1
|
Egea I, Barragán-Lozano T, Estrada Y, Jáquez-Gutiérrez M, Plasencia FA, Atarés A, Garcia-Sogo B, Capel C, Yuste-Lisbona FJ, Egea-Sánchez JM, Flores FB, Angosto T, Moreno V, Lozano R, Pineda B. Respiratory burst oxidase G (SlRBOHG): A key regulator of H 2O 2-Mediated Na + homeostasis and salt tolerance in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109683. [PMID: 40037174 DOI: 10.1016/j.plaphy.2025.109683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/11/2025] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
Regulation of sodium homeostasis is vital for plant responses to salinity. In this study, we characterized two allelic tomato mutants, sodium gatherer1-2 (sga1-2), which show extreme salt sensitivity. The mutants display early severe chlorosis, swelling of aerial parts, and eventual leaf desiccation, leading to plant death. Mapping-by-sequencing identified mutations in the SlRBOHG gene, encoding a plasma membrane NADPH oxidase, as the cause of this phenotype. To the best of our knowledge, these are the first RBOH gene family knockout mutants identified in tomato to date. Physiological analyses revealed that sga1-2 mutants exhibit significantly increased Na + transport from roots to shoots, reduced K+ uptake, and extremely high Na+/K+ ratios, particularly in the shoots, explaining their salt hypersensitivity. CRISPR/Cas9 knockouts of SlRBOHG reproduced the sga1-2 mutant phenotype and exhibited the same ion homeostasis alterations. At the molecular level, sga1-2 mutants show reduced expression of key Na + transporter genes, including SlSOS1, SlHKT1s, and SlNHXs. Additionally, while wild-type plants (WT) show an increase in H2O2 concentration in the roots following salt treatment, the mutants do not exhibit this response. The inhibition of salinity-induced H2O2 increase in WT plants, using the NADPH oxidase inhibitor DPI, also led to the suppression of SlHKT1;2 gene expression, which was associated with Na+ accumulation in the leaves. However, the treatment of WT plant with DPI did not alter K+ homeostasis. These findings demonstrate that SlRBOHG-mediated H2O2 production is critical for conferring salt tolerance in tomato plants, mainly by activating mechanisms that maintain Na+ homeostasis in the plant.
Collapse
Affiliation(s)
- Isabel Egea
- Centro de Edafología y Biología Aplicada Del Segura, Consejo Superior de Investigaciones Científicas, Espinardo, Murcia, 30100, Spain.
| | - Teresa Barragán-Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, 04120 Almería, Spain.
| | - Yanira Estrada
- Centro de Edafología y Biología Aplicada Del Segura, Consejo Superior de Investigaciones Científicas, Espinardo, Murcia, 30100, Spain.
| | - Marybel Jáquez-Gutiérrez
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, 46011 Valencia, Spain.
| | - Félix Antonio Plasencia
- Centro de Edafología y Biología Aplicada Del Segura, Consejo Superior de Investigaciones Científicas, Espinardo, Murcia, 30100, Spain.
| | - Alejandro Atarés
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, 46011 Valencia, Spain.
| | - Begoña Garcia-Sogo
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, 46011 Valencia, Spain.
| | - Carmen Capel
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, 04120 Almería, Spain.
| | - Fernando J Yuste-Lisbona
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, 04120 Almería, Spain.
| | - José María Egea-Sánchez
- Centro de Edafología y Biología Aplicada Del Segura, Consejo Superior de Investigaciones Científicas, Espinardo, Murcia, 30100, Spain.
| | - Francisco Borja Flores
- Centro de Edafología y Biología Aplicada Del Segura, Consejo Superior de Investigaciones Científicas, Espinardo, Murcia, 30100, Spain.
| | - Trinidad Angosto
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, 04120 Almería, Spain.
| | - Vicente Moreno
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, 46011 Valencia, Spain.
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, 04120 Almería, Spain.
| | - Benito Pineda
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, 46011 Valencia, Spain.
| |
Collapse
|
2
|
Alizadeh-Moghaddam G, Nasr-Esfahani M, Rezayatmand Z, Khozaei M. Genomic markers analysis associated with resistance to Alternaria alternata (fr.) keissler-tomato pathotype, Solanum lycopersicum L. BREEDING SCIENCE 2022; 72:285-296. [PMID: 36699824 PMCID: PMC9868332 DOI: 10.1270/jsbbs.22003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/09/2022] [Indexed: 05/19/2023]
Abstract
Alternaria alternata, the causal pathogen of early blight (EB) disease, is one of the most important diseases in tomato, and other solanaceae family. We analyzed 35 tomato genotypes for quantitative/qualitative traits and biomass growth parameters, as well as the extent and structure of genetic variation associated with EB resistance. Phenotypic comparisons displayed significant differences in leaf blade width (24.95%), stem thickness (30.28%), foliage density (18.88%), and plant size (18.89%), with significant positive correlations with EB resistance (0.18-0.75). Correlation analysis showed that mature fruit size, thickness of fruit pericarp, and leaf type were significantly and negatively correlated with EB resistance (up to -0.41). The susceptible tomato seedlings represented significant reductions in biomass parameters. According to ISSR analysis, the highest resolving power (≥0.79) and heterozygosity (≥0.24) values revealed the presence of high genetic variability among the tomato genotypes. Bayesian model-based STRUCTURE analysis assembled the genotypes into 4 (best ΔK = 4) genetic groups. Combined phenotypic and molecular markers proved to be significantly useful for genetic diversity assessment associated with EB disease resistance.
