1
|
Wu Z, Li M, Liang X, Wang J, Wang G, Shen Q, An T. Crucial amino acids identified in Δ12 fatty acid desaturases related to linoleic acid production in Perilla frutescens. FRONTIERS IN PLANT SCIENCE 2024; 15:1464388. [PMID: 39319000 PMCID: PMC11420121 DOI: 10.3389/fpls.2024.1464388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024]
Abstract
Perilla oil from the medicinal crop Perilla frutescens possess a wide range of biological activities and is generally used as an edible oil in many countries. The molecular basis for its formation is of particular relevance to perilla and its breeders. Here in the present study, four PfFAD2 genes were identified in different perilla cultivars, PF40 and PF70, with distinct oil content levels, respectively. Their function was characterized in engineered yeast strain, and among them, PfFAD2-1PF40, PfFAD2-1PF70 had no LA biosynthesis ability, while PfFAD2-2PF40 in cultivar with high oil content levels possessed higher catalytic activity than PfFAD2-2PF70. Key amino acid residues responsible for the enhanced catalytic activity of PfFAD2-2PF40 was identified as residue R221 through sequence alignment, molecular docking, and site-directed mutation studies. Moreover, another four amino acid residues influencing PfFAD2 catalytic activity were discovered through random mutation analysis. This study lays a theoretical foundation for the genetic improvement of high-oil-content perilla cultivars and the biosynthesis of LA and its derivatives.
Collapse
Affiliation(s)
- Zhenke Wu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Mingkai Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Xiqin Liang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Jun Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Qi Shen
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| |
Collapse
|
2
|
Chang N, Wei Wei, Wang S, Hou S, Sui Y, Taoyang, He J, Ren Y, Chen G, Bu C. The metabolomics analysis of cecal contents elucidates significant metabolites involved in the therapeutic effects of total flavonoids derived from Sonchus arvensis L. in male C57BL/6 mice with ulcerative colitis. Heliyon 2024; 10:e32790. [PMID: 39005925 PMCID: PMC11239596 DOI: 10.1016/j.heliyon.2024.e32790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Ulcerative colitis (UC), an inflammatory disease affecting the colon and rectal mucosa, is characterized by chronic and heterogeneous behavior of unknown origin. The primary cause of UC is chronic inflammation, which is closely linked to the development of colorectal cancer. Sonchus arvensis L. (SAL), a plant consumed worldwide for its nutritional and medicinal properties, holds significance in this context. In this study, we employed the total flavone in SAL as a treatment for male C57BL/6 mice with UC. The cecal contents metabolic profile of C57BL/6 mice in different groups, including UC (group ML; n = 5), UC treated with aspirin (group AN; n = 5), UC treated with the total flavone in SAL (group FE; n = 5), and healthy male C57BL/6 mice (group CL; n = 5), was examined using UHPLC-Triple-TOF-MS. Through the identification of variations in key metabolites associated with UC and the exploration of their underlying biological mechanisms, our understanding of the pathological processes underlying this condition has been enhanced. This study identified a total of seventy-three metabolites that have a significant impact on UC. Notably, the composition of total flavone in SAL, a medication used for UC treatment, differs from that of aspirin due to the presence of four distinct metabolites (13,14-Dihydro-15-keto-PGE2, Prostaglandin I2 (PGI2), (20R,22R)-20,22-dihydroxycholesterol, and PS (18:1(9Z)/0:0)). These metabolites possess unique characteristics that set them apart. Moreover, the study identified a total of eleven pathways that were significantly enriched in mice with UC, including Aminoacyl-tRNA biosynthesis, Valine, leucine and isoleucine biosynthesis, Linoleic acid metabolism, PPAR signaling pathway, mTOR signaling pathway, Valine, leucine and isoleucine degradation, Lysine degradation, VEGF signaling pathway, Melanogenesis, Endocrine and other factor-regulated calcium reabsorption, and Cocaine addiction. These findings contribute to a better understanding of the metabolic variations in UC following total flavonoids of SAL therapy and provide valuable insights for the treatment of UC.Keywords: Ulcerative colitis; Total flavonoids of Sonchus arvensis L.; Key metabolites; Metabonomics; Cecal contents of male C57BL/6 mice.
