1
|
Nakandala U, Furtado A, Masouleh AK, Smith MW, Williams DC, Henry RJ. The genome of Citrus australasica reveals disease resistance and other species specific genes. BMC PLANT BIOLOGY 2024; 24:260. [PMID: 38594608 PMCID: PMC11005238 DOI: 10.1186/s12870-024-04988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND The finger lime (Citrus australasica), one of six Australian endemic citrus species shows a high natural phenotypic diversity and novel characteristics. The wide variation and unique horticultural features have made this lime an attractive candidate for domestication. Currently no haplotype resolved genome is available for this species. Here we present a high quality, haplotype-resolved reference genome for this species using PacBio HiFi and Hi-C sequencing. RESULTS Hifiasm assembly and SALSA scaffolding resulted in a collapsed genome size of 344.2 Mb and 321.1 Mb and 323.2 Mb size for the two haplotypes. The nine pseudochromosomes of the collapsed genome had an N50 of 35.2 Mb, 99.1% genome assembly completeness and 98.9% gene annotation completeness (BUSCO). A total of 41,304 genes were predicted in the nuclear genome. Comparison with C. australis revealed that 13,661 genes in pseudochromosomes were unique in C. australasica. These were mainly involved in plant-pathogen interactions, stress response, cellular metabolic and developmental processes, and signal transduction. The two genomes showed a syntenic arrangement at the chromosome level with large structural rearrangements in some chromosomes. Genetic variation among five C. australasica cultivars was analysed. Genes related to defense, synthesis of volatile compounds and red/yellow coloration were identified in the genome. A major expansion of genes encoding thylakoid curvature proteins was found in the C. australasica genome. CONCLUSIONS The genome of C. australasica present in this study is of high quality and contiguity. This genome helps deepen our understanding of citrus evolution and reveals disease resistance and quality related genes with potential to accelerate the genetic improvement of citrus.
Collapse
Affiliation(s)
- Upuli Nakandala
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, 4072, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, 4072, Australia
| | - Ardashir Kharabian Masouleh
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, 4072, Australia
| | - Malcolm W Smith
- Department of Agriculture and Fisheries, Bundaberg Research Station, Bundaberg, QLD, 4670, Australia
| | | | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia.
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
2
|
He Z, Luo X, Lei Y, Zhang W. Five Species of Taxus Karyotype Based on Oligo-FISH for 5S rDNA and (AG 3T 3) 3. Genes (Basel) 2022; 13:genes13122209. [PMID: 36553477 PMCID: PMC9778077 DOI: 10.3390/genes13122209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
As a relict plant, Taxus is used in a variety of medicinal ingredients, for instance to treat a variety of cancers. Taxus plants are difficult to distinguish from one another due to their similar morphology; indeed, some species of Taxus cytogenetic data still are unclear. Oligo-FISH can rapidly and efficiently provide insight into the genetic composition and karyotype. This is important for understanding the organization and evolution of chromosomes in Taxus species. We analysed five Taxus species using two oligonucleotide probes. (AG3T3)3 signals were distributed at the chromosome ends and the centromere of five species of Taxus. The 5S rDNA signal was displayed on two chromosomes of five species of Taxus. In addition to Taxus wallichiana var. mairei, 5S rDNA signals were found proximal in the remaining four species, which signals a difference in its location. The karyotype formula of Taxus wallichiana was 2n = 2x = 24m, its karyotype asymmetry index was 55.56%, and its arm ratio was 3.0087. Taxus × media's karyotype formula was 2n = 2x = 24m, its karyotype asymmetry index was 55.09%, and its arm ratio was 3.4198. The karyotype formula of Taxus yunnanensis was 2n = 2x = 24m, its karyotype asymmetry index was 55.56%, and its arm ratio was 2.6402. The karyotype formula of Taxus cuspidate was 2n = 2x = 24m, its karyotype asymmetry index was 54.67%, its arm ratio was 3.0135, and two chromosomes exhibited the 5S rDNA signal. The karyotype formula of T. wallichiana var. mairei was 2n= 2x = 22m + 2sm, its karyotype asymmetry index was 54.33%, and its arm ratio was 2.8716. Our results provide the karyotype analysis and physical genetic map of five species of Taxus, which contributes to providing molecular cytogenetics data for Taxus.
