1
|
Cao X, Chen M, Hao W, Zhang J, Ren S, Du L. Two glycoside hydrolase family 1 proteins mediate glycosylated modification at the 5-position of anthocyanin in grape hyacinth. Int J Biol Macromol 2025; 297:139813. [PMID: 39805434 DOI: 10.1016/j.ijbiomac.2025.139813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Glycosylation modification of anthocyanins is important as a preceding step to acylation modification. Cyanidin-3-O-(p-coumaroyl)glucoside-5-O-malonylglucoside (Cy3pCG5MaG) is one of the major anthocyanin substances in blue-flowered grape hyacinth, but its 5-position glycosylation is unknown. Here, we identified two glycoside hydrolase family 1 genes, MaAGGT1 and MaAGGT5, which use acyl-glucose as a donor and are involved in the glycosylation modification of anthocyanins in grape hyacinth. MaAGGT1 and MaAGGT5 are localized in vacuoles and primarily expressed in the flowers, coinciding roughly with the accumulation of total anthocyanins and Cy3pCG5MaG. In vitro enzyme activity assays of recombinant proteins showed that MaAGGT1 is substrate-specific for Cy3G and Pt3G, while MaAGGT5 is substrate-specific for Mv3G. Suppressing the expression of MaAGGT1 or MaAGGT5 significantly inhibits the accumulation of total anthocyanins in blue-flowered grape hyacinth, but only MaAGGT1 affects the accumulation of Cy3pCG5MaG. Additionally, the anthocyanin activation factor MaMybA can bind to the promoters of MaAGGT1 and MaAGGT5, positively regulating their transcription, while MaAN2 binds only to the promoter of MaAGGT5, significantly enhancing its expression. In summary, our results provide evidence that two glycoside hydrolase family 1 proteins mediate the glycosylation modification at the 5-position of anthocyanins in grape hyacinth, with MaAGGT1 playing a key catalytic role in the formation of Cy3pCG5MaG.
Collapse
Affiliation(s)
- Xiaoyun Cao
- College of Landscape Architecture and Art, Northwest A & F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Mingkun Chen
- College of Landscape Architecture and Art, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Wenhui Hao
- College of Landscape Architecture and Art, Northwest A & F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jin Zhang
- College of Landscape Architecture and Art, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Siyi Ren
- College of Landscape Architecture and Art, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Lingjuan Du
- College of Landscape Architecture and Art, Northwest A & F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A & F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Cao X, Hao W, Pan W, Gao X, Xie J, Du L. A vacuolar protein MaSCPL1 mediates anthocyanin acylation modifications in blue-flowered grape hyacinth. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112273. [PMID: 39321877 DOI: 10.1016/j.plantsci.2024.112273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
The grape hyacinth is renowned for its profuse blue flowers, which confer substantial scientific and ornamental significance as well as considerable potential for industrial applications. The serine carboxypeptidase-like acyltransferases (SCPL-ATs) family is crucial for the blue flower coloration. To elucidate SCPL-ATs involved in anthocyanin modification in grape hyacinth, we performed a transcriptomic analysis of grape hyacinth SCPL-ATs. Through gene expression profiling, we identified a promising candidate gene, MaSCPL1, whose expression patterns corresponded with variations in anthocyanin content throughout petal coloration. Subsequently, the functional role of the MaSCPL1 gene was validated using the native petal regeneration system, and the silencing of MaSCPL1 led to a decreased total anthocyanin content and Dp3MG content in grape hyacinth petals. Furthermore, we employed yeast one-hybrid (Y1H), electrophoretic mobility shift assay (EMSA), and dual-luciferase assays to explore the regulatory interactions between the anthocyanin biosynthesis transcription factor MaMybA and the MaSCPL1 promoter. Our findings indicate that MaMybA can bind to the MaSCPL1 promoter and significantly activate its expression. Furthermore, the MaMybA-RNAi resulted in a substantial multifold reduction in the expression of MaSCPL1, implying that the regulation of MaSCPL1 expression is mediated by MaMybA. This study revealed the MaSCPL1 gene has been associated with anthocyanin acylated modification in grape hyacinth and elucidated the important role of the MaMybA-MaSCPL1 module in colouration grape hyacinth.