Collapse
Affiliation(s)
| | - Wei Wei
- Daqing Oilfield Genaral Hospital, Daqing, 163319, China
| | | | | | - Yilei Sui
- Harbin Medical University 163319, China
| | - Taoyang
- Harbin Medical University 163319, China
| | - Jing He
- Harbin Medical University 163319, China
| | - Yachao Ren
- Harbin Medical University 163319, China
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300000, China
| | | | - Chunlei Bu
- Harbin Medical University 163319, China
- Fifth Affiliated Hospital, Harbin Medical University, Daqing, 163319, China
| |
Collapse
|
3
|
Wu M, Xu Q, Tang T, Li X, Pan Y. Integrative physiological, transcriptomic, and metabolomic analysis of Abelmoschus manihot in response to Cd toxicity. FRONTIERS IN PLANT SCIENCE 2024; 15:1389207. [PMID: 38916029 PMCID: PMC11194374 DOI: 10.3389/fpls.2024.1389207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024]
Abstract
Rapid industrialization and urbanization have caused severe soil contamination with cadmium (Cd) necessitating effective remediation strategies. Phytoremediation is a widely adopted technology for remediating Cd-contaminated soil. Previous studies have shown that Abelmoschus manihot has a high Cd accumulation capacity and tolerance indicating its potential for Cd soil remediation. However, the mechanisms underlying its response to Cd stress remain unclear. In this study, physiological, transcriptomic, and metabolomic analyses were conducted to explore the response of A. manihot roots to Cd stress at different time points. The results revealed that Cd stress significantly increased malondialdehyde (MDA) levels in A. manihot, which simultaneously activated its antioxidant defense system, enhancing the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) by 19.73%-50%, 22.87%-38.89%, and 32.31%-45.40% at 12 h, 36 h, 72 h, and 7 days, respectively, compared with those in the control (CK). Moreover, transcriptomic and metabolomic analyses revealed 245, 5,708, 9,834, and 2,323 differentially expressed genes (DEGs), along with 66, 62, 156, and 90 differentially expressed metabolites (DEMs) at 12 h, 36 h, 72 h, and 7 days, respectively. Through weighted gene coexpression network analysis (WGCNA) of physiological indicators and transcript expression, eight hub genes involved in phenylpropanoid biosynthesis, signal transduction, and metal transport were identified. In addition, integrative analyses of metabolomic and transcriptomic data highlighted the activation of lipid metabolism and phenylpropanoid biosynthesis pathways under Cd stress suggesting that these pathways play crucial roles in the detoxification process and in enhancing Cd tolerance in A. manihot. This comprehensive study provides detailed insights into the response mechanisms of A. manihot to Cd toxicity.
Collapse
Affiliation(s)
- Mengxi Wu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Qian Xu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Tingting Tang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xia Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yuanzhi Pan
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Zou X, Zhang K, Wu D, Lu M, Wang H, Shen Q. Integrated analysis of miRNA, transcriptome, and degradome sequencing provides new insights into lipid metabolism in perilla seed. Gene 2024; 895:147953. [PMID: 37925118 DOI: 10.1016/j.gene.2023.147953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
MicroRNAs (miRNA) are small noncoding RNAs that play a crucial as molecular regulators in lipid metabolism in various oil crops. Perilla (Perilla frutescens) is a specific oil crop known for its high alpha-linolenic acid (C18:3n3, ALA) content (>65 %) in their seed oils. In view of the regulatory mechanism of miRNAs in perilla remains unclear, we conducted miRNAs and transcriptome sequencing in two cultivars with distinct lipid compositions. A total of 525 unique miRNAs, including 142 differentially expressed miRNAs was identified in perilla seeds. The 318 miRNAs targeted 7,761 genes. Furthermore, we identified 112 regulated miRNAs and their 610 target genes involved in lipid metabolism. MiR159b and miR167a as the core nodes to regulate the expression of genes in oil biosynthesis (e.g., KAS, FATB, GPAT, FAD, DGK, LPAAT) and key regulatory TFs (e.g., MYB, ARF, DOF, SPL, NAC, TCP, and bHLH). The 1,219 miRNA-mRNA regulation modules were confirmed through degradome sequencing. Notably, pf-miR159b-MYBs and pf-miR167a-ARFs regulation modules were confirmed. They exhibited significantly different expression levels in two cultivars and believed to play important roles in oil biosynthesis in perilla seeds. This provides valuable insights into the functional analysis of miRNA-regulated lipid metabolism in perilla seeds.