Collapse
|
3
|
Wang L, Feng Y, Wang Y, Zhang J, Chen Q, Liu Z, Liu C, He W, Wang H, Yang S, Zhang Y, Luo Y, Tang H, Wang X. Accurate Chromosome Identification in the Prunus Subgenus Cerasus (Prunus pseudocerasus) and its Relatives by Oligo-FISH. Int J Mol Sci 2022; 23:ijms232113213. [PMID: 36361999 PMCID: PMC9653872 DOI: 10.3390/ijms232113213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/30/2022] Open
Abstract
A precise, rapid and straightforward approach to chromosome identification is fundamental for cytogenetics studies. However, the identification of individual chromosomes was not previously possible for Chinese cherry or other Prunus species due to the small size and similar morphology of their chromosomes. To address this issue, we designed a pool of oligonucleotides distributed across specific pseudochromosome regions of Chinese cherry. This oligonucleotide pool was amplified through multiplex PCR with specific internal primers to produce probes that could recognize specific chromosomes. External primers modified with red and green fluorescence tags could produce unique signal barcoding patterns to identify each chromosome concomitantly. The same oligonucleotide pool could also discriminate all chromosomes in other Prunus species. Additionally, the 5S/45S rDNA probes and the oligo pool were applied in two sequential rounds of fluorescence in situ hybridization (FISH) localized to chromosomes and showed different distribution patterns among Prunus species. At the same time, comparative karyotype analysis revealed high conservation among P. pseudocerasus, P. avium, and P. persica. Together, these findings establish this oligonucleotide pool as the most effective tool for chromosome identification and the analysis of genome organization and evolution in the genus Prunus.
Collapse
Affiliation(s)
- Lei Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Feng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhenshan Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Congli Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 410100, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Shaofeng Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
4
|
Zhao Y, Deng H, Chen Y, Li J, Chen S, Li C, Mu X, Hu Z, Li K, Wang W. Establishment and Optimization of Molecular Cytogenetic Techniques (45S rDNA-FISH, GISH, and Fiber-FISH) in Kiwifruit ( Actinidia Lindl.). FRONTIERS IN PLANT SCIENCE 2022; 13:906168. [PMID: 35734244 PMCID: PMC9208197 DOI: 10.3389/fpls.2022.906168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The kiwifruit (Actinidia chinensis) has long been regarded as "the king of fruits" for its nutritional importance. However, the molecular cytogenetics of kiwifruit has long been hampered because of the large number of basic chromosome (x = 29), the inherent small size and highly similar morphology of metaphase chromosomes. Fluorescence in situ hybridization (FISH) is an indispensable molecular cytogenetic technique widely used in many plant species. Herein, the effects of post-hybridization washing temperature on FISH, blocking DNA concentration on genomic in situ hybridization (GISH), extraction method on nuclei isolation and the incubation time on the DNA fiber quality in kiwifruit were evaluated. The post-hybridization washing in 2 × saline sodium citrate (SSC) solution for 3 × 5 min at 37°C ensured high stringency and distinct specific FISH signals in kiwifruit somatic chromosomes. The use of 50 × blocking DNA provided an efficient and reliable means of discriminating between chromosomes derived from in the hybrids of A. chinensis var. chinensis (2n = 2x = 58) × A. eriantha (2n = 2x = 58), and inferring the participation of parental genitors. The chopping method established in the present study were found to be very suitable for preparation of leaf nuclei in kiwifruit. A high-quality linear DNA fiber was achieved by an incubation of 20 min. The physical size of 45S rDNA signals was approximately 0.35-0.40 μm revealed by the highly reproducible fiber-FISH procedures established and optimized in this study. The molecular cytogenetic techniques (45S rDNA-FISH, GISH, and high-resolution fiber-FISH) for kiwifruit was for the first time established and optimized in the present study, which is the foundation for the future genomic and evolutionary studies and provides chromosomal characterization for kiwifruit breeding programs.
