1
|
Kordi M, Farrokhi N, Ahmadikhah A, Ingvarsson PK, Saidi A, Jahanfar M. Genome-wide association study of rice (Oryza sativa L.) inflorescence architecture. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112382. [PMID: 39798670 DOI: 10.1016/j.plantsci.2024.112382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/13/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025]
Abstract
Rice yield strongly depends on panicle size and architecture but the genetics underlying these traits and their coordination with environmental cues through various signaling pathways have remained elusive. A genome-wide association study (GWAS) was performed to pinpoint the underlying genetic determinants for rice panicle architecture by analyzing 20 panicle-related traits using a data set consisting of 44,100 SNPs. We defined QTL windows around significant SNPs by the rate of LD decay for each chromosome and used these windows to identify putative candidate genes associated with the trait. Using a publicly available RNA-seq data set we performed analyses to identify the differentially expressed genes between stem and panicle with putative functions in panicle architecture. In total, 52 significant SNPs were identified, corresponding to 41 unique QTLs across the 12 rice chromosomes, with the most signals appearing on chromosome 1 (nine associated SNPs), and seven significant SNPs for each of chromosomes 8 and 12. Some novel genes such as Ankyrin, Duf, Kinesin and Brassinosteroid insensitive were found to be associated with panicle size. A haplotype analysis showed that genetic variation in haplotypes qMIL2 and qNSBBH21 were related to two traits, MIL, the greatest distance between two nodes on the rachis, and NSBBH, the number of primary branches in the bottom half of a panicle, respectively. Analysis of epistatic interactions revealed a marker affecting clustered traits. Several QTLs were identified on different chromosomes for the first time which may explain the phenotypic diversity of rice panicle architecture we observe in our collection of accessions. The identified candidate genes and haplotypes could be used in marker-assisted selection to improve rice yield through gene pyramiding.
Collapse
Affiliation(s)
- Masoumeh Kordi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Naser Farrokhi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Asadollah Ahmadikhah
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Pär K Ingvarsson
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Abbas Saidi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mehdi Jahanfar
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
2
|
Chen H, Chen X, Li X, Lin X, Yue L, Liu C, Li Y. Growth and physiological response of Yulu Hippophae rhamnoides to drought stress and its omics analysis. PLANT SIGNALING & BEHAVIOR 2024; 19:2439256. [PMID: 39653502 PMCID: PMC11633206 DOI: 10.1080/15592324.2024.2439256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Hippophae rhamnoides (H. rhamnoides) is the primary tree species known for its ecological and economic benefits in arid and semi-arid regions. Understanding the response of H. rhamnoides roots to drought stress is essential for promoting the development of varieties. One-year-old Yulu H. rhamnoides was utilized as the experimental material, and three water gradients were established: control (CK), moderate (T1) and severe (T2), over a period of 120 days. The phenotypic traits and physiological indies were assessed and analyzed, while the roots were subjected by RNA-Seq transcriptome and Tandem Mass Tags (TMT) proteome analysis. Drought stress significantly reduced the plant height, ground diameter, root biomass and superoxide dismutase activity; however, the main root length increased. In comparison with CK, a total of 5789 and 5594 differential genes, as well as 63 and 1012 differential proteins, were identified in T1 and T2, respectively. The combined analysis of transcriptome and proteome showed that the number of differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) associated with T1, T2 and CK was 28 and 126, respectively, with 7 and 36 genes achieving effective KEGG annotation. In T1 and T2, the differential genes were significantly enriched in the plant hormone signal transduction pathway, but there was no significant enrichment in the protein expression profile. In T2, 38 plant hormone signal transduction function genes and 10 peroxisome related genes were identified. With the increase of drought stress, the combined expression of DEGs and DEPs increased. Yulu H. rhamnoides may allocate more resources toward CAT while simultaneously decreasing SOD and POD to mitigate the oxidative stress induced by drought. Furthermore, the molecular mechanisms underlying plant hormone signal transduction and peroxisome-related genes in the roots of H. rhamnoides were discussed in greater detail.