Collapse
Affiliation(s)
- Xiaoyun Cao
- College of Landscape Architecture and Art, Northwest A & F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Wenhui Hao
- College of Landscape Architecture and Art, Northwest A & F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Wanqi Pan
- College of Landscape Architecture and Art, Northwest A & F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xuelan Gao
- College of Landscape Architecture and Art, Northwest A & F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jingwen Xie
- College of Landscape Architecture and Art, Northwest A & F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Lingjuan Du
- College of Landscape Architecture and Art, Northwest A & F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A & F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Lim SH, Kim DH, Lee JY. R2R3-MYB repressor, BrMYB32, regulates anthocyanin biosynthesis in Chinese cabbage. PHYSIOLOGIA PLANTARUM 2024; 176:e14591. [PMID: 39468991 DOI: 10.1111/ppl.14591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024]
Abstract
Anthocyanin-enriched Chinese cabbage has health-enhancing antioxidant properties. Although various regulators of anthocyanin biosynthesis have been identified, the role of individual repressors in this process remains underexplored. This study identifies and characterizes the R2R3-MYB BrMYB32 in Chinese cabbage (Brassica rapa), which acts as a repressor in anthocyanin biosynthesis. BrMYB32 expression is significantly upregulated under anthocyanin inductive conditions, such as sucrose and high light treatment. Transgenic tobacco plants overexpressing BrMYB32 show decreased anthocyanin levels and downregulation of anthocyanin biosynthesis genes in flowers, highlighting BrMYB32's repressive role. Located in the nucleus, BrMYB32 interacts with the TRANSPARENT TESTA 8 (BrTT8), a basic helix-loop-helix protein, but no interaction was detected with the R2R3-MYB protein PRODUCTION OF ANTHOCYANIN PIGMENT 1 (BrPAP1). Functional assays in Chinese cabbage cotyledons and tobacco leaves demonstrate that BrMYB32 represses the transcript level of anthocyanin biosynthesis genes, thereby inhibiting pigment accumulation. Promoter activation assays further reveal that BrMYB32 inhibits the transactivation of CHALCONE SYNTHASE and DIHYDROFLAVONOL REDUCTASE through the C1 and C2 motifs. Notably, BrMYB32 expression is induced by BrPAP1, either alone or in co-expression with BrTT8, and subsequently regulates the expression of these activators. It verifies that BrMYB32 not only interferes with the formation of an active MYB-bHLH-WD40 complex but also downregulates the transcript levels of anthocyanin biosynthesis genes, thereby fine-tuning anthocyanin biosynthesis. Our findings suggest a model in which anthocyanin biosynthesis in Chinese cabbage is precisely regulated by the interplay between activators and repressors.
Collapse
Affiliation(s)
- Sun-Hyung Lim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong, Republic of Korea
- Research Institute of International Technology and Information, Hankyong National University, Anseong, Republic of Korea
| | - Da-Hye Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong, Republic of Korea
- Research Institute of International Technology and Information, Hankyong National University, Anseong, Republic of Korea
| | - Jong-Yeol Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| |
Collapse
|
4
|
Li Q, Wang X, Teng C, He X, Fu X, Peng W, Fan Y, Lyu S. An Improved and Simplified Agrobacterium-Mediated Genetic Transformation Protocol for Solanum nigrum with a Shorter Growth Time. PLANTS (BASEL, SWITZERLAND) 2024; 13:2015. [PMID: 39124132 PMCID: PMC11313741 DOI: 10.3390/plants13152015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024]
Abstract
Solanum nigrum (Solanaceae family) is widely consumed as a fruit or local leafy vegetable after boiling; it also serves as a medicinal plant. Although Agrobacterium-mediated genetic transformation has been established in S. nigrum, the transformation period is long. Specifically, induction of roots takes approximately five weeks for tetraploid and hexaploid S. nigrum, and 7 weeks for diploid Solanum americanum. In this study, we developed an improved rooting-induced method that requires only about 1 week and avoids the use of tissue culture. After generating the transgenic shoots, they were directly transplanted into the soil to facilitate root formation. Remarkably, 100% of the transgenic shoots developed roots within 6 days. Our improved method is time-saving (saving more than 1 month) and simpler to operate. The improved rooting-induced step can be applied to induce roots in various plants using tissue culture, exemplified by the carnation (Dianthus caryophyllus L.). Furthermore, we applied the improved method to generate S. americanum plants expressing AcMYB110 from kiwifruit (Actinidia chinensis spp.). This method will contribute to speeding up gene functional analysis and trait improvement in S. nigrum and might have potential in fast plant molecular breeding processes in crops and rapid rooting induction in tissue culture.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yinglun Fan
- College of Agriculture, Liaocheng University, Liaocheng 252000, China; (Q.L.); (X.W.)