Collapse
Affiliation(s)
- Yang Zhao
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Xinxiang Academy of Agricultural Sciences, Xinxiang, China
| | - Honghong Deng
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yao Chen
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jihan Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Silei Chen
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Chunyan Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Xue Mu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Horticultural Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Zhongrong Hu
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Kunming Li
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Weixing Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Luo X, Liu J, He Z. Oligo-FISH Can Identify Chromosomes and Distinguish Hippophaë rhamnoides L. Taxa. Genes (Basel) 2022; 13:genes13020195. [PMID: 35205242 PMCID: PMC8872433 DOI: 10.3390/genes13020195] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Oligo-fluorescence in situ hybridization (FISH) facilitates precise chromosome identification and comparative cytogenetic analysis. Detection of autosomal chromosomes of Hippophaë rhamnoides has not been achieved using oligonucleotide sequences. Here, the chromosomes of five H. rhamnoides taxa in the mitotic metaphase and mitotic metaphase to anaphase were detected using the oligo-FISH probes (AG3T3)3, 5S rDNA, and (TTG)6. In total, 24 small chromosomes were clearly observed in the mitotic metaphase (0.89–3.03 μm), whereas 24–48 small chromosomes were observed in the mitotic metaphase to anaphase (0.94–3.10 μm). The signal number and intensity of (AG3T3)3, 5S rDNA, and (TTG)6 in the mitotic metaphase to anaphase chromosomes were nearly consistent with those in the mitotic metaphase chromosomes when the two split chromosomes were integrated as one unit. Of note, 14 chromosomes (there is a high chance that sex chromosomes are included) were exclusively identified by (AG3T3)3, 5S rDNA, and (TTG)6. The other 10 also showed a terminal signal with (AG3T3)3. Moreover, these oligo-probes were able to distinguish one wild H. rhamnoides taxon from four H. rhamnoides taxa. These chromosome identification and taxa differentiation data will help in elucidating visual and elaborate physical mapping and guide breeders’ utilization of wild resources of H. rhamnoides.
Collapse
|
6
|
Maravilla AJ, Rosato M, Rosselló JA. Interstitial Telomeric-like Repeats (ITR) in Seed Plants as Assessed by Molecular Cytogenetic Techniques: A Review. PLANTS (BASEL, SWITZERLAND) 2021; 10:2541. [PMID: 34834904 PMCID: PMC8621592 DOI: 10.3390/plants10112541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 05/12/2023]
Abstract
The discovery of telomeric repeats in interstitial regions of plant chromosomes (ITRs) through molecular cytogenetic techniques was achieved several decades ago. However, the information is scattered and has not been critically evaluated from an evolutionary perspective. Based on the analysis of currently available data, it is shown that ITRs are widespread in major evolutionary lineages sampled. However, their presence has been detected in only 45.6% of the analysed families, 26.7% of the sampled genera, and in 23.8% of the studied species. The number of ITR sites greatly varies among congeneric species and higher taxonomic units, and range from one to 72 signals. ITR signals mostly occurs as homozygous loci in most species, however, odd numbers of ITR sites reflecting a hemizygous state have been reported in both gymnosperm and angiosperm groups. Overall, the presence of ITRs appears to be poor predictors of phylogenetic and taxonomic relatedness at most hierarchical levels. The presence of ITRs and the number of sites are not significantly associated to the number of chromosomes. The longitudinal distribution of ITR sites along the chromosome arms indicates that more than half of the ITR presences are between proximal and terminal locations (49.5%), followed by proximal (29.0%) and centromeric (21.5%) arm regions. Intraspecific variation concerning ITR site number, chromosomal locations, and the differential presence on homologous chromosome pairs has been reported in unrelated groups, even at the population level. This hypervariability and dynamism may have likely been overlooked in many lineages due to the very low sample sizes often used in cytogenetic studies.