Collapse
Affiliation(s)
- Giti Alizadeh-Moghaddam
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, 84517-31167, Iran
- Corresponding author (e-mail: )
| | - Mehdi Nasr-Esfahani
- Department of Plant Protection Research, Isfahan Agricultural and Natural Resources Research and Education Center, AREEO, Isfahan, Iran
| | - Zahra Rezayatmand
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, 84517-31167, Iran
| | - Mahdi Khozaei
- Plant Biotechnology, Department of Biology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
3
|
Campos MD, Félix MDR, Patanita M, Materatski P, Varanda C. High throughput sequencing unravels tomato-pathogen interactions towards a sustainable plant breeding. HORTICULTURE RESEARCH 2021; 8:171. [PMID: 34333540 PMCID: PMC8325677 DOI: 10.1038/s41438-021-00607-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 05/24/2023]
Abstract
Tomato (Solanum lycopersicum) is one of the most economically important vegetables throughout the world. It is one of the best studied cultivated dicotyledonous plants, often used as a model system for plant research into classical genetics, cytogenetics, molecular genetics, and molecular biology. Tomato plants are affected by different pathogens such as viruses, viroids, fungi, oomycetes, bacteria, and nematodes, that reduce yield and affect product quality. The study of tomato as a plant-pathogen system helps to accelerate the discovery and understanding of the molecular mechanisms underlying disease resistance and offers the opportunity of improving the yield and quality of their edible products. The use of functional genomics has contributed to this purpose through both traditional and recently developed techniques, that allow the identification of plant key functional genes in susceptible and resistant responses, and the understanding of the molecular basis of compatible interactions during pathogen attack. Next-generation sequencing technologies (NGS), which produce massive quantities of sequencing data, have greatly accelerated research in biological sciences and offer great opportunities to better understand the molecular networks of plant-pathogen interactions. In this review, we summarize important research that used high-throughput RNA-seq technology to obtain transcriptome changes in tomato plants in response to a wide range of pathogens such as viruses, fungi, bacteria, oomycetes, and nematodes. These findings will facilitate genetic engineering efforts to incorporate new sources of resistance in tomato for protection against pathogens and are of major importance for sustainable plant-disease management, namely the ones relying on the plant's innate immune mechanisms in view of plant breeding.
Collapse
Affiliation(s)
- Maria Doroteia Campos
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal.
| | - Maria do Rosário Félix
- MED - Mediterranean Institute for Agriculture, Environment and Development & Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | - Mariana Patanita
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | - Patrick Materatski
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | - Carla Varanda
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| |
Collapse
|
4
|
Zhang S, Yu Z, Qi X, Wang Z, Zheng Y, Ren H, Liang S, Zheng X. Construction of a High-Density Genetic Map and Identification of Leaf Trait-Related QTLs in Chinese Bayberry ( Myrica rubra). FRONTIERS IN PLANT SCIENCE 2021; 12:675855. [PMID: 34194452 PMCID: PMC8238045 DOI: 10.3389/fpls.2021.675855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Chinese bayberry (Myrica rubra) is an economically important fruit tree that is grown in southern China. Owing to its over 10-year seedling period, the crossbreeding of bayberry is challenging. The characteristics of plant leaves are among the primary factors that control plant architecture and potential yields, making the analysis of leaf trait-related genetic factors crucial to the hybrid breeding of any plant. In the present study, molecular markers associated with leaf traits were identified via a whole-genome re-sequencing approach, and a genetic map was thereby constructed. In total, this effort yielded 902.11 Gb of raw data that led to the identification of 2,242,353 single nucleotide polymorphisms (SNPs) in 140 F1 individuals and parents (Myrica rubra cv. Biqizhong × Myrica rubra cv. 2012LXRM). The final genetic map ultimately incorporated 31,431 SNPs in eight linkage groups, spanning 1,351.85 cM. This map was then used to assemble and update previous scaffold genomic data at the chromosomal level. The genome size of M. rubra was thereby established to be 275.37 Mb, with 94.98% of sequences being assembled into eight pseudo-chromosomes. Additionally, 18 quantitative trait loci (QTLs) associated with nine leaf and growth-related traits were identified. Two QTL clusters were detected (the LG3 and LG5 clusters). Functional annotations further suggested two chlorophyll content-related candidate genes being identified in the LG5 cluster. Overall, this is the first study on the QTL mapping and identification of loci responsible for the regulation of leaf traits in M. rubra, offering an invaluable scientific for future marker-assisted selection breeding and candidate gene analyses.
