1
|
Hassan MJ, Najeeb A, Zhou M, Raza MA, Ali U, Cheng B, Ling Y, Li Z. Diethyl aminoethyl hexanoate reprogramed accumulations of organic metabolites associated with water balance and metabolic homeostasis in white clover under drought stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1430752. [PMID: 39464286 PMCID: PMC11502329 DOI: 10.3389/fpls.2024.1430752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024]
Abstract
Diethyl aminoethyl hexanoate (DA-6) serving as a non-toxic and low-cost plant growth regulator is used for improving plant growth and stress tolerance, but the DA-6-mediated organic metabolites remodeling in relation to drought tolerance is not well documented in crops. The aims of the present study were to evaluate impacts of DA-6 on physiological functions including osmotic adjustment, photochemical efficiency, oxidative damage, and cell membrane stability as well as organic metabolites remodeling in white clover (Trifolium repens) leaves based on the analysis of metabolomics. Plants were foliarly treated with or without DA-6 and subsequently exposed to drought stress for 8 days. Results demonstrated that foliar application of DA-6 (1.5 mM) could significantly ameliorate drought tolerance, which was linked with better leaf water status, photosynthetic performance, and cell membrane stability as well as lower oxidative injury in leaves. Metabolic profiling of organic metabolites identified a total of 59 metabolites including 17 organic acids, 20 sugars, 12 alcohols, and 10 other metabolites. In response to drought stress, the DA-6 induced accumulations of many sugars and sugar alcohols (erythrulose, arabinose, xylose, inosose, galactose, talopyranose, fucose, erythritol, and ribitol), organic acids (propanoic acid, 2,3-dihydroxybutanoic acid, palmitic acid, linolenic acid, and galacturonic acid), and other metabolites (2-oxazoline, silane, and glycine) in white clover. These altered metabolites induced by the DA-6 could perform critical functions in maintenances of osmo-protection, osmotic adjustment, redox homeostasis, cell wall structure and membrane stability when white clover suffered from water deficit. In addition, the campesterol and stigmasterol significantly accumulated in all plants in spite of the DA-6 pretreatment under drought stress, which could be an important adaptive response to water deficit due to beneficial roles of those two metabolites in regulating cell membrane stability and antioxidant defense. Present findings provide new evidence of DA-6-regulated metabolic homeostasis contributing to drought tolerance in leguminous plants.
Collapse
Affiliation(s)
- Muhammad Jawad Hassan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Atiqa Najeeb
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Min Zhou
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Muhammad Ali Raza
- Institute of Soil Fertilizer and Water Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Ummar Ali
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Bizhen Cheng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yao Ling
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhou Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Huang X, Rao G, Peng X, Xue Y, Hu H, Feng N, Zheng D. Effect of plant growth regulators DA-6 and COS on drought tolerance of pineapple through bromelain and oxidative stress. BMC PLANT BIOLOGY 2023; 23:180. [PMID: 37020215 PMCID: PMC10074694 DOI: 10.1186/s12870-023-04200-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Due to global warming, drought climates frequently occur on land, and despite being drought resistant, pineapples are still subjected to varying degrees of drought stress. Plant growth regulators can regulate the stress tolerance of plants through hormonal effects. This experiment aims to investigate the regulatory effects of different plant growth regulators on Tainong- 16 and MD-2 Pineapple when subjected to drought stress. RESULTS In this experiment, we examined the regulatory effects of two different plant growth regulators, sprayed on two pineapple varieties: MD-2 Pineapple and Tainong-16. The main component of T1 was diethyl aminoethyl hexanoate (DA-6) and that of T2 is chitosan oligosaccharide (COS). An environment similar to a natural drought was simulated in the drought stress treatments. Then, pineapples at different periods were sampled and a series of indicators were measured. The experimental results showed that the drought treatments treated with T1 and T2 plant growth regulators had a decrease in malondialdehyde, an increase in bromelain and antioxidant enzyme indicators, and an increase in phenotypic and yield indicators. CONCLUSION This experiment demonstrated that DA-6 and COS can enhance the drought resistance of pineapple plants to a certain extent through bromelain and oxidative stress. Therefore, DA-6 and COS have potential applications and this experiment lays the foundation for further research.