Collapse
Affiliation(s)
| | | | - Josep A. Rosselló
- Jardín Botánico, ICBiBE, Universitat de València, c/Quart 80, E-46008 València, Spain; (A.J.M.); (M.R.)
| |
Collapse
|
7
|
Abstract
Hibiscus exhibits high variation in chromosome number both within and among species. The Hibiscus mutabilis L. karyotype was analyzed in detail using fluorescence in situ hybridization (FISH) with oligonucleotide probes for (AG3T3)3 and 5S rDNA, which were tested here for the first time. In total, 90 chromosomes were counted in prometaphase and metaphase, and all exhibited similarly intense (AG3T3)3 signals at both ends. (AG3T3)3 showed little variation and thus did not allow discrimination among H. mutabilis chromosomes, but its location at both ends confirmed the integrity of each chromosome, thus contributing to accurate counting of the numerous, small chromosomes. Oligo-5S rDNA marked the proximal/distal regions of six chromosomes: weak signals on chromosomes 7 and 8, slightly stronger signals on chromosomes 15 and 16, and very strong signals on chromosomes 17 and 18. Therefore, 5S rDNA could assist in chromosome identification in H. mutabilis. Metaphase chromosome lengths ranged from 3.00 to 1.18 μm, indicating small chromosomes. The ratios of longest to shortest chromosome length in prometaphase and metaphase were 2.58 and 2.54, respectively, indicating karyotype asymmetry in H. mutabilis. These results provide an exact chromosome number and a physical map, which will be useful for genome assembly and contribute to molecular cytogenetics in the genus Hibiscus.
Collapse
Affiliation(s)
- Xiaomei Luo
- College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, China.,College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, China
| | - Zhoujian He
- College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, China.,College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, China
| |
Collapse
|
8
|
Xia QM, Miao LK, Xie KD, Yin ZP, Wu XM, Chen CL, Grosser JW, Guo WW. Localization and characterization of Citrus centromeres by combining half-tetrad analysis and CenH3-associated sequence profiling. PLANT CELL REPORTS 2020; 39:1609-1622. [PMID: 32897396 DOI: 10.1007/s00299-020-02587-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
The physical locations of citrus centromere are revealed by combining genetic and immunological assays for the first time and nine citrus centromere-specific markers for cytogenetics are mined. Centromere localization is challenging, because highly redundant repetitive sequences in centromeric regions make sequence assembly difficult. Although several citrus genomes have been released, the centromeric regions and their characteristics remain to be elucidated. Here, we mapped citrus centromeres through half-tetrad analysis (HTA) that included the genotyping of 54 tetraploid hybrids derived from 2n megagametophytes of Nadorcott tangor with 212 single nucleotide polymorphism (SNP) markers. The sizes of centromeric regions, which estimated based on the heterozygosity restitution rate pattern along the chromosomes, ranged from 1.12 to 18.19 Mb. We also profiled the binding sequences with the centromere-specific histone variant CenH3 by chromatin immunoprecipitation sequencing (ChIP-seq). Based on the positions of the top ten CenH3-enriched contigs, the sizes of centromeric regions were estimated to range from 0.01 to 7.60 Mb and were either adjacent to or included in the centromeric regions identified by HTA. We used DNA probes from two repeats selected from the centromeric regions and seven CenH3-binding centromeric repeats to verify centromeric locations by fluorescence in situ hybridization (FISH). Centromere localization in citrus will contribute to the mining of centromeric/pericentromeric markers, thus to facilitate the rapid identification of mechanisms underlying 2n gamete formation and serve the polyploidy breeding.