Collapse
Affiliation(s)
- Haipeng Chen
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaolin Chen
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaogang Li
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Xin Lin
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Lihua Yue
- Technical Center, Chengde Astronaut Mountainous Plant Technology Co. Ltd. Chengde, Hebei, China
| | - Chunhai Liu
- Technical Center, Chengde Astronaut Mountainous Plant Technology Co. Ltd. Chengde, Hebei, China
| | - Yuling Li
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
3
|
Heidari P, Rezaee S, Hosseini Pouya HS, Mora-Poblete F. Insights into the Heat Shock Protein 70 (Hsp70) Family in Camelina sativa and Its Roles in Response to Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:3410. [PMID: 39683203 DOI: 10.3390/plants13233410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]
Abstract
Hsp70s, a group of heat shock proteins, are ancient proteins that play a crucial part in maintaining the stability of cells when faced with various internal and external stresses. In this research, there are 72 CsHSP70 genes present and verified in Camelina sativa, all of which exhibit a wide range of physicochemical characteristics. Through evolutionary analysis, the Hsp70 family was categorized into five primary groups, and numerous segmental duplications were anticipated among the CsHSP70 genes. The GO enrichment analysis of co-expression network elements revealed a significant association between key signaling terms, such as phosphorelay signal transduction, and MAPK cascade with the function of CsHsp70. An analysis of transcriptome data exposed to cold, drought, salinity, and cadmium stress demonstrated the varied expression profiles of CsHsp70 genes. The expression levels of CsHSP70 genes varied across various organs and stages of development in camelina, although some of them illustrated tissue-specific expression. qRT-PCR analysis further disclosed that CsHsp70-60, -52, and -13 were up-regulated and CsHsp70-03, -58, and -09 showed down-regulation in response to salinity. Furthermore, CsHsp70 genes are categorized as late-responsive elements to salinity stress. Through docking analysis, the current research revealed that CsHsp70 proteins interacted with ABA, BR, and MeJA.
Collapse
Affiliation(s)
- Parviz Heidari
- Faculty of Agriculture, Shahrood University of Technology, Shahrood 3619995161, Iran
| | - Sadra Rezaee
- Faculty of Agriculture, Shahrood University of Technology, Shahrood 3619995161, Iran
| | | | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3460000, Chile
| |
Collapse
|
4
|
Lin M, Bacher H, Bourgault R, Qiao P, Matschi S, Vasquez MF, Mohammadi M, van Boerdonk S, Scanlon MJ, Smith LG, Molina I, Gore MA. Integrative multi-omic analysis identifies genes associated with cuticular wax biogenesis in adult maize leaves. G3 (BETHESDA, MD.) 2024; 14:jkae241. [PMID: 39387497 PMCID: PMC11631437 DOI: 10.1093/g3journal/jkae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Studying the genetic basis of leaf wax composition and its correlation with leaf cuticular conductance (gc) is crucial for improving crop productivity. The leaf cuticle, which comprises a cutin matrix and various waxes, functions as an extracellular hydrophobic layer, protecting against water loss upon stomatal closure. To address the limited understanding of genes associated with the natural variation of adult leaf cuticular waxes and their connection to gc, we conducted statistical genetic analyses using leaf transcriptomic, metabolomic, and physiological data sets collected from a maize (Zea mays L.) panel of ∼300 inbred lines. Through a random forest analysis with 60 cuticular wax traits, it was shown that high molecular weight wax esters play an important role in predicting gc. Integrating results from genome-wide and transcriptome-wide studies (GWAS and TWAS) via a Fisher's combined test revealed 231 candidate genes detected by all three association tests. Among these, 11 genes exhibit known or predicted roles in cuticle-related processes. Throughout the genome, multiple hotspots consisting of GWAS signals for several traits from one or more wax classes were discovered, identifying four additional plausible candidate genes and providing insights into the genetic basis of correlated wax traits. Establishing a partially shared genetic architecture, we identified 35 genes for both gc and at least one wax trait, with four considered plausible candidates. Our study enhances the understanding of how adult leaf cuticle wax composition relates to gc and implicates both known and novel candidate genes as potential targets for optimizing productivity in maize.