| | - Shanhua Lyu
- College of Agriculture, Liaocheng University, Liaocheng 252000, China; (Q.L.); (X.W.)
| |
Collapse
|
5
|
Jiang L, Chen J, Qian J, Xu M, Qing H, Cheng H, Fu J, Zhang C. The R2R3-MYB transcription factor ZeMYB32 negatively regulates anthocyanin biosynthesis in Zinnia elegans. PLANT MOLECULAR BIOLOGY 2024; 114:48. [PMID: 38632151 DOI: 10.1007/s11103-024-01441-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 03/12/2024] [Indexed: 04/19/2024]
Abstract
KEY MESSAGE This study identified an R2R3-MYB from Zinnia elegans, ZeMYB32, which negatively regulates anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Lingli Jiang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
| | - Jiahong Chen
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
| | - Jieyu Qian
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
| | - Menghan Xu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
| | - Hongsheng Qing
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
| | - Hefeng Cheng
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
| | - Jianxin Fu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China.
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China.
| | - Chao Zhang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China.
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China.
| |
Collapse
|
6
|
Bhat ZY, Mir JA, Yadav AK, Singh D, Ashraf N. CstMYB1R1, a REVEILLE-8-like transcription factor, regulates diurnal clock-specific anthocyanin biosynthesis and response to abiotic stress in Crocus sativus L. PLANT CELL REPORTS 2023; 43:20. [PMID: 38150028 DOI: 10.1007/s00299-023-03082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/07/2023] [Indexed: 12/28/2023]
Abstract
KEY MESSAGE CstMYB1R1 acts as a positive regulator of Crocus anthocyanin biosynthesis and abiotic stress tolerance which was experimentally demonstrated through molecular analysis and over-expression studies in Crocus and Nicotiana. Regulatory mechanics of flavonoid/anthocyanin biosynthesis in Crocus floral tissues along the diurnal clock has not been studied to date. MYB proteins represent the most dominant, functionally diverse and versatile type of plant transcription factors which regulate key metabolic and physiological processes in planta. Transcriptome analysis revealed that MYB family is the most dominant transcription factor family in C. sativus. Considering this, a MYB-related REVEILLE-8 type transcription factor, CstMYB1R1, was explored for its possible role in regulating Crocus flavonoid and anthocyanin biosynthetic pathway. CstMYB1R1 was highly expressed in Crocus floral tissues, particularly tepals and its expression was shown to peak at dawn and dusk time points. Anthocyanin accumulation also peaked at dawn and dusk and was minimum at night. Moreover, the diurnal expression pattern of CstMYB1R1 was shown to highly correlate with Crocus ANS/LDOX gene expression among the late anthocyanin pathway genes. CstMYB1R1 was shown to be nuclear localized and transcriptionally active. CstMYB1R1 over-expression in Crocus tepals enhanced anthocyanin levels and upregulated transcripts of Crocus flavonoid and anthocyanin biosynthetic pathway genes. Yeast one hybrid (Y1H) and GUS reporter assay confirmed that CstMYB1R1 interacts with the promoter of Crocus LDOX gene to directly regulate its transcription. In addition, the expression of CstMYB1R1 in Nicotiana plants significantly enhanced flavonoid and anthocyanin levels and improved their abiotic stress tolerance. The present study, thus, confirmed positive role of CstMYB1R1 in regulating Crocus anthocyanin biosynthetic pathway in a diurnal clock-specific fashion together with its involvement in the regulation of abiotic stress response.