Collapse
Affiliation(s)
- Qiang-Ming Xia
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lu-Ke Miao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kai-Dong Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhao-Ping Yin
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Meng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun-Li Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jude W Grosser
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA
| | - Wen-Wu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
9
|
He L, Zhao H, He J, Yang Z, Guan B, Chen K, Hong Q, Wang J, Liu J, Jiang J. Extraordinarily conserved chromosomal synteny of Citrus species revealed by chromosome-specific painting. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2225-2235. [PMID: 32578280 DOI: 10.1111/tpj.14894] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 05/20/2023]
Abstract
Reliable identification of individual chromosomes in eukaryotic species is the foundation for comparative chromosome synteny and evolutionary studies. Unfortunately, chromosome identification has been a major challenge for plants with small chromosomes, such as the Citrus species. We developed oligonucleotide-based chromosome painting probes for all nine chromosomes in Citrus maxima (Pummelo). We were able to identify all C. maxima chromosomes in the same metaphase cells using multiple rounds of sequential fluorescence in situ hybridization with the painting probes. We conducted comparative chromosome painting analysis in six different Citrus and related species. We found that each painting probe hybridized to only a single chromosome in all other five species, suggesting that the six species have maintained a complete chromosomal synteny after more than 9 million years of divergence. No interchromosomal rearrangement was identified in any species. These results support the hypothesis that karyotypes of woody species are more stable than herbaceous plants because woody plants need a longer period to fix chromosome structural variants in natural populations.
Collapse
Affiliation(s)
- Li He
- National-local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Hainan Zhao
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Jian He
- National-local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Zujun Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Bin Guan
- National-local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Keling Chen
- National-local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Qibin Hong
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712, China
| | - Jianhui Wang
- National-local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Jianjun Liu
- National-local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI, 48824, USA
| |
Collapse
|
10
|
Mendes S, Régis T, Terol J, Soares Filho WDS, Talon M, Pedrosa-Harand A. Integration of mandarin ( Citrus reticulata) cytogenetic map with its genome sequence. Genome 2020; 63:437-444. [PMID: 32758104 DOI: 10.1139/gen-2020-0046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Citrus is an extremely important genus in terms of world fruit production. Despite its economic importance and the small genome sizes of its species (2n = 18, 1C = 430 ± 68 Mbp), entire genomic assemblies have only recently become available for some of its representatives. Together with the previous CMA/DAPI banding and fluorescence in situ hybridization (FISH) in the group, these data are important for understanding the complex relationships between its species and for assisting breeding programs. To anchor genomic data with the cytogenetic map of mandarin (Citrus reticulata), the parental species of several economically important hybrids such as sweet orange and clementine, 18 BAC (bacterial artificial chromosome) clones were used. Eleven clementine BACs were positioned by BAC-FISH, doubling the number of chromosome markers so far available for BAC-FISH in citrus. Additionally, six previously mapped BACs were end-sequenced, allowing, together with one BAC previously sequenced, their assignment to scaffolds and the subsequent integration of chromosomes and the genome assembly. This study therefore established correlations between mandarin scaffolds and chromosomes, allowing further structural genomic and comparative study with the sweet orange genome, as well as insights into the chromosomal evolution of the group.