Collapse
Affiliation(s)
- Xiuzai Zou
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ke Zhang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Duan Wu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Minting Lu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hongbin Wang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Qi Shen
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
5
|
Rizzo G, Baroni L, Lombardo M. Promising Sources of Plant-Derived Polyunsaturated Fatty Acids: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1683. [PMID: 36767052 PMCID: PMC9914036 DOI: 10.3390/ijerph20031683] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 06/01/2023]
Abstract
(1) Background: Polyunsaturated fatty acids (PUFAs) are known for their ability to protect against numerous metabolic disorders. The consumption of oily fish is the main source of PUFAs in human nutrition and is commonly used for supplement production. However, seafood is an overexploited source that cannot be guaranteed to cover the global demands. Furthermore, it is not consumed by everyone for ecological, economic, ethical, geographical and taste reasons. The growing demand for natural dietary sources of PUFAs suggests that current nutritional sources are insufficient to meet global needs, and less and less will be. Therefore, it is crucial to find sustainable sources that are acceptable to all, meeting the world population's needs. (2) Scope: This review aims to evaluate the recent evidence about alternative plant sources of essential fatty acids, focusing on long-chain omega-3 (n-3) PUFAs. (3) Method: A structured search was performed on the PubMed search engine to select available human data from interventional studies using omega-3 fatty acids of non-animal origin. (4) Results: Several promising sources have emerged from the literature, such as algae, microorganisms, plants rich in stearidonic acid and GM plants. However, the costs, acceptance and adequate formulation deserve further investigation.
Collapse
Affiliation(s)
- Gianluca Rizzo
- Independent Researcher, Via Venezuela 66, 98121 Messina, Italy
| | - Luciana Baroni
- Scientific Society for Vegetarian Nutrition, 30171 Venice, Italy
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, 00166 Rome, Italy
| |
Collapse
|
6
|
Xin F, Wang R, Chang Y, Xie Z, Zhao Y, Zhang H, Song Y. Solid-state fermentation produces greater stearidonic acid levels in genetically engineered Mucor circinelloides. Lett Appl Microbiol 2022; 75:1617-1627. [PMID: 36067029 DOI: 10.1111/lam.13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022]
Abstract
Omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) are important dietary components due to their health benefits and preventative role in cardiovascular disease. Fish-based and plant seed oils are rich in stearidonic acid (SDA; 18:4 n-3) which are readily metabolized into ω-3 PUFAs such as eicosapentaenoic acid. However, these natural sources of SDA are generally low yielding and are unlikely to meet global demands, so new sustainable microbial fermentative sources of SDA need to be identified. Expression of delta15-desaturase in the oleaginous filamentous fungus Mucor circinelloides (McD15D) has been used to construct a recombinant SDA-producing McD15D strain that produces 5.0% SDA levels using submerged fermentation conditions. Switching to solid-state fermentation conditions in the same medium with submerged fermentation resulted in this engineered strain producing significantly higher amounts of SDA. A Box-Behnken design (BBD) of response surface methodology (RSM) approach has been used to identify optimal glucose and ammonium tartrate concentrations and temperature levels to maximize SDA production. The use of these optimal solid-state fermentation conditions resulted in the spores and mycelium of the recombinant McD15D producing 19.5% (0.64 mg g-1 ) and 12.2% (1.52 mg g-1 ) SDA content respectively, which represents an overall increase in SDA yield of 188.0% when compared to SDA yields produced using submerged fermentation conditions.