Collapse
Affiliation(s)
- Meng Lin
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Harel Bacher
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Richard Bourgault
- Department of Biology, Algoma University, Sault Ste. Marie, ON P6A 2G4, Canada
| | - Pengfei Qiao
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Susanne Matschi
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Miguel F Vasquez
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Marc Mohammadi
- Department of Biology, Algoma University, Sault Ste. Marie, ON P6A 2G4, Canada
| | - Sarah van Boerdonk
- Department of Biology, Algoma University, Sault Ste. Marie, ON P6A 2G4, Canada
| | - Michael J Scanlon
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Laurie G Smith
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Isabel Molina
- Department of Biology, Algoma University, Sault Ste. Marie, ON P6A 2G4, Canada
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
5
|
Gao Y, Ma X, Zhang Z, Wang Y. Transcription factors and plant hormones mediate wax metabolism in response to drought stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14478. [PMID: 39149803 DOI: 10.1111/ppl.14478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 08/17/2024]
Abstract
Plants have, throughout evolution, developed a hydrophobic cuticle to protect them from various stresses in the terrestrial environment. The cuticle layer is mainly composed of cutin and cuticular wax, a mixture of very-long-chain fatty acids and their derivatives. With the progress of transcriptome sequencing and other research methods, the key enzymes, transporters and regulatory factors in wax synthesis and metabolism have been gradually identified, especially the study on the regulation of wax metabolism by transcription factors and others in response to plant stress has become a hot topic. Drought is a major abiotic stress that limits plant growth and crop productivity. Plant epidermal wax prevents non-stomatal water loss and improves water use efficiency to adapt to arid environments. In this study, the ways of wax synthesis, transport, metabolism and regulation at different levels are reviewed. At the same time, the regulation of wax by different transcription factors and plant hormones in response to drought is elaborated, and key research questions and important directions for future solutions are proposed to enhance the potential application of epidermal wax in agriculture and the environment.
Collapse
Affiliation(s)
- Yanlong Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xiaolan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhongxing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yanxiu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
6
|
Seay D, Szczepanek A, De La Fuente GN, Votava E, Abdel-Haleem H. Genetic Diversity and Population Structure of a Large USDA Sesame Collection. PLANTS (BASEL, SWITZERLAND) 2024; 13:1765. [PMID: 38999604 PMCID: PMC11243581 DOI: 10.3390/plants13131765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024]
Abstract
Sesame, Sesamum indicum L., is one of the oldest domesticated crops used for its oil and protein in many parts of the world. To build genomic resources for sesame that could be used to improve sesame productivity and responses to stresses, a USDA sesame germplasm collection of 501 accessions originating from 36 countries was used in this study. The panel was genotyped using genotyping-by-sequencing (GBS) technology to explore its genetic diversity and population structure and the relatedness among its accessions. A total of 24,735 high-quality single-nucleotide polymorphism (SNP) markers were identified over the 13 chromosomes. The marker density was 1900 SNP per chromosome, with an average polymorphism information content (PIC) value of 0.267. The marker polymorphisms and heterozygosity estimators indicated the usefulness of the identified SNPs to be used in future genetic studies and breeding activities. The population structure, principal components analysis (PCA), and unrooted neighbor-joining phylogenetic tree analyses classified two distinct subpopulations, indicating a wide genetic diversity within the USDA sesame collection. Analysis of molecular variance (AMOVA) revealed that 29.5% of the variation in this population was due to subpopulations, while 57.5% of the variation was due to variation among the accessions within the subpopulations. These results showed the degree of differentiation between the two subpopulations as well as within each subpopulation. The high fixation index (FST) between the distinguished subpopulations indicates a wide genetic diversity and high genetic differentiation among and within the identified subpopulations. The linkage disequilibrium (LD) pattern averaged 161 Kbp for the whole sesame genome, while the LD decay ranged from 168 Kbp at chromosome LG09 to 123 Kbp in chromosome LG05. These findings could explain the complications of linkage drag among the traits during selections. The selected accessions and genotyped SNPs provide tools to enhance genetic gain in sesame breeding programs through molecular approaches.
