus in the absence and the presence of symbiotic cyanobacterium Nostoc punctiforme. In symbiont-free A. punctatus gametophytes, N starvation caused downregulation of chlorophyll content and chlorophyll fluorescence characteristics as well as transcription of photosynthesis-related genes. This downregulation was reversed in A. punctatus cocultured with N. punctiforme, corresponding to the provision by the symbiont of N2-derived NH4+, which commenced within 5 days of coculture and reached a maximum by 14 days. We also observed transient increases in transcription of ammonium and nitrate transporters in a N. punctiforme-dependent manner as well as that of a SWEET transporter that was initially independent of N2-derived NH4+. The temporal patterns of differential gene expression indicated that N. punctiforme transmits signals that impact gene expression to A. punctatus both prior to and after its provision of fixed N. This study is the first illustrating the temporal patterns of gene expression during establishment of an endosymbiotic nitrogen-fixing association in this monophyletic evolutionary lineage of land plants. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Poulami Chatterjee
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, U.S.A
| | - Peter Schafran
- Boyce Thompson Institute, Ithaca, NY 14853, U.S.A
- Plant Biology Section, Cornell University, Ithaca, NY 14953, U.S.A
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY 14853, U.S.A
- Plant Biology Section, Cornell University, Ithaca, NY 14953, U.S.A
| | - John C Meeks
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, U.S.A
| |
Collapse
|
6
|
Bellido-Pedraza CM, Calatrava V, Llamas A, Fernandez E, Sanz-Luque E, Galvan A. Nitrous Oxide Emissions from Nitrite Are Highly Dependent on Nitrate Reductase in the Microalga Chlamydomonas reinhardtii. Int J Mol Sci 2022; 23:9412. [PMID: 36012676 PMCID: PMC9409008 DOI: 10.3390/ijms23169412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 12/11/2022] Open
Abstract
Nitrous oxide (N2O) is a powerful greenhouse gas and an ozone-depleting compound whose synthesis and release have traditionally been ascribed to bacteria and fungi. Although plants and microalgae have been proposed as N2O producers in recent decades, the proteins involved in this process have been only recently unveiled. In the green microalga Chlamydomonas reinhardtii, flavodiiron proteins (FLVs) and cytochrome P450 (CYP55) are two nitric oxide (NO) reductases responsible for N2O synthesis in the chloroplast and mitochondria, respectively. However, the molecular mechanisms feeding these NO reductases are unknown. In this work, we use cavity ring-down spectroscopy to monitor N2O and CO2 in cultures of nitrite reductase mutants, which cannot grow on nitrate or nitrite and exhibit enhanced N2O emissions. We show that these mutants constitute a very useful tool to study the rates and kinetics of N2O release under different conditions and the metabolism of this greenhouse gas. Our results indicate that N2O production, which was higher in the light than in the dark, requires nitrate reductase as the major provider of NO as substrate. Finally, we show that the presence of nitrate reductase impacts CO2 emissions in both light and dark conditions, and we discuss the role of NO in the balance between CO2 fixation and release.
Collapse
Affiliation(s)
| | - Victoria Calatrava
- Department of Biochemistry and Molecular Biology, University of Cordoba, 14004 Cordoba, Spain
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Angel Llamas
- Department of Biochemistry and Molecular Biology, University of Cordoba, 14004 Cordoba, Spain
| | - Emilio Fernandez
- Department of Biochemistry and Molecular Biology, University of Cordoba, 14004 Cordoba, Spain
| | - Emanuel Sanz-Luque
- Department of Biochemistry and Molecular Biology, University of Cordoba, 14004 Cordoba, Spain
| | - Aurora Galvan
- Department of Biochemistry and Molecular Biology, University of Cordoba, 14004 Cordoba, Spain
| |
Collapse
|
7
|
Abstract
The reaction of NO+ with water molecules plays a crucial role in the D-region of the atmosphere because the reaction provides nitrous acid (HONO) and protonated water species (H3O+). In this study, the reaction of NO+ with water clusters, NO+ + (H2O)n (n = 1-7), was investigated by means of the direct ab initio molecular dynamics method to elucidate the reaction mechanism of NO+ in the atmosphere from a theoretical viewpoint. At n = 1 and 2, the reaction of NO+ with (H2O)n led to the formation of a complex: NO+ + (H2O)n → NO+(H2O)n (n = 1 and 2). At n = 3, the formation channel of HONO was open, and HONO was formed according to NO+ + (H2O)n → HONO---H+(H2O)n-1 (n = 3), through which H3O+ was also formed as H+(H2O)2. However, the HONO formation efficiency was significantly low for n = 3. In large clusters with n = 4-7, the HONO formation channel became the main channel, and the dissociation of HONO from the HONO--H+(H2O)n-1 complex occurred in part: NO+ + (H2O)n → HONO---H+(H2O)n-1 → HONO + H+(H2O)n-1. The energetics and reaction mechanism were discussed on the basis of theoretical results.