Collapse
Affiliation(s)
- Sandra Mendes
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil
| | - Thallita Régis
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil
| | - Javier Terol
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | | | - Manuel Talon
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Andrea Pedrosa-Harand
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil
| |
Collapse
|
11
|
Luo X, Chen J. Distinguishing Sichuan Walnut Cultivars and Examining Their Relationships with Juglans regia and J. sigillata by FISH, Early-Fruiting Gene Analysis, and SSR Analysis. FRONTIERS IN PLANT SCIENCE 2020; 11:27. [PMID: 32161605 PMCID: PMC7052499 DOI: 10.3389/fpls.2020.00027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/13/2020] [Indexed: 06/02/2023]
Abstract
Walnuts are economically important tree species in Sichuan Province (China) that provide heathy nuts. Fluorescence in situ hybridization (FISH) and analyses of an early-fruiting gene fragment and simple sequence repeats (SSRs) were used to distinguish Sichuan walnut cultivars and examine their relationships with Juglans regia L. and Juglans sigillata Dode. Thirty-four small chromosomes were counted in four Sichuan walnut cultivars. In the four cultivars, 5S rDNA was located in the proximal regions of two chromosomes (5 and 6), while (AG3T3)3 was located at both ends of each chromosome. The existence of the signal at both chromosome ends ensured accurate chromosome counts. 5S rDNA and (AG3T3)3 were not effective in identifying Sichuan walnut cultivars. Evolutionary analysis involving 32 early-fruiting nucleotide sequences from Sichuan walnut materials were performed with the maximum likelihood method. There were a total of 602 positions. All positions with gaps and missing data were eliminated, resulting in a final dataset of 562 positions. The ML tree with the highest log likelihood (-1607.82) revealed two obvious groups: one including materials of J. regia, which fruits 1 year after grafting, and another including materials of J. sigillata, which fruits >3 years after grafting. The early-fruiting gene fragment divided 22 walnut materials (10 walnut cultivars and 12 walnut accessions) into two groups, indicating that it was somewhat effective for distinguishing Sichuan walnut cultivars. Furthermore, 22 SSR loci were revealed to identify nine walnut cultivars. Eight cultivars were exclusively discerned by one SSR locus each: Chuanzao 1 [CUJRB307 (116) or CUJRA206a (182)], Chuanzao 2 [JSI-73 (154)], Shuangzao [CUJRB103a (123), CUJRB218 (144), JSI-71 (146), or CUJRA206a (176)], Shimianju [ZMZ11 (138)], Meigupao [CUJRB218 (149), CUJRB103a (151), or CUJRA206a (190)], Muzhilinhe [CUJRB220 (136), ZMZ11 (147), CUJRC310 (156), or JSI-73 (166)], Maerkang [CUJRA124 (154), CUJRB218 (159), or CUJRA123 (182)], Yanyuanzao [CUJRA124 (150) or CUJRA206a (192)]. The Shuling cultivar was identified by the combination of ZMZ11 (148) and other SSR loci, which distinguished and excluded the Chuanzao 1 and Yanyuanzao cultivars. Our results will guide the identification and breeding of Sichuan walnut cultivars.
Collapse
|
12
|
Deng H, Tang G, Xu N, Gao Z, Lin L, Liang D, Xia H, Deng Q, Wang J, Cai Z, Liang G, Lv X. Integrated Karyotypes of Diploid and Tetraploid Carrizo Citrange ( Citrus sinensis L. Osbeck × Poncirus trifoliata L. Raf.) as Determined by Sequential Multicolor Fluorescence in situ Hybridization With Tandemly Repeated DNA Sequences. FRONTIERS IN PLANT SCIENCE 2020; 11:569. [PMID: 32536930 PMCID: PMC7267054 DOI: 10.3389/fpls.2020.00569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/16/2020] [Indexed: 05/20/2023]
Abstract
Carrizo citrange [Citrus sinensis (L.) Osbeck × Poncirus trifoliata (L.) Raf., CC] is one of the most widely used rootstocks in citriculture worldwide, but its cytogenetic study has been hampered by its inherent small size, morphological similarity to mitotic chromosomes, and lack of accessible cytological landmarks. In our previous study, a spontaneously occurring tetraploid CC seedling was discovered. The main goals of this study were to elucidate the chromosome constitution and construct the karyotypes of diploid CC rootstock and its corresponding spontaneously occurring tetraploid. To accomplish these, the chromosomal characteristics were investigated by sequential multicolor fluorescence in situ hybridization (FISH) with eight properly labeled repetitive DNA sequences, including a centromere-like repeat, four satellite repeats, two rDNAs, and an oligonucleotide of telomeric (TTTAGGG) n repeat. The results nicely demonstrated that these repetitive DNAs are reliable cytogenetic markers that collectively facilitate simultaneous and unequivocal identification of homologous chromosome pairs. Based on chromosome size and morphology together with FISH patterns of repetitive DNAs, an integrated karyotype of CC rootstock was constructed, consisting of 2n = 2x = 12m (1sat) + 6sm with karyotype asymmetry degree being divided into 2B category. Cytogenetically speaking, the variable and asymmetric distribution patterns of these repetitive DNAs were fully confirmed the hybrid nature of CC rootstock. In addition, comparative distribution patterns and chromosomal localizations of these repetitive DNAs convincingly showed that this tetraploid CC material arose from somatic chromosome doubling of diploid CC rootstock. This study revealed, for the first time, the integrated karyotype and chromosomal characteristics of this important citrus rootstock as well as its spontaneously occurring tetraploid plant. Furthermore, this study is a good prospective model for study species with morphologically indistinguishable small chromosomes.