Collapse
Affiliation(s)
- Damien Seay
- US Arid Land Agricultural Research Center, USDA ARS, Maricopa, AZ 85138, USA
| | - Aaron Szczepanek
- US Arid Land Agricultural Research Center, USDA ARS, Maricopa, AZ 85138, USA
| | | | - Eric Votava
- Sesaco Corporation, 5405 Bandera Rd. San Antonio, TX 78238, USA
| | | |
Collapse
|
7
|
Luo W, Gonzalez E, Zarei A, Calleja S, Rozzi B, Demieville J, Li H, Truco MJ, Lavelle D, Michelmore R, Dyer JM, Jenks MA, Pauli D. Leaf cuticular wax composition of a genetically diverse collection of lettuce ( Lactuca sativa L.) cultivars evaluated under field conditions. Heliyon 2024; 10:e27226. [PMID: 38463774 PMCID: PMC10923717 DOI: 10.1016/j.heliyon.2024.e27226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/15/2023] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Cuticular waxes of plants impart tolerance to many forms of environmental stress and help shed dangerous human pathogens on edible plant parts. Although the chemical composition of waxes on a wide variety of important crops has been described, a detailed wax compositional analysis has yet to be reported for lettuce (Lactuca sativa L.), one of the most widely consumed vegetables. We present herein the leaf wax content and composition of 12 genetically diverse lettuce cultivars sampled across five time points during their vegetative growth phase in the field. Mean total leaf wax amounts across all cultivars varied little over 28 days of vegetative growth, except for a notable decrease in total waxes following a major precipitation event, presumably due to wax degradation from wind and rain. All lettuce cultivars were found to contain a unique wax composition highly enriched in 22- and 24-carbon length 1-alcohols (docosanol and tetracosanol, respectively). In our report, the dominance of these shorter chain length 1-alcohols as wax constituents represents a relatively rare phenotype in plants. The ecological significance of these dominant and relatively short 1-alcohols is still unknown. Although waxes have been a target for improvement of various crops, no such work has been reported for lettuce. This study lays the groundwork for future research that aims to integrate cuticular wax characteristics of field grown plants into the larger context of lettuce breeding and cultivar development.
Collapse
Affiliation(s)
- Wenting Luo
- Departments of Mathematics and Biosystems Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Emmanuel Gonzalez
- The School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Ariyan Zarei
- Department of Computer Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Sebastian Calleja
- The School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Bruno Rozzi
- The School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Jeffrey Demieville
- The School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Haiquan Li
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Maria-Jose Truco
- Department of Plant Sciences, University of California - Davis, Davis, CA, 95616, USA
| | - Dean Lavelle
- Department of Plant Sciences, University of California - Davis, Davis, CA, 95616, USA
| | - Richard Michelmore
- Department of Plant Sciences, University of California - Davis, Davis, CA, 95616, USA
| | - John M. Dyer
- U.S. Department of Agriculture, Agricultural Research Service, Albany, CA, 94710, USA
| | - Matthew A. Jenks
- The School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Duke Pauli
- The School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
8
|
Fang C, Hamilton JP, Vaillancourt B, Wang YW, Wood JC, Deans NC, Scroggs T, Carlton L, Mailloux K, Douches DS, Nadakuduti SS, Jiang J, Buell CR. Cold stress induces differential gene expression of retained homeologs in Camelina sativa cv Suneson. FRONTIERS IN PLANT SCIENCE 2023; 14:1271625. [PMID: 38034564 PMCID: PMC10687638 DOI: 10.3389/fpls.2023.1271625] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
Camelina sativa (L.) Crantz, a member of the Brassicaceae, has potential as a biofuel feedstock which is attributable to the production of fatty acids in its seeds, its fast growth cycle, and low input requirements. While a genome assembly is available for camelina, it was generated from short sequence reads and is thus highly fragmented in nature. Using long read sequences, we generated a chromosome-scale, highly contiguous genome assembly (644,491,969 bp) for the spring biotype cultivar 'Suneson' with an N50 contig length of 12,031,512 bp and a scaffold N50 length of 32,184,682 bp. Annotation of protein-coding genes revealed 91,877 genes that encode 133,355 gene models. We identified a total of 4,467 genes that were significantly up-regulated under cold stress which were enriched in gene ontology terms associated with "response to cold" and "response