Collapse
Affiliation(s)
- Hiroto Tachikawa
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
8
|
Control of distal lysine coordination in a monomeric hemoglobin: A role for heme peripheral interactions. J Inorg Biochem 2021; 219:111437. [PMID: 33892380 DOI: 10.1016/j.jinorgbio.2021.111437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/20/2021] [Accepted: 03/20/2021] [Indexed: 12/25/2022]
Abstract
THB1 is a monomeric truncated hemoglobin (TrHb) found in the cytoplasm of the green alga Chlamydomonas reinhardtii. The canonical heme coordination scheme in hemoglobins is a proximal histidine ligand and an open distal site. In THB1, the latter site is occupied by Lys53, which is likely to facilitate Fe(II)/Fe(III) redox cycling but hinders dioxygen binding, two features inherent to the NO dioxygenase activity of the protein. TrHb surveys show that a lysine at a position aligning with Lys53 is an insufficient determinant of coordination, and in this study, we sought to identify factors controlling lysine affinity for the heme iron. We solved the "Lys-off" X-ray structure of THB1, represented by the cyanide adduct of the Fe(III) protein, and hypothesized that interactions that differ between the known "Lys-on" structure and the Lys-off structure participate in the control of Lys53 affinity for the heme iron. We applied an experimental approach (site-directed mutagenesis, heme modification, pH titrations in the Fe(III) and Fe(II) states) and a computational approach (MD simulations in the Fe(II) state) to assess the role of heme propionate-protein interactions, distal helix capping, and the composition of the distal pocket. All THB1 modifications resulted in a weakening of lysine affinity and affected the coupling between Lys53 proton binding and heme redox potential. The results supported the importance of specific heme peripheral interactions for the pH stability of iron coordination and the ability of the protein to undergo redox reactions.
Collapse
|
9
|
Astier J, Rossi J, Chatelain P, Klinguer A, Besson-Bard A, Rosnoblet C, Jeandroz S, Nicolas-Francès V, Wendehenne D. Nitric oxide production and signalling in algae. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:781-792. [PMID: 32910824 DOI: 10.1093/jxb/eraa421] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/07/2020] [Indexed: 05/27/2023]
Abstract
Nitric oxide (NO) was the first identified gaseous messenger and is now well established as a major ubiquitous signalling molecule. The rapid development of our understanding of NO biology in embryophytes came with the partial characterization of the pathways underlying its production and with the decrypting of signalling networks mediating its effects. Notably, the identification of proteins regulated by NO through nitrosation greatly enhanced our perception of NO functions. In comparison, the role of NO in algae has been less investigated. Yet, studies in Chlamydomonas reinhardtii have produced key insights into NO production through the identification of NO-forming nitrite reductase and of S-nitrosated proteins. More intriguingly, in contrast to embryophytes, a few algal species possess a conserved nitric oxide synthase, the main enzyme catalysing NO synthesis in metazoans. This latter finding paves the way for a deeper characterization of novel members of the NO synthase family. Nevertheless, the typical NO-cyclic GMP signalling module transducing NO effects in metazoans is not conserved in algae, nor in embryophytes, highlighting a divergent acquisition of NO signalling between the green and the animal lineages.
Collapse
Affiliation(s)
- Jeremy Astier
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Jordan Rossi
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Pauline Chatelain
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Agnès Klinguer
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Angélique Besson-Bard
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Claire Rosnoblet
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Sylvain Jeandroz
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | | | - David Wendehenne
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
10
|
Structural and functional insights into nitrosoglutathione reductase from Chlamydomonas reinhardtii. Redox Biol 2020; 38:101806. [PMID: 33316743 PMCID: PMC7744773 DOI: 10.1016/j.redox.2020.101806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Protein S-nitrosylation plays a fundamental role in cell signaling and nitrosoglutathione (GSNO) is considered as the main nitrosylating signaling molecule. Enzymatic systems controlling GSNO homeostasis are thus crucial to indirectly control the formation of protein S-nitrosothiols. GSNO reductase (GSNOR) is the key enzyme controlling GSNO levels by catalyzing its degradation in the presence of NADH. Here, we found that protein extracts from the microalga Chlamydomonas reinhardtii catabolize GSNO via two enzymatic systems having specific reliance on NADPH or NADH and different biochemical features. Scoring the Chlamydomonas genome for orthologs of known plant GSNORs, we found two genes encoding for putative and almost identical GSNOR isoenzymes. One of the two, here named CrGSNOR1, was heterologously expressed and purified. Its kinetic properties were determined and the three-dimensional structures of the apo-, NAD+- and NAD+/GSNO-forms were solved. These analyses revealed that CrGSNOR1 has a strict specificity towards GSNO and NADH, and a conserved folding with respect to other plant GSNORs. The catalytic zinc ion, however, showed an unexpected variability of the coordination environment. Furthermore, we evaluated the catalytic response of CrGSNOR1 to thermal denaturation, thiol-modifying agents and oxidative modifications as well as the reactivity and position of accessible cysteines. Despite being a cysteine-rich protein, CrGSNOR1 contains only two solvent-exposed/reactive cysteines. Oxidizing and nitrosylating treatments have null or limited effects on CrGSNOR1 activity and folding, highlighting a certain resistance of the algal enzyme to redox modifications. The molecular mechanisms and structural features underlying the response to thiol-based modifications are discussed. Chlamydomonas protein extracts catalyze NAD(P)H-dependent GSNO degradation. Chlamydomonas GSNOR1 is a zinc-containing protein strictly relying on GSNO and NADH. The 3D-structure of CrGSNOR1 revealed a conserved folding with other plant GSNORs. CrGSNOR1 contains only two solvent-exposed/reactive cysteines. Oxidizing and nitrosylating treatments have limited effects on CrGSNOR1 activity.