Collapse
Affiliation(s)
- Honghong Deng
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Guohao Tang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Nuo Xu
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Zhijian Gao
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Lijin Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Dong Liang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Hui Xia
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Qunxian Deng
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Jin Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Zexi Cai
- National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Guolu Liang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- *Correspondence: Guolu Liang,
| | - Xiulan Lv
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
- Xiulan Lv,
| |
Collapse
|
13
|
Physical Map of FISH 5S rDNA and (AG 3T 3) 3 Signals Displays Chimonanthus campanulatus R.H. Chang & C.S. Ding Chromosomes, Reproduces its Metaphase Dynamics and Distinguishes Its Chromosomes. Genes (Basel) 2019; 10:genes10110904. [PMID: 31703401 PMCID: PMC6895986 DOI: 10.3390/genes10110904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 12/25/2022] Open
Abstract
Chimonanthus campanulatus R.H. Chang & C.S. Ding is a good horticultural tree because of its beautiful yellow flowers and evergreen leaves. In this study, fluorescence in situ hybridization (FISH) was used to analyse mitotic metaphase chromosomes of Ch. campanulatus with 5S rDNA and (AG3T3)3 oligonucleotides. Twenty-two small chromosomes were observed. Weak 5S rDNA signals were observed only in proximal regions of two chromosomes, which were adjacent to the (AG3T3)3 proximal signals. Weak (AG3T3)3 signals were observed on both chromosome ends, which enabled accurate chromosome counts. A pair of satellite bodies was observed. (AG3T3)3 signals displayed quite high diversity, changing in intensity from weak to very strong as follows: far away from the chromosome ends (satellites), ends, subtelomeric regions, and proximal regions. Ten high-quality spreads revealed metaphase dynamics from the beginning to the end and the transition to anaphase. Chromosomes gradually grew larger and thicker into linked chromatids, which grew more significantly in width than in length. Based on the combination of 5S rDNA and (AG3T3)3 signal patterns, ten chromosomes were exclusively distinguished, and the remaining twelve chromosomes were divided into two distinct groups. Our physical map, which can reproduce dynamic metaphase progression and distinguish chromosomes, will powerfully guide cytogenetic research on Chimonanthus and other trees.