Collapse
Affiliation(s)
- XiaoKui Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - GangShun Rao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - XiaoDu Peng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - YingBin Xue
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - HanQiao Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - NaiJie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen, 518000, Guangdong, China
| | - DianFeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China.
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
3
|
Influence of Exogenous 28-Homobrassinolide Optimized Dosage and EDAH Application on Hormone Status, Grain Filling, and Maize Production. Processes (Basel) 2022. [DOI: 10.3390/pr10061118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Exogenously applied phytohormones improve the endosperm cells and establish greater kernel sink capacity and grain filling, improving grain yield. In this study, 28-Homobrassinolide (HBR) dosages (20, 25, and 30 mg a. i. ha−1) were applied separately at the silking stage under controlled conditions, and EDAH (a mixture of ethephon and diethyl aminoethyl hexanoate) dosage of 90 g a. i. ha−1 was sprayed at the jointing stage to enhance the lodging resistance. Our objective was to investigate whether the application of HBR under controlled conditions or with EDAH could enhance the grain filling rate by regulating endogenous hormones. The results showed that HBR at the silking stage significantly increased endogenous hormones (ABA, IAA, Z+ZR), hampered leaf senescence, enhanced photosynthetic, improved dry matter accumulation in grains, and increased the grain-filling period, filling rate, and thousand-grains weight. Additionally, HBR 25 and 30 mg a. i. ha−1 increased the final yield by 9.9% and 19.5% compared to the control (CK) in 2020 and 14.1% and 18.95% in 2021, respectively. There was no significant difference between the results obtained from HBR-controlled and EDAH treatments at the jointing stage. Thus, we conclude that spraying HBR 25~30 mg a. i. ha−1 under controlled conditions may increase the grain yield under normal weather conditions. In adverse weather conditions and heavy wind, spraying EDAH 90 g a. i. ha−1 at the jointing stage and HBR 30 mg a. i. ha−1 at the silking stage can enhance maize production.
Collapse
|
4
|
Luo K, Yuan X, Xie C, Liu S, Chen P, Du Q, Zheng B, Wu Y, Wang X, Yong T, Yang W. Diethyl Aminoethyl Hexanoate Increase Relay Strip Intercropping Soybean Grain by Optimizing Photosynthesis Aera and Delaying Leaf Senescence. FRONTIERS IN PLANT SCIENCE 2022; 12:818327. [PMID: 35069671 PMCID: PMC8767051 DOI: 10.3389/fpls.2021.818327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 05/31/2023]
Abstract
Insufficient and unbalanced biomass supply inhibited soybean [Glycine max (L.) Merr.] yield formation in the maize-soybean relay strip intercropping (IS) and monoculture soybean (SS). A field experiment was conducted to explore the soybean yield increase mechanism of DA-6 in IS and SS treatments. In this 2-year experiment, compact maize "Denghai 605" and shade-tolerant soybean "Nandou 25" were selected as cultivated materials. DA-6 with four concentrations, i.e., 0 mg/L (CK), 40 mg/L (D40), 60 mg/L (D60), and 80 mg/L (D80), were sprayed on soybean leaves at the beginning of flowering stage of soybean. Results showed that DA-6 treatments significantly (p < 0.05) increased soybean grain yield, and the yield increase ratio was higher in IS than SS. The leaf area index values and net photosynthesis rate of IS peaked at D60 and were increased by 32.2-49.3% and 24.1-27.2% compared with the corresponding CK. Similarly, DA-6 treatments increased the aboveground dry matter and the amount of soybean dry matter accumulation from the R1 stage to the R8 stage (VDMT) and highest at D60 both in IS and SS. D60 increased the VDMT by 29.0-47.1% in IS and 20.7-29.2% in SS. The TR G at D60 ranged 72.4-77.6% in IS and 61.4-62.5% in SS. The MDA content at D60 treatment was decreased by 38.3% in IS and 25.8% in SS. The active grain-filling day in IS was about 7 days longer than in SS. In D60 treatment, the Vmean and Vmax increased by 6.5% and 6.5% in IS and 5.7% and 4.3% in SS compared with the corresponding CK. Although the pod number and hundred-grain weight were significantly (p < 0.05) increased by DA-6 treatments, the grains per pod were maintained stable. The pod number and hundred-grain weight were increased by 30.1-36.8% and 4.5-6.7% in IS and 6.3-13% and 3.6-5.6% in SS. Thus, the grain yield at D60 was increased by 36.7-38.4% in IS and 21.7-26.6% in SS. DA-6 treatments significantly (p < 0.05) increased soybean grain yield and peaked D60 treatments both in IS and SS.