Collapse
Affiliation(s)
- Zahid Yaqoob Bhat
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine (IIIM), Sanat Nagar190005, Srinagar, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Javid Ahmad Mir
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine (IIIM), Sanat Nagar190005, Srinagar, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Arvind Kumar Yadav
- Quality Control and Quality Assurance Lab, Quality, Management and Instrumentation Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
| | - Deepika Singh
- Quality Control and Quality Assurance Lab, Quality, Management and Instrumentation Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
| | - Nasheeman Ashraf
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine (IIIM), Sanat Nagar190005, Srinagar, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India.
| |
Collapse
|
7
|
Li J, Wu K, Li L, Ma G, Fang L, Zeng S. Identification of HpMYB1 inducing anthocyanin accumulation in Hippeastrum Hybridum tepals by RNA-seq. BMC PLANT BIOLOGY 2023; 23:594. [PMID: 38012575 PMCID: PMC10683291 DOI: 10.1186/s12870-023-04582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Cultivated Hippeastrum × hybridum is a popular ornamental plant with large and colorful flowers, long flowering duration, and high commercial value. As its main ornamental feature, its flower color is related to the anthocyanin content in the tepals. However, the molecular regulatory mechanisms of anthocyanin biosynthesis in H. × hybridum have not yet been elucidated. RESULTS In the present study, 12 cDNA libraries of four stages of H.× hybridum 'Royal Velvet' tepal development were used for RNA-seq, obtaining 79.83 gigabases (GB) of clean data. The data were assembled into 148,453 unigenes, and 11,262 differentially expressed genes were identified. Forty key enzymes participating in anthocyanin biosynthesis were investigated, and the results showed that most of the anthocyanin structural genes were expressed at low levels in S1 and were markedly upregulated in S2 and S3. The expression profiles of 12 selected genes were verified by qRT-PCR. Furthermore, the R2R3-MYB transcription factor (TF), HpMYB1, involved in the regulation of anthocyanin biosynthesis was identified by sequence, expression pattern, and subcellular localization analyses. Its overexpression in tobacco significantly increased the anthocyanin levels in various tissues and activated anthocyanin-related genes. CONCLUSIONS Using RNA-seq technology, we successfully identified a potential R2R3-MYB gene, HpMYB1, that regulates anthocyanin biosynthesis in H.× hybridum 'Royal Velvet'. Our findings provide basic transcript information and valuable transcriptome data for further identification of key genes involved in anthocyanin biosynthesis and can be applied in the artificial breeding of new H. × hybridum cultivars with enhanced ornamental value.
Collapse
Affiliation(s)
- Ji Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Kunlin Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Lin Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Guohua Ma
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Lin Fang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China.
| | - Songjun Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, 510650, Guangzhou, China.