Collapse
|
14
|
Luo X, Liu J. Fluorescence In Situ Hybridization (FISH) Analysis of the Locations of the Oligonucleotides 5S rDNA, (AGGGTTT) 3, and (TTG) 6 in Three Genera of Oleaceae and Their Phylogenetic Framework. Genes (Basel) 2019; 10:genes10050375. [PMID: 31108932 PMCID: PMC6562466 DOI: 10.3390/genes10050375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 11/29/2022] Open
Abstract
We report the cytogenetic map for a collection of species in the Oleaceae, and test similarities among the karyotypes relative to their known species phylogeny. The oligonucleotides 5S ribosomal DNA (rDNA), (AGGGTTT)3, and (TTG)6 were used as fluorescence in situ hybridization (FISH) probes to locate the corresponding chromosomes in three Oleaceae genera: Fraxinus pennsylvanica, Syringa oblata, Ligustrum lucidum, and Ligustrum × vicaryi. Forty-six small chromosomes were identified in four species. (AGGGTTT)3 signals were observed on almost all chromosome ends of four species, but (AGGGTTT)3 played no role in distinguishing the chromosomes but displayed intact chromosomes and could thus be used as a guide for finding chromosome counts. (TTG)6 and 5S rDNA signals discerned several chromosomes located at subterminal or central regions. Based on the similarity of the signal pattern (mainly in number and location and less in intensity) of the four species, the variations in the 5S rDNA and (TTG)6 distribution can be ordered as L. lucidum < L. × vicaryi < F. pennsylvanica < S. oblata. Variations have observed in the three genera. The molecular cytogenetic data presented here might serve as a starting point for further larger-scale elucidation of the structure of the Oleaceae genome, and comparison with the known phylogeny of Oleaceae family.
Collapse
Affiliation(s)
- Xiaomei Luo
- College of Forestry, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
| | - Juncheng Liu
- College of Forestry, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
| |
Collapse
|
15
|
Deng H, Cai Z, Xiang S, Guo Q, Huang W, Liang G. Karyotype Analysis of Diploid and Spontaneously Occurring Tetraploid Blood Orange [ Citrus sinensis (L.) Osbeck] Using Multicolor FISH With Repetitive DNA Sequences as Probes. FRONTIERS IN PLANT SCIENCE 2019; 10:331. [PMID: 30967887 PMCID: PMC6440391 DOI: 10.3389/fpls.2019.00331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/04/2019] [Indexed: 05/17/2023]
Abstract
Blood orange [Citrus sinensis (L.) Osbeck] has been increasingly appreciated by consumers worldwide owing to its brilliant red color, abundant anthocyanin and other health-promoting compounds. However, there is still relatively little known about its cytogenetic characteristics, probably because of the small size and similar morphology of metaphase chromosomes and the paucity of chromosomal landmarks. In our previous study, a naturally occurring tetraploid blood orange plant was obtained via seedling screening. Before this tetraploid germplasm can be manipulated into a citrus triploid seedless breeding program, it is of great importance to determine its chromosome characterization and composition. In the present study, an integrated karyotype of blood orange was constructed using sequential multicolor fluorescence in situ hybridization (FISH) with four satellite repeats, two ribosomal DNAs (rDNAs), a centromere-like repeat and an oligonucleotide of telomere repeat (TTTAGGG)3 as probes. Satellite repeats were preferentially located at the terminal regions of the chromosomes of blood orange. Individual somatic chromosome pairs of blood orange were unambiguously identified by repetitive DNA-based multicolor FISH. These probes proved to be effective chromosomal landmarks. The karyotype was formulated as 2n = 2x = 18 = 16m+2sm (1sat) with the karyotype asymmetry degree belonging to 2B. The chromosomal distribution pattern of these repetitive DNAs in this spontaneously occurring tetraploid was identical to that of the diploid, but the tetraploid carried twice the number of hybridization sites as the diploid, indicating a possible pathway involving the spontaneous duplication of chromosome sets in nucellar cells. Our work may facilitate the molecular cytogenetic study of blood orange and provide chromosomal characterization for the future utilization of this tetraploid germplasm in the service of seedless breeding programs.
Collapse
Affiliation(s)
- Honghong Deng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Zexi Cai
- College of Agronomy and Biotechnology, National Maize Improvement Center, China Agricultural University, Beijing, China
| | - Suqiong Xiang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Qigao Guo
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Wei Huang
- College of Agronomy and Biotechnology, National Maize Improvement Center, China Agricultural University, Beijing, China
| | - Guolu Liang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| |
Collapse
|