Collapse
Affiliation(s)
- Kai Luo
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Xiaoting Yuan
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Chen Xie
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Shanshan Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Ping Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Qing Du
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Benchuan Zheng
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Yushan Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Xiaochun Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Taiwen Yong
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Wenyu Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| |
Collapse
|
5
|
Wang T, Lu Q, Song H, Hu N, Wei Y, Li P, Liu Y, Zhao Z, Liu J, Zhang B, Peng R. DNA Methylation and RNA-Sequencing Analysis Show Epigenetic Function During Grain Filling in Foxtail Millet ( Setaria italica L.). FRONTIERS IN PLANT SCIENCE 2021; 12:741415. [PMID: 34512708 PMCID: PMC8429616 DOI: 10.3389/fpls.2021.741415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Grain filling is a crucial process for crop yield and quality. Certain studies already gained insight into the molecular mechanism of grain filling. However, it is unclear whether epigenetic modifications are associated with grain filling in foxtail millet. Global DNA methylation and transcriptome analysis were conducted in foxtail millet spikelets during different stages to interpret the epigenetic effects of the grain filling process. The study employed the whole-genome bisulfite deep sequencing and advanced bioinformatics to sequence and identify all DNA methylation during foxtail millet grain filling; the DNA methylation-mediated gene expression profiles and their involved gene network and biological pathway were systematically studied. One context of DNA methylation, namely, CHH methylation, was accounted for the largest percentage, and it was gradually increased during grain filling. Among all developmental stages, the methylation levels were lowest at T2, followed by T4, which mainly occurred in CHG. The distribution of differentially methylated regions (DMR) was varied in the different genetic regions for three contexts. In addition, gene expression was negatively associated with DNA methylation. Evaluation of the interconnection of the DNA methylome and transcriptome identified some stage-specific differentially expressed genes associated with the DMR at different stages compared with the T1 developmental stage, indicating the potential function of epigenetics on the expression regulation of genes related to the specific pathway at different stages of grain development. The results demonstrated that the dynamic change of DNA methylation plays a crucial function in gene regulation, revealing the potential function of epigenetics in grain development in foxtail millet.
Collapse
Affiliation(s)
- Tao Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
- Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang, China
| | - Quanwei Lu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Hui Song
- Anyang Academy of Agriculture Sciences, Anyang, China
| | - Nan Hu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Yangyang Wei
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Pengtao Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Yuling Liu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Zilin Zhao
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Jinrong Liu
- Anyang Academy of Agriculture Sciences, Anyang, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Renhai Peng
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| |
Collapse
|
6
|
Cao J, Liu B, Xu X, Zhang X, Zhu C, Li Y, Ding X. Plant Endophytic Fungus Extract ZNC Improved Potato Immunity, Yield, and Quality. FRONTIERS IN PLANT SCIENCE 2021; 12:707256. [PMID: 34621283 PMCID: PMC8491004 DOI: 10.3389/fpls.2021.707256] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/19/2021] [Indexed: 05/17/2023]
Abstract
Endophytic fungi play an important role in plant survival and reproduction, but the role of their metabolites in plant growth and immunity, as well as in crop quality formation, is poorly understood. Zhinengcong (ZNC) is a crude ethanol extract from the endophytic fungus Paecilomyces variotii, and previous studies have shown that it can improve the growth and immunity in Arabidopsis thaliana. The aim of the study was to reveal the trade-off balance between plant growth and immunity by evaluating the mechanisms of ZNC on potato growth, yield, and priming immunity against the oomycete Phytophthora infestans indoors and in the field. ZNC maintained a good balance between plant growth and resistance against P. infestans with high activity. It induced the reactive oxygen species (ROS) production, promoted plant growth, yield and quality parameters, enhanced the expression of indoleacetic acid (IAA) related genes, and increased the absorption of nitrogen from the soil. Moreover, the plant endophytic fungus extract ZNC stimulated the pathogen-associated molecular pattern (PAMP) triggered immunity (PTI) pathway and contributed to the ZNC-mediated defense response. Two years of field trials have shown that irrigation with ZNC at one of two optimal concentrations of 1 or 10ng/ml could significantly increase the output by 18.83% or more. The quality of potato tubers was also greatly improved, in which the contents of vitamin C, protein, and starch were significantly increased, especially the sugar content was increased by 125%. Spray application of ZNC onto potato plants significantly reduced the occurrence of potato blight disease with 66.49% of control efficacy at 200ng/ml and increased the potato yield by 66.68% or more in the field. In summary, plant endophytic fungus extract ZNC promoted potato immunity, yield, and quality and presented excellent potential in agricultural applications.