| |
Collapse
|
8
|
Zuo X, Miao C, Li M, Gu L, Yang X, Song C, Li M, Du J, Xie C, Liu X, Sun H, Li L, Zhang Z, Wang F. Purple Rehmannnia : investigation of the activation of R2R3-MYB transcription factors involved in anthocyanin biosynthesis. PHYSIOLOGIA PLANTARUM 2023; 175:e13920. [PMID: 37097722 DOI: 10.1111/ppl.13920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/04/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
Engineering anthocyanin biosynthesis in herbs could provide health-promoting foods for improving human health. Rehmannia glutinosa is a popular medicinal herb in Asia, and was a health food for the emperors of the Han Dynasty (59 B.C.). In this study, we revealed the differences in anthocyanin composition and content between three Rehmannia species. On the 250, 235 and 206 identified MYBs in the respective species, six could regulate anthocyanin biosynthesis by activating the ANTHOCYANIDIN SYNTHASE (ANS) gene expression. Permanent overexpression of the Rehmannia MYB genes in tobacco strongly promoted anthocyanin content and expression levels of NtANS and other genes. A red appearance of leaves and tubers/roots was observed, and the total anthocyanin content and the cyanidin-3-O-glucoside content were significantly higher in the lines overexpressing RgMYB41, RgMYB42 and RgMYB43 from R. glutinosa,as well as RcMYB1 and RcMYB3 in R. chingii and RhMYB1 from R. henryi plants. Knocking out of RcMYB3 by CRISPR/Cas9 gene editing resulted in the discoloration of the R. chingii corolla lobes, and decreased the content of anthocyanin. R. glutinosa overexpressing RcMYB3 displayed a distinct purple color in the whole plants, and the antioxidant activity of the transgenic plants was significantly enhanced compared to WT. These results indicate that Rehmannia MYBs can be used to engineer anthocyanin biosynthesis in herbs to improve their additional value, such as increased antioxidant contents. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xin Zuo
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Chunyan Miao
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Mingming Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Li Gu
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xu Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Ci Song
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Mingjie Li
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiafang Du
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Caixia Xie
- School of medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiangyang Liu
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Hongzheng Sun
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Lianzhen Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Zhongyi Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fengqing Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
9
|
Yang K, Hou Y, Wu M, Pan Q, Xie Y, Zhang Y, Sun F, Zhang Z, Wu J. DoMYB5 and DobHLH24, Transcription Factors Involved in Regulating Anthocyanin Accumulation in Dendrobium officinale. Int J Mol Sci 2023; 24:ijms24087552. [PMID: 37108715 PMCID: PMC10142772 DOI: 10.3390/ijms24087552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
As a kind of orchid plant with both medicinal and ornamental value, Dendrobium officinale has garnered increasing research attention in recent years. The MYB and bHLH transcription factors play important roles in the synthesis and accumulation of anthocyanin. However, how MYB and bHLH transcription factors work in the synthesis and accumulation of anthocyanin in D. officinale is still unclear. In this study, we cloned and characterized one MYB and one bHLH transcription factor, namely, D. officinale MYB5 (DoMYB5) and D. officinaleb bHLH24 (DobHLH24), respectively. Their expression levels were positively correlated with the anthocyanin content in the flowers, stems, and leaves of D. officinale varieties with different colors. The transient expression of DoMYB5 and DobHLH24 in D. officinale leaf and their stable expression in tobacco significantly promoted the accumulation of anthocyanin. Both DoMYB5 and DobHLH24 could directly bind to the promoters of D. officinale CHS (DoCHS) and D. officinale DFR (DoDFR) and regulate DoCHS and DoDFR expression. The co-transformation of the two transcription factors significantly enhanced the expression levels of DoCHS and DoDFR. DoMYB5 and DobHLH24 may enhance the regulatory effect by forming heterodimers. Drawing on the results of our experiments, we propose that DobHLH24 may function as a regulatory partner by interacting directly with DoMYB5 to stimulate anthocyanin accumulation in D. officinale.
Collapse
Affiliation(s)
- Kun Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yibin Hou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mei Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiuyu Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yilong Xie
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yusen Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fenghang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhizhong Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinghua Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
10
|
Integrating Multi-Omics Analysis Reveals the Regulatory Mechanisms of White-Violet Mutant Flowers in Grape Hyacinth ( Muscari latifolium). Int J Mol Sci 2023; 24:ijms24055044. [PMID: 36902472 PMCID: PMC10003623 DOI: 10.3390/ijms24055044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 03/08/2023] Open
Abstract
Grape hyacinth (Muscari spp.) is a famous bulbous blue flower; however, few bicolor varieties are available in the market. Therefore, the discovery of bicolor varieties and understanding of their mechanisms are crucial to the breeding of new varieties. In this study, we report a significant bicolor mutant with white upper and violet lower portions, with both parts belonging to a single raceme. Ionomics showed that pH and metal element contents were not responsible for the bicolor formation. Targeted metabolomics illustrated that the content of the 24 color-related compounds was significantly lower in the upper part than that in the lower part. Moreover, full-length transcriptomics combined with second-generation transcriptomics revealed 12,237 differentially expressed genes in which anthocyanin synthesis gene expression of the upper part was noted to be significantly lower than that of the lower part. Transcription factor differential expression analysis was used to describe the presence of a pair of MaMYB113a/b sequences, with low levels of expression in the upper part and high expression in the lower part. Furthermore, tobacco transformation confirmed that overexpression of MaMYB113a/b can promote anthocyanin accumulation in tobacco leaves. Accordingly, the differential expression of MaMYB113a/b contributes the formation of a bicolor mutant in Muscari latifolium.