to abiotic stress". Coexpression analyses revealed multiple coexpression modules that were enriched in genes differentially expressed following cold stress that had putative functions involved in stress adaptation, specifically within the plastid. With access to a highly contiguous genome assembly, comparative analyses with Arabidopsis thaliana revealed 23,625 A. thaliana genes syntenic with 45,453 Suneson genes. Of these, 24,960 Suneson genes were syntenic to 8,320 A. thaliana genes reflecting a 3 camelina homeolog to 1 Arabidopsis gene relationship and retention of all three homeologs. Some of the retained triplicated homeologs showed conserved gene expression patterns under control and cold-stressed conditions whereas other triplicated homeologs displayed diverged expression patterns revealing sub- and neo-functionalization of the homeologs at the transcription level. Access to the chromosome-scale assembly of Suneson will enable both basic and applied research efforts in the improvement of camelina as a sustainable biofuel feedstock.
Collapse
Affiliation(s)
- Chao Fang
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - John P. Hamilton
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
- Department of Crop & Soil Sciences, University of Georgia, Athens, GA, United States
| | - Brieanne Vaillancourt
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | - Yi-Wen Wang
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | - Joshua C. Wood
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | - Natalie C. Deans
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | - Taylor Scroggs
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Lemor Carlton
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | - Kathrine Mailloux
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | - David S. Douches
- Department of Plant, Soil & Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Satya Swathi Nadakuduti
- Department of Environmental Horticulture, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - C. Robin Buell
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
- Department of Crop & Soil Sciences, University of Georgia, Athens, GA, United States
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, GA, United States
| |
Collapse
|
9
|
Kurya B, Mia MS, Liu H, Yan G. Genomic Regions, Molecular Markers, and Flanking Genes of Metribuzin Tolerance in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:842191. [PMID: 35665179 PMCID: PMC9161082 DOI: 10.3389/fpls.2022.842191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Understanding the genetics of metribuzin (a group C herbicide) tolerance in wheat is vital in developing tolerant cultivars to improve wheat productivity in dryland farming systems. This study investigated metribuzin tolerance in wheat by conducting a Genome-wide Association Studies (GWAS) with a panel of 150 wheat genotypes of diverse genetic backgrounds and genotyped them with the wheat 90 K SNP genotyping assay. The phenotyping was conducted in a temperature-controlled glasshouse at the University of Western Australia (UWA). Genotypes were sprayed with a metribuzin dose of 400 grams of active ingredient (g. a.i.) ha-1 as pre-emergent in a specialized spraying cabinet and transferred to the glasshouse where the tolerance level of the genotypes was assessed by measuring the relative reduction in chlorophyll content of the leaves. The decrease in chlorophyll content of the treated plants compared to the control was regarded as the phytotoxic effects of metribuzin. GWAS analysis following a mixed linear model revealed 19 genomic regions with significant marker-trait associations (MTAs), including ten on chromosome 6A, three on chromosome 2B, and one on chromosomes 3A, 5B, 6B 6D, 7A, and 7B, respectively. Sequences of the significant markers were blasted against the wheat genome, IWGSC RefSeq V1.0, and candidate genes having annotations related to herbicide tolerance in wheat, especially in pathways reported to be involved in metribuzin tolerance, such as cytochrome P450 pathways and ATP Binding Cassette (ABC) superfamilies, were identified in these genomic regions. These included TraesCS6A01G028800, TraesCS6A02G353700, TraesCS6A01G326200, TraesCS7A02G331000, and TraesCS2B01G465200. These genomic regions were validated on 30 top tolerant and 30 most susceptible genotypes using the five closest SSR makers to the flanked SNPs. Sufficient polymorphism was detected on two markers (wms193 and barc1036) that were found to differentiate between the susceptible and tolerant alleles and a t-test analysis of the phenotypic data shows a significant (value of p < 0.001) difference suggesting that these markers can be used for marker-assisted selection (MAS) in metribuzin studies and wheat breeding programs.