Collapse
Affiliation(s)
- Feifei Xin
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong, 255000, China
| | - Ruixue Wang
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong, 255000, China
| | - Yufei Chang
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong, 255000, China
| | - Zhike Xie
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong, 255000, China
| | - Yanlei Zhao
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong, 255000, China
| | - Huaiyuan Zhang
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong, 255000, China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong, 255000, China
| |
Collapse
|
7
|
Chileh Chelh T, Lyashenko S, Lahlou A, Belarbi EH, Ángel Rincón-Cervera M, Rodríguez-García I, Urrestarazu-Gavilán M, López Ruiz R, Luis Guil-Guerrero J. Buglossoides spp. seeds, a land source of health-promoting n-3 PUFA and phenolic compounds. Food Res Int 2022; 157:111421. [DOI: 10.1016/j.foodres.2022.111421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022]
|
8
|
Inal A, Yenipazar H, Şahin-Yeşilçubuk N. Preparation and characterization of nanoemulsions of curcumin and echium oil. Heliyon 2022; 8:e08974. [PMID: 35243093 PMCID: PMC8861391 DOI: 10.1016/j.heliyon.2022.e08974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/13/2021] [Accepted: 02/11/2022] [Indexed: 11/30/2022] Open
Abstract
The search for the plant origin bioactive compounds is increasing over animal origin compounds. Echium oil (EO) contains high amounts of plant based omega-3 fatty acids. Moreover, curcumin addition may increase the release of these omega-3 fatty acids during digestion. The study's objective is to determine the bioaccessibility of curcumin in simulated intestinal digestion conditions and the release behavior of fatty acids of echium oil from nanoemulsions. We prepared curcumin and EO nanoemulsions with a microfluidizer using two different concentrations of surfactant, Tween 80 (5% and 10%). Emulsion stability tests, antioxidant analysis, in vitro oil release and fatty acid composition assays were conducted. Results showed that curcumin-containing nanoemulsions provide higher radical scavenging activity than the EO nanoemulsions. In addition, in vitro bioaccessibility of curcumin after in vitro simulated intestinal digestion was calculated as 35.5%. Gas chromatography results of the digested nanoemulsions revealed that curcumin addition decreases oleic acid release while increasing stearidonic acid (SDA) release. Curcumin addition increased antioxidant activities of EO nanoemulsions. Curcumin incorporated nanoemulsions had significantly higher SDA content after in vitro digestion. In nanoemulsion form, in vitro curcumin bioaccessibility was 35.5%.
Collapse
|
9
|
Ye Z, Yu J, Yan W, Zhang J, Yang D, Yao G, Liu Z, Wu Y, Hou X. Integrative iTRAQ-based proteomic and transcriptomic analysis reveals the accumulation patterns of key metabolites associated with oil quality during seed ripening of Camellia oleifera. HORTICULTURE RESEARCH 2021; 8:157. [PMID: 34193845 PMCID: PMC8245520 DOI: 10.1038/s41438-021-00591-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 05/12/2023]
Abstract
Camellia oleifera (C. oleifera) is one of the four major woody oil-bearing crops in the world and has relatively high ecological, economic, and medicinal value. Its seeds undergo a series of complex physiological and biochemical changes during ripening, which is mainly manifested as the accumulation and transformation of certain metabolites closely related to oil quality, especially flavonoids and fatty acids. To obtain new insights into the underlying molecular mechanisms, a parallel analysis of the transcriptome and proteome profiles of C. oleifera seeds at different maturity levels was conducted using RNA sequencing (RNA-seq) and isobaric tags for relative and absolute quantification (iTRAQ) complemented with gas chromatography-mass spectrometry (GC-MS) data. A total of 16,530 transcripts and 1228 proteins were recognized with significant differential abundances in pairwise comparisons of samples at various developmental stages. Among these, 317 were coexpressed with a poor correlation, and most were involved in metabolic processes, including fatty acid metabolism, α-linolenic acid metabolism, and glutathione metabolism. In addition, the content of total flavonoids decreased gradually with seed maturity, and the