Collapse
|
11
|
Characterization of Highbush Blueberry ( Vaccinium corymbosum L.) Anthocyanin Biosynthesis Related MYBs and Functional Analysis of VcMYB Gene. Curr Issues Mol Biol 2023; 45:379-399. [PMID: 36661513 PMCID: PMC9857026 DOI: 10.3390/cimb45010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/22/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
As one of the most important transcription factors regulating plant anthocyanin biosynthesis, MYB has attracted great attentions. In this study, we identified fifteen candidate anthocyanin biosynthesis related MYB (ABRM) proteins, including twelve R2R3-MYBs and three 1R-MYBs, from highbush blueberry. The subcellular localization prediction results showed that, with the exception of VcRVE8 (localized in chloroplast and nucleus), all of the blueberry ABRMs were nucleus-localized. The gene structure analysis revealed that the exon numbers of the blueberry ABRM genes varied greatly, ranging between one and eight. There are many light-responsive, phytohormone-responsive, abiotic stress-responsive and plant growth and development related cis-acting elements in the promoters of the blueberry ABRM genes. It is noteworthy that almost all of their promoters contain light-, ABA- and MeJA-responsive elements, which is consistent with the well-established results that anthocyanin accumulation and the expression of MYBs are influenced significantly by many factors, such as light, ABA and JA. The gene expression analysis revealed that VcMYB, VcMYB6, VcMYB23, VcMYBL2 and VcPH4 are expressed abundantly in blueberry fruits, and VcMYB is expressed the highest in the red, purple and blue fruits among all blueberry ABRMs. VcMYB shared high similarity with functionally proven ABRMs from many other plant species. The gene cloning results showed that VcMYB had three variable transcripts, but only the transient overexpression of VcMYB-1 promoted anthocyanin accumulation in the green fruits. Our study can provide a basis for future research on the anthocyanin biosynthesis related MYBs in blueberry.
Collapse
|
12
|
Wang J, Zhang H, Tian S, Hao W, Chen K, Du L. The R2R3MYB transcription factors MaMYBF and MaMYB1 regulate flavonoid biosynthesis in grape hyacinth. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:85-95. [PMID: 36395598 DOI: 10.1016/j.plaphy.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
R2R3 MYBs play vital roles in the regulation of flavonoid biosynthesis. However, the regulatory network of R2R3 MYBs in flavonoid biosynthesis is not fully understood in grape hyacinth (Muscari spp.). Here, we identified two R2R3 MYBs, MaMYBF and MaMYB1, as potential regulators of flavonol and anthocyanin biosynthesis, respectively. MaMYBF and MaMYB1 expression was elevated during flower development and was light-induced, and the expression patterns were related to those of the flavonoid structural genes MaFLS and MaDFR, respectively. The BiFC assay verified that MaMYB1 interacts with MabHLH1, but MaMYBF does not. A dual luciferase assay revealed that MaMYBF alone strongly activated pMaFLS, and its activation was attenuated at reduced doses of MaMYBF in the presence of MabHLH1, MaMybA, and MaMYB1. MaDFR transcription mediated by MaMybA and MabHLH1 was inhibited by MaMYB1. Moreover, overexpression of MaMYBF and MaMYB1 in tobacco reduced flower pigmentation and repressed the expression of flavonoid pathway key structural genes. Therefore, MaMYBF regulates the flavonol pathway independently of cofactors. Whereas MaMYB1 regulates anthocyanin biosynthesis by binding to MabHLH1 and disrupting the MaMybA-bHLH complex in grape hyacinth. Our results offer new insights into the intricate regulatory network of flavonoids in grape hyacinth involving the regulation of both flavonol and anthocyanin.