Collapse
Affiliation(s)
- Benjamin Kurya
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Md Sultan Mia
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- Department of Primary Industries and Regional Development (DPIRD), South Perth, WA, Australia
| | - Hui Liu
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Guijun Yan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
10
|
Hazra A, Kumar R, Sengupta C, Das S. Genome-wide SNP discovery from Darjeeling tea cultivars - their functional impacts and application toward population structure and trait associations. Genomics 2020; 113:66-78. [PMID: 33276009 DOI: 10.1016/j.ygeno.2020.11.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/20/2020] [Accepted: 11/29/2020] [Indexed: 01/07/2023]
Abstract
Genotyping by sequencing and identification of functionally relevant nucleotide variations in crop accessions are the key steps to unravel genetic control of desirable traits. Elite cultivars of Darjeeling tea were undergone SNP genotyping by double-digest restriction-site associated DNA sequencing method. This study reports a set of 54,206 high-quality SNP markers discovered from ~10.4 GB sequence data, encompassing 15 chromosomes of the reference tea genome. Genetic relatedness among the accessions conforms to the analyses of Bayesian clustering, UPGMA, and PCoA methods. Genomic positions of the discovered SNPs and their putative effect on annotated genes designated a thoughtful understanding of their functional aspects in tea system biology. A group of 95 genes was identified to be affected by high impact variants. Genome-wide association analyses of 21 agronomic and biochemical phenotypes resulted in trait-linked polymorphic loci with strong confidence (p < 0.05 and 0.001).
Collapse
Affiliation(s)
- Anjan Hazra
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata 700108, India
| | - Rakesh Kumar
- Darjeeling Tea Research and Development center, Kurseong, West Bengal 734203, India
| | - Chandan Sengupta
- Department of Botany, University of Kalyani, Nadia 742325, India
| | - Sauren Das
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata 700108, India.
| |
Collapse
|
11
|
Bragg J, Tomasi P, Zhang L, Williams T, Wood D, Lovell JT, Healey A, Schmutz J, Bonnette JE, Cheng P, Chanbusarakum L, Juenger T, Tobias CM. Environmentally responsive QTL controlling surface wax load in switchgrass. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:3119-3137. [PMID: 32803378 DOI: 10.1007/s00122-020-03659-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE Quantitation of leaf surface wax on a population of switchgrass identified three significant QTL present across six environments that contribute to leaf glaucousness and wax composition and that show complex genetic × environmental (G × E) interactions. The C4 perennial grass Panicum virgatum (switchgrass) is a native species of the North American tallgrass prairie. This adaptable plant can be grown on marginal lands and is useful for soil and water conservation, biomass production, and as a forage. Two major switchgrass ecotypes, lowland and upland, differ in a range of desirable traits, and the responsible underlying loci can be localized efficiently in a pseudotestcross design. An outbred four-way cross (4WCR) mapping population of 750 F2 lines was used to examine the genetic basis of differences in leaf surface wax load between two lowland (AP13 and WBC) and two upland (DAC and VS16) tetraploid cultivars. The objective of our experiments was to identify wax compositional variation among the population founders and to map underlying loci responsible for surface wax variation across environments. GCMS analyses of surface wax extracted from 4WCR F0 founders and F1 hybrids reveal higher levels of wax in lowland genotypes and show quantitative differences of β-diketones, primary alcohols, and other wax constituents. The full mapping population was sampled over two seasons from four field sites with latitudes ranging from 30 to 42 °N, and leaf surface wax was measured. We identified three high-confidence QTL, of which two displayed significant G × E effects. Over 50 candidate genes underlying the QTL regions showed similarity to genes in either Arabidopsis or barley known to function in wax synthesis, modification, regulation, and transport.