Collapse
Affiliation(s)
- Juan Cao
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai’an, China
- Shandong Pengbo Biotechnology Co., Ltd., Tai’an, China
- Yanzhou Agricultural Technology Extension Center, Yanzhou, China
| | - Baoyou Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai’an, China
- Yantai Academy of Agricultural Sciences, Yantai, China
- College of Life Sciences, Yantai University, Yantai, China
| | - Xinning Xu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | | | - Changxiang Zhu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai’an, China
- *Correspondence: Xinhua Ding,
| |
Collapse
|
7
|
Zhang J, Li S, Cai Q, Wang Z, Cao J, Yu T, Xie T. Exogenous diethyl aminoethyl hexanoate ameliorates low temperature stress by improving nitrogen metabolism in maize seedlings. PLoS One 2020; 15:e0232294. [PMID: 32353025 PMCID: PMC7192554 DOI: 10.1371/journal.pone.0232294] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/11/2020] [Indexed: 01/24/2023] Open
Abstract
Spring maize sowing occurs during a period of low temperature (LT) in Northeast
China, and the LT suppresses nitrogen (N) metabolism and photosynthesis, further
reducing dry matter accumulation. Diethyl aminoethyl hexanoate (DA-6) improves N
metabolism; hence, we studied the effects of DA-6 on maize seedlings under LT
conditions. The shoot and root fresh weight and dry weight decreased by
17.70%~20.82% in the LT treatment, and decreased by 5.81%~13.57% in the LT +
DA-6 treatment on the 7th day, respectively. Exogenous DA-6
suppressed the increases in ammonium (NH4+) content and
glutamate dehydrogenase (GDH) activity, and suppressed the decreases in nitrate
(NO3–) and nitrite (NO2–)
contents, and activities of nitrate reductase (NR), nitrite reductase (NiR),
glutamine synthetase (GS), glutamate synthase (GOGAT) and transaminase
activities. NiR activity was most affected by DA-6 under LT conditions.
Additionally, exogenous DA-6 suppressed the net photosynthetic rate (Pn)
decrease, and the suppressed the increases of superoxide anion radical
(O2·−) generation rate and hydrogen peroxide
(H2O2) content. Taken together, our results suggest
that exogenous DA-6 mitigated the repressive effects of LT on N metabolism by
improving photosynthesis and modulating oxygen metabolism, and subsequently
enhanced the LT tolerance of maize seedlings.
Collapse
Affiliation(s)
- Jianguo Zhang
- College of Agriculture, Northeast Agricultural University, Harbin, P.R.
China
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences,
Harbin, P.R. China
| | - Shujun Li
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences,
Harbin, P.R. China
| | - Quan Cai
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences,
Harbin, P.R. China
| | - Zhenhua Wang
- College of Agriculture, Northeast Agricultural University, Harbin, P.R.
China
- * E-mail:
| | - Jingsheng Cao
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences,
Harbin, P.R. China
| | - Tao Yu
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences,
Harbin, P.R. China
| | - Tenglong Xie
- College of Agriculture, Northeast Agricultural University, Harbin, P.R.
China
| |
Collapse
|