Collapse
Affiliation(s)
- Jiangyu Wang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Han Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Shuting Tian
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Wenhui Hao
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Kaili Chen
- College of Fisheries, Southwest University, Rongchang, 402460, Chongqing, PR China
| | - Lingjuan Du
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
13
|
Anthocyanins Profiling Analysis and RNA-Seq Revealed the Dominating Pigments and Coloring Mechanism in Cyclamen Flowers. BIOLOGY 2022; 11:biology11121721. [PMID: 36552231 PMCID: PMC9774537 DOI: 10.3390/biology11121721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Pigments in cyclamen (Cyclamen purpurascens) endows flowers with great ornamental and medicinal values. However, little is known about the biosynthetic pathways of pigments, especially anthocyanins, in cyclamen flowers. Herein, anthocyanins profiling and RNA-Seq were used to decipher the molecular events using cyclamen genotypes of red (HXK) or white (BXK) flowers. We found that red cyclamen petals are rich in cyanidin-3-O-rutinoside, cyanidin-3-O-glucoside, delphinidin-3-O-glucoside, malvidin-3-O-glucoside, peonidin-3-O-rutinoside, quercetin-3-O-glucoside, and ruti. In addition, our transcriptomics data revealed 3589 up-regulated genes and 2788 down-regulated genes comparing the BXK to HXK. Our rich dataset also identified eight putative key genes for anthocyanin synthesis, including four chalcone synthase (CHS, g13809_i0, g12097_i0, g18851_i0, g36714_i0), one chalcone isomerase (CHI, g26337_i0), two flavonoid 3-hydroxylase (F3'H, g14710_i0 and g15005_i0), and one anthocyanidin synthase (ANS, g18981_i0). Importantly, we found a 2.5 order of magnitude higher expression of anthocyanin 3-O-glucosyltransferase (g8206_i0), which encodes a key gene in glycosylation of anthocyanins, in HXK compared to BXK. Taken together, our multiomics approach demonstrated massive changes in gene regulatory networks and anthocyanin metabolism in controlling cyclamen flower color.
Collapse
|
14
|
Qian J, Jiang L, Qing H, Chen J, Wan Z, Xu M, Fu J, Zhang C. ZeMYB9 regulates cyanidin synthesis by activating the expression of flavonoid 3'-hydroxylase gene in Zinnia elegans. FRONTIERS IN PLANT SCIENCE 2022; 13:981086. [PMID: 36330274 PMCID: PMC9623174 DOI: 10.3389/fpls.2022.981086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Petal color in Zinnia elegans is characterized mainly by anthocyanin accumulation. The difference in the content of anthocyanins, especially cyanidins, affects petal coloration in Z. elegans, but the underlying regulatory mechanism remains elusive. Here, we report one R2R3-MYB transcription factor from subgroup 6, ZeMYB9, acting as a positive regulator of anthocyanin accumulation in Z. elegans. Up-regulated expression of ZeMYB9 and flavonoid 3'-hydroxylase gene (ZeF3'H) was detected in the cultivar with higher cyanidin content. ZeMYB9 could specifically activate the promoter of ZeF3'H, and over-expression of ZeMYB9 induces much greater anthocyanin accumulation and higher expression level of anthocyanin biosynthetic genes in both petunia and tobacco. And then, ZeMYB9 was demonstrated to interact with ZeGL3, a bHLH transcription factor belonging to IIIf subgroup. Promoter activity of ZeF3'H was significantly promoted by co-expressing ZeMYB9 and ZeGL3 compared with expressing ZeMYB9 alone. Moreover, transient co-expression of ZeMYB9 and ZeGL3 induced anthocyanin accumulation in tobacco leaves. Our results suggest that ZeMYB9 could enhance cyanidin synthesis and regulate petal color in Z. elegans though activating the expression of ZeF3'H, by itself or interacting with ZeGL3.