Collapse
Affiliation(s)
| | | | - Xingjiang Qi
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
5
|
Sánchez-López J, Atarés A, Jáquez-Gutiérrez M, Ortiz-Atienza A, Capel C, Pineda B, García-Sogo B, Yuste-Lisbona FJ, Lozano R, Moreno V. Approaching the genetic dissection of indirect adventitious organogenesis process in tomato explants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110721. [PMID: 33288027 DOI: 10.1016/j.plantsci.2020.110721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/11/2020] [Accepted: 10/12/2020] [Indexed: 06/12/2023]
Abstract
The screening of 862 T-DNA lines was carried out to approach the genetic dissection of indirect adventitious organogenesis in tomato. Several mutants defective in different phases of adventitious organogenesis, namely callus growth (tdc-1), bud differentiation (tdb-1, -2, -3) and shoot-bud development (tds-1) were identified and characterized. The alteration of the TDC-1 gene blocked callus proliferation depending on the composition of growth regulators in the culture medium. Calli from tds-1 explants differentiated buds but did not develop normal shoots. Histological analysis showed that their abnormal development is due to failure in the organization of normal adventitious shoot meristems. Interestingly, tdc-1 and tds-1 mutant plants were indistinguishable from WT ones, indicating that the respective altered genes play specific roles in cell proliferation from explant cut zones (TDC-1 gene) or in the organization of adventitious shoot meristems (TDS-1 gene). Unlike the previous, plants of the three mutants defective in the differentiation of adventitious shoot-buds (tdb-1, -2, -3) showed multiple changes in vegetative and reproductive traits. Cosegregation analyses revealed the existence of an association between the phenotype of the tdb-3 mutant and a T-DNA insert, which led to the discovery that the SlMAPKKK17 gene is involved in the shoot-bud differentiation process.
Collapse
Affiliation(s)
- Jorge Sánchez-López
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46011, Valencia, Spain
| | - Alejandro Atarés
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46011, Valencia, Spain
| | - Marybel Jáquez-Gutiérrez
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46011, Valencia, Spain
| | - Ana Ortiz-Atienza
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL). Universidad de Almería, 04120-Almería, Spain
| | - Carmen Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL). Universidad de Almería, 04120-Almería, Spain
| | - Benito Pineda
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46011, Valencia, Spain
| | - Begoña García-Sogo
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46011, Valencia, Spain
| | - Fernando J Yuste-Lisbona
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL). Universidad de Almería, 04120-Almería, Spain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL). Universidad de Almería, 04120-Almería, Spain
| | - Vicente Moreno
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46011, Valencia, Spain.
| |
Collapse
|
6
|
Yang Q, Wan X, Wang J, Zhang Y, Zhang J, Wang T, Yang C, Ye Z. The loss of function of HEL, which encodes a cellulose synthase interactive protein, causes helical and vine-like growth of tomato. HORTICULTURE RESEARCH 2020; 7:180. [PMID: 33328443 PMCID: PMC7603515 DOI: 10.1038/s41438-020-00402-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 05/08/2023]
Abstract
Helical growth is an economical way for plant to obtain resources. The classic microtubule-microfibril alignment model of Arabidopsis helical growth involves restriction of the appropriate orientation of cellulose microfibrils appropriately in the cell walls. However, the molecular mechanism underlying tomato helical growth remains unknown. Here, we identified a spontaneous tomato helical (hel) mutant with right-handed helical cotyledons and petals but left-handed helical stems and true leaves. Genetic analysis revealed that the hel phenotype was controlled by a single recessive gene. Using map-based cloning, we cloned the HEL gene, which encodes a cellulose interacting protein homologous to CSI1 of Arabidopsis. We identified a 27 bp fragment replacement that generated a premature stop codon. Transgenic experiments showed that the helical growth phenotype could be restored by the allele of this gene from wild-type Pyriforme. In contrast, the knockout mutation of HEL in Pyriforme via CRISPR/Cas9 resulted in helical growth. These findings shed light on the molecular control of the helical growth of tomato.
Collapse
Affiliation(s)
- Qihong Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoshuai Wan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiaying Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Taotao Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changxian Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
7
|
Das I, Hazra P, Longjam M, Bhattacharjee T, Maurya PK, Banerjee S, Chattopadhyay A. Genetic control of reproductive and fruit quality traits in crosses involving cultivars and induced mutants of tomato (Solanum lycopersicum L.). J Genet 2020. [DOI: 10.1007/s12041-020-01209-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|