Collapse
Affiliation(s)
- Jennifer Bragg
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Albany, CA, USA
| | - Pernell Tomasi
- Arid-Land Agricultural Research Center, Plant Physiology and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Maricopa, AZ, USA
| | - Li Zhang
- Department of Integrative Biology, College of Natural Sciences, University of Texas at Austin, Austin, TX, USA
| | - Tina Williams
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Albany, CA, USA
| | - Delilah Wood
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Albany, CA, USA
| | - John T Lovell
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Adam Healey
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jason E Bonnette
- Department of Integrative Biology, College of Natural Sciences, University of Texas at Austin, Austin, TX, USA
| | - Prisca Cheng
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Albany, CA, USA
| | - Lisa Chanbusarakum
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Albany, CA, USA
| | - Thomas Juenger
- Department of Integrative Biology, College of Natural Sciences, University of Texas at Austin, Austin, TX, USA
| | - Christian M Tobias
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Albany, CA, USA.
| |
Collapse
|
12
|
Genome-Wide Association Study for Maize Leaf Cuticular Conductance Identifies Candidate Genes Involved in the Regulation of Cuticle Development. G3-GENES GENOMES GENETICS 2020; 10:1671-1683. [PMID: 32184371 PMCID: PMC7202004 DOI: 10.1534/g3.119.400884] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The cuticle, a hydrophobic layer of cutin and waxes synthesized by plant epidermal cells, is the major barrier to water loss when stomata are closed at night and under water-limited conditions. Elucidating the genetic architecture of natural variation for leaf cuticular conductance (gc) is important for identifying genes relevant to improving crop productivity in drought-prone environments. To this end, we conducted a genome-wide association study of gc of adult leaves in a maize inbred association panel that was evaluated in four environments (Maricopa, AZ, and San Diego, CA, in 2016 and 2017). Five genomic regions significantly associated with gc were resolved to seven plausible candidate genes (ISTL1, two SEC14 homologs, cyclase-associated protein, a CER7 homolog, GDSL lipase, and β-D-XYLOSIDASE 4). These candidates are potentially involved in cuticle biosynthesis, trafficking and deposition of cuticle lipids, cutin polymerization, and cell wall modification. Laser microdissection RNA sequencing revealed that all these candidate genes, with the exception of the CER7 homolog, were expressed in the zone of the expanding adult maize leaf where cuticle maturation occurs. With direct application to genetic improvement, moderately high average predictive abilities were observed for whole-genome prediction of gc in locations (0.46 and 0.45) and across all environments (0.52). The findings of this study provide novel insights into the genetic control of gc and have the potential to help breeders more effectively develop drought-tolerant maize for target environments.