Collapse
|
11
|
Selim KA, Ermilova E, Forchhammer K. From cyanobacteria to Archaeplastida: new evolutionary insights into PII signalling in the plant kingdom. THE NEW PHYTOLOGIST 2020; 227:722-731. [PMID: 32077495 DOI: 10.1111/nph.16492] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/13/2020] [Indexed: 05/20/2023]
Abstract
The PII superfamily consists of signal transduction proteins found in all domains of life. Canonical PII proteins sense the cellular energy state through the competitive binding of ATP and ADP, and carbon/nitrogen balance through 2-oxoglutarate binding. The ancestor of Archaeplastida inherited its PII signal transduction protein from an ancestral cyanobacterial endosymbiont. Over the course of evolution, plant PII proteins acquired a glutamine-sensing C-terminal extension, subsequently present in all Chloroplastida PII proteins. The PII proteins of various algal strains (red, green and nonphotosynthetic algae) have been systematically investigated with respect to their sensory and regulatory properties. Comparisons of the PII proteins from different phyla of oxygenic phototrophs (cyanobacteria, red algae, Chlorophyta and higher plants) have yielded insights into their evolutionary conservation vs adaptive properties. The highly conserved role of the controlling enzyme of arginine biosynthesis, N-acetyl-l-glutamate kinase (NAGK), as a main PII-interactor has been demonstrated across oxygenic phototrophs of cyanobacteria and Archaeplastida. In addition, the PII signalling system of red algae has been identified as an evolutionary intermediate between that of Cyanobacteria and Chloroplastida. In this review, we consider recent advances in understanding metabolic signalling by PII proteins of the plant kingdom.
Collapse
Affiliation(s)
- Khaled A Selim
- Organismic Interactions Department, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Elena Ermilova
- Biological Faculty, Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg, 199034, Russia
| | - Karl Forchhammer
- Organismic Interactions Department, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| |
Collapse
|
12
|
Tejada-Jimenez M, Llamas A, Galván A, Fernández E. Role of Nitrate Reductase in NO Production in Photosynthetic Eukaryotes. PLANTS 2019; 8:plants8030056. [PMID: 30845759 PMCID: PMC6473468 DOI: 10.3390/plants8030056] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 12/20/2022]
Abstract
Nitric oxide is a gaseous secondary messenger that is critical for proper cell signaling and plant survival when exposed to stress. Nitric oxide (NO) synthesis in plants, under standard phototrophic oxygenic conditions, has long been a very controversial issue. A few algal strains contain NO synthase (NOS), which appears to be absent in all other algae and land plants. The experimental data have led to the hypothesis that molybdoenzyme nitrate reductase (NR) is the main enzyme responsible for NO production in most plants. Recently, NR was found to be a necessary partner in a dual system that also includes another molybdoenzyme, which was renamed NO-forming nitrite reductase (NOFNiR). This enzyme produces NO independently of the molybdenum center of NR and depends on the NR electron transport chain from NAD(P)H to heme. Under the circumstances in which NR is not present or active, the existence of another NO-forming system that is similar to the NOS system would account for NO production and NO effects. PII protein, which senses and integrates the signals of the C–N balance in the cell, likely has an important role in organizing cell responses. Here, we critically analyze these topics.
Collapse
Affiliation(s)
- Manuel Tejada-Jimenez
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain.
| | - Angel Llamas
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain.
| | - Aurora Galván
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain.
| | - Emilio Fernández
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain.
| |
Collapse
|