levels of fatty acids generally peaked at the fat accumulation stage; these results basically agreed with the regulation patterns of genes or proteins in the corresponding pathways. The expression levels of proteins annotated as upstream candidates of phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS) as well as their cognate transcripts were positively correlated with the variation in the flavonoid content, while shikimate O-hydroxycinnamoyltransferase (HCT)-encoding genes had the opposite pattern. The increase in the abundance of proteins and mRNAs corresponding to alcohol dehydrogenase (ADH) was associated with a reduction in linoleic acid synthesis. Using weighted gene coexpression network analysis (WGCNA), we further identified six unique modules related to flavonoid, oil, and fatty acid anabolism that contained hub genes or proteins similar to transcription factors (TFs), such as MADS intervening keratin-like and C-terminal (MIKC_MADS), type-B authentic response regulator (ARR-B), and basic helix-loop-helix (bHLH). Finally, based on the known metabolic pathways and WGCNA combined with the correlation analysis, five coexpressed transcripts and proteins composed of cinnamyl-alcohol dehydrogenases (CADs), caffeic acid 3-O-methyltransferase (COMT), flavonol synthase (FLS), and 4-coumarate: CoA ligase (4CL) were screened out. With this exploratory multiomics dataset, our results presented a dynamic picture regarding the maturation process of C. oleifera seeds on Hainan Island, not only revealing the temporal specific expression of key candidate genes and proteins but also providing a scientific basis for the genetic improvement of this tree species.
Collapse
Affiliation(s)
- Zhouchen Ye
- College of Horticulture, Hainan University, Haikou, China
| | - Jing Yu
- College of Horticulture, Hainan University, Haikou, China
| | - Wuping Yan
- College of Horticulture, Hainan University, Haikou, China
| | - Junfeng Zhang
- College of Horticulture, Hainan University, Haikou, China
| | - Dongmei Yang
- College of Horticulture, Hainan University, Haikou, China
| | - Guanglong Yao
- College of Horticulture, Hainan University, Haikou, China
| | - Zijin Liu
- College of Horticulture, Hainan University, Haikou, China
| | - Yougen Wu
- College of Horticulture, Hainan University, Haikou, China.
| | - Xilin Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of the P.R. China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P.R. China, Institute of Plasma Engineering, Nanjing, China.
| |
Collapse
|
10
|
Assessment of genetic diversity and population structure among a collection of Korean Perilla germplasms based on SSR markers. Genes Genomics 2020; 42:1419-1430. [PMID: 33113112 DOI: 10.1007/s13258-020-01013-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/16/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Information on the genetic variation of genetic resource collections is very important for both the conservation and utilization of crop germplasms in genebanks. Var. frutescens of Perilla crop is extensively cultivated in South Korea as both an oil crop and a vegetable crop. OBJECTIVES We used SSR markers to evaluate the genetic diversity, genetic relationships, and population structure of 155 accessions of var. frutescens that have been selected as genetic resources for the development of leaf vegetable cultivars and preserved in the RDA-Genebank collection from South Korea. METHODS A total of 155 accessions of var. frutescens of Perilla crop collected in South Korea were obtained from the RDA-Genebank of the Republic of Korea. We selected 20 SSR markers representing the polymorphism of and adequately amplifying all the Perilla accessions. RESULTS The average GD and PIC values were 0.642 and 0.592, respectively, with ranges of 0.244-0.935 and 0.232- 0.931. The genetic variability in the southern region of South Korea was higher than that in the central region. The clustering patterns were not clearly distinguished between the accessions of var. frutescens from the central and southern regions of South Korea. CONCLUSION These results regarding the genetic diversity and population structure of the 155 accessions of var. frutescens of South Korea provide useful information for understanding the genetic variability of this crop and selecting and managing core germplasm sets in the RDA-Genebank of the Republic of Korea.