Collapse
|
13
|
Yuan L, Li R. Metabolic Engineering a Model Oilseed Camelina sativa for the Sustainable Production of High-Value Designed Oils. FRONTIERS IN PLANT SCIENCE 2020; 11:11. [PMID: 32117362 PMCID: PMC7028685 DOI: 10.3389/fpls.2020.00011] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/08/2020] [Indexed: 05/06/2023]
Abstract
Camelina sativa (L.) Crantz is an important Brassicaceae oil crop with a number of excellent agronomic traits including low water and fertilizer input, strong adaptation and resistance. Furthermore, its short life cycle and easy genetic transformation, combined with available data of genome and other "-omics" have enabled camelina as a model oil plant to study lipid metabolism regulation and genetic improvement. Particularly, camelina is capable of rapid metabolic engineering to synthesize and accumulate high levels of unusual fatty acids and modified oils in seeds, which are more stable and environmentally friendly. Such engineered camelina oils have been increasingly used as the super resource for edible oil, health-promoting food and medicine, biofuel oil and high-valued chemical production. In this review, we mainly highlight the latest advance in metabolic engineering towards the predictive manipulation of metabolism for commercial production of desirable bio-based products using camelina as an ideal platform. Moreover, we deeply analysis camelina seed metabolic engineering strategy and its promising achievements by describing the metabolic assembly of biosynthesis pathways for acetyl glycerides, hydroxylated fatty acids, medium-chain fatty acids, ω-3 long-chain polyunsaturated fatty acids, palmitoleic acid (ω-7) and other high-value oils. Future prospects are discussed, with a focus on the cutting-edge techniques in camelina such as genome editing application, fine directed manipulation of metabolism and future outlook for camelina industry development.
Collapse
Affiliation(s)
- Lixia Yuan
- College of Biological Science and Technology, Jinzhong University, Jinzhong, China
| | - Runzhi Li
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, China
- *Correspondence: Runzhi Li,
| |
Collapse
|
14
|
Qin J, Shi A, Song Q, Li S, Wang F, Cao Y, Ravelombola W, Song Q, Yang C, Zhang M. Genome Wide Association Study and Genomic Selection of Amino Acid Concentrations in Soybean Seeds. FRONTIERS IN PLANT SCIENCE 2019; 10:1445. [PMID: 31803203 PMCID: PMC6873630 DOI: 10.3389/fpls.2019.01445] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/17/2019] [Indexed: 05/15/2023]
Abstract
Soybean is a major source of protein for human consumption and animal feed. Releasing new cultivars with high nutritional value is one of the major goals in soybean breeding. To achieve this goal, genome-wide association studies of seed amino acid contents were conducted based on 249 soybean accessions from China, US, Japan, and South Korea. The accessions were evaluated for 15 amino acids and genotyped by sequencing. Significant genetic variation was observed for amino acids among the accessions. Among the 231 single nucleotide polymorphisms (SNPs) significantly associated with variations in amino acid contents, fifteen SNPs localized near 14 candidate genes involving in amino acid metabolism. The amino acids were classified into two groups with five in one group and seven amino acids in the other. Correlation coefficients among the amino acids within each group were high and positive, but the correlation coefficients of amino acids between the two groups were negative. Twenty-five SNP markers associated with multiple amino acids can be used to simultaneously improve multi-amino acid concentration in soybean. Genomic selection analysis of amino acid concentration showed that selection efficiency of amino acids based on the markers significantly associated with all 15 amino acids was higher than that based on random markers or markers only associated with individual amino acid. The identified markers could facilitate selection of soybean varieties with improved seed quality.
Collapse
Affiliation(s)
- Jun Qin
- National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Laboratory of Crop Genetics and Breeding of Hebei, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
| | - Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
| | - Qijian Song
- Soybean Genomics and Improvement Lab, USDA-ARS, Beltsville, MD, United States
| | - Song Li
- Crop and Soil Environmental Science, Virginia Tech, Blacksburg, VA, United States
| | - Fengmin Wang
- National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Laboratory of Crop Genetics and Breeding of Hebei, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Yinghao Cao
- Bioinformatics Center, Allife Medical Science and Technology Co., Ltd, Beijing, China
| | - Waltram Ravelombola
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
| | - Qi Song
- Crop and Soil Environmental Science, Virginia Tech, Blacksburg, VA, United States
| | - Chunyan Yang
- National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Laboratory of Crop Genetics and Breeding of Hebei, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Mengchen Zhang
- National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Laboratory of Crop Genetics and Breeding of Hebei, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| |
Collapse
|