Collapse
|
11
|
Zafari M, Ebadi A, Sedghi M, Jahanbakhsh S. Alleviating effect of 24- epibrassinolide on seed oil content and fatty acid composition under drought stress in safflower. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Metabolite Profiling and Chemometric Study for the Discrimination Analyses of Geographic Origin of Perilla ( Perilla frutescens) and Sesame ( Sesamum indicum) Seeds. Foods 2020; 9:foods9080989. [PMID: 32722105 PMCID: PMC7466206 DOI: 10.3390/foods9080989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/22/2022] Open
Abstract
Perilla and sesame are traditional sources of edible oils in Asian and African countries. In addition, perilla and sesame seeds are rich sources of health-promoting compounds, such as fatty acids, tocopherols, phytosterols and policosanols. Thus, developing a method to determine the geographic origin of these seeds is important for ensuring authenticity, safety and traceability and to prevent cheating. We aimed to develop a discriminatory predictive model for determining the geographic origin of perilla and sesame seeds using comprehensive metabolite profiling coupled with chemometrics. The orthogonal partial least squares-discriminant analysis models were well established with good validation values (Q2 = 0.761 to 0.799). Perilla and sesame seed samples used in this study showed a clear separation between Korea and China as geographic origins in our predictive models. We found that glycolic acid could be a potential biomarker for perilla seeds and proline and glycine for sesame seeds. Our findings provide a comprehensive quality assessment of perilla and sesame seeds. We believe that our models can be used for regional authentication of perilla and sesame seeds cultivated in diverse geographic regions.
Collapse
|
13
|
Prasad P, Anjali P, Sreedhar RV. Plant-based stearidonic acid as sustainable source of omega-3 fatty acid with functional outcomes on human health. Crit Rev Food Sci Nutr 2020; 61:1725-1737. [PMID: 32431176 DOI: 10.1080/10408398.2020.1765137] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dietary omega-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA) like eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) are known to be potent biological regulators with therapeutic and preventive effects on human health. Many global health organizations have recommended consuming marine based omega-3 sources for neonatal brain development and reducing the risk of various chronic diseases. However, due to concerns regarding the origin, sustainable supply and safety of the marine sources, alternative n-3 PUFA sources are being explored. Recently, plant-based omega-3 sources are gaining much importance because of their sustainable supply and dietary acceptance. α-linolenic acid (ALA, 18:3n-3) rich seed oils are the major omega-3 fatty acid source available for human consumption. But, efficiency of conversion of ALA to n-3 LC-PUFAs in humans is limited due to a rate-limiting step in the n-3 pathway catalyzed by Δ6-desaturase. Botanical stearidonic acid (SDA, 18:4n-3) rich oils are emerging as a sustainable omega-3 source with efficient conversion rate to n-3 LC-PUFA especially to EPA, as it bypasses the Δ6-desaturase rate limiting step. Several recent studies have identified the major plant sources of SDA and explored its potential health benefits and preventive roles in inflammation, cardiovascular disease (CVD) and cancer. This systematic review summarizes the current state of knowledge on the sources, nutraceutical roles, food-based applications and the future perspectives of botanical SDA.
Collapse
Affiliation(s)
- P Prasad
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - P Anjali
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - R V Sreedhar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
14
|
Calanus oil in the treatment of obesity-related low-grade inflammation, insulin resistance, and atherosclerosis. Appl Microbiol Biotechnol 2019; 104:967-979. [PMID: 31853565 DOI: 10.1007/s00253-019-10293-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/23/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022]
Abstract
Calanus oil (COil) is a natural product extracted from marine zooplankton Calanus finmarchicus found in the North Atlantic Ocean. This oil is rich in wax esters of polyunsaturated fatty acids (PUFAs) and has been projected as the best alternative to fish oil because its production cannot keep pace with the demands from the growing markets. The COil is the only commercially available marine source of wax esters, whereas classic ω-3 PUFAs comes from triglycerides, ethyl esters, and phospholipids. It has, in recent decades, been seen that there is an unprecedented rise in the use of PUFA-rich oil in the aquaculture industry. A simultaneous rise in the demand of PUFAs is also observed in the health care industry, where PUFAs are suggested preventing various disorders related to lifestyles such as obesity, diabetes mellitus, chronic low-grade inflammation, atherosclerosis, and brain and cardiovascular disorders (CVDs). In this review, we will explore the metabolic aspects related to the use of COil as an antioxidant, anticholesterinemic, and anti-inflammatory dietary source and its impact on the prevention and therapy of obesity-related metabolic disorders.
Collapse
|