Collapse
Affiliation(s)
- Jieyu Qian
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Lingli Jiang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Hongsheng Qing
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Jiahong Chen
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Ziyun Wan
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Menghan Xu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Jianxin Fu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Chao Zhang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| |
Collapse
|
15
|
Chen D, Yuan X, Zheng X, Fang J, Lin G, Li R, Chen J, He W, Huang Z, Fan W, Liang L, Lin C, Zhu J, Chen Y, Xue T. Multi-omics analyses provide insight into the biosynthesis pathways of fucoxanthin in Isochrysis galbana. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:1138-1153. [PMID: 35970320 DOI: 10.1016/j.gpb.2022.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 04/27/2022] [Accepted: 05/08/2022] [Indexed: 11/24/2022]
Abstract
Isochrysis galbana is considered an ideal bait for functional foods and nutraceuticals of humans because of its high fucoxanthin (Fx) content. However, multi-omics analysis of the regulation networks for Fx biosynthesis in I. galbana has not been reported. In this study, we report a high-quality genome sequence of I. galbana LG007, which has a 92.73 Mb genome size, with a contig N50 of 6.99 Mb and 14,900 protein-coding genes. Phylogenomic inferences confirmed the monophyly of Haptophyta, with I. galbana sister to Emiliania huxleyi and Chrysochromulina tobinii. Evolutionary analysis revealed an estimated divergence time between I. galbana and E. huxleyi of ∼ 133 million years ago (Mya). Gene family analysis indicated that lipid metabolism-related genes exhibited significant expansion, including IgPLMT, IgOAR1, and IgDEGS1. Metabolome analysis showed that the content of carotenoids in I. galbana cultured under green light for 7 days was higher than that of white light, and β-carotene was the main carotenoid, accounting for 79.09% of the total carotenoids. Comprehensive analysis of multi-omics analysis revealed that β-carotene, antheraxanthin, zeaxanthin, and Fx content was increased by green light induction, which was significantly correlated with the expression of IgMYB98, IgZDS, IgPDS, IgLHCX2, IgZEP, IgLCYb, and IgNSY. These findings contribute to understanding Fx biosynthesis and its regulation, providing a valuable reference for food and pharmaceutical applications.
Collapse
Affiliation(s)
- Duo Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Xue Yuan
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - XueHai Zheng
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Jingping Fang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Gang Lin
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Rongmao Li
- Fujian Fishery Resources Monitoring Center, Fuzhou 350003, China
| | - Jiannan Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Wenjin He
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Zhen Huang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Wenfang Fan
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Limin Liang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Chentao Lin
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Jinmao Zhu
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Youqiang Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Ting Xue
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
16
|
Ohno S, Yamada H, Maruyama K, Deguchi A, Kato Y, Yokota M, Tatsuzawa F, Hosokawa M, Doi M. A novel aldo-keto reductase gene is involved in 6'-deoxychalcone biosynthesis in dahlia (Dahlia variabilis). PLANTA 2022; 256:47. [PMID: 35871668 DOI: 10.1007/s00425-022-03958-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
A novel gene belonging to the aldo-keto reductase 13 family is involved in isoliquiritigenin biosynthesis in dahlia. The yellow pigments of dahlia flowers are derived from 6'-deoxychalcones, which are synthesized via a two-step process, involving the conversion of 3-malonyl-CoA and 4-coumaloyl-CoA into isoliquiritigenin in the first step, and the subsequent generation of butein from isoliquiritigenin. The first step reaction is catalyzed by chalcone synthase (CHS) and aldo-keto reductase (AKR). AKR has been implicated in the isoflavone biosynthesis in legumes, however, isolation of butein biosynthesis related AKR members are yet to be reported. A comparative RNA-seq analysis between two dahlia cultivars, 'Shukuhai' and its butein-deficient lateral mutant 'Rinka', was used in this study to identify a novel AKR gene involved in 6'-deoxychalcone biosynthesis. DvAKR1 encoded a AKR 13 sub-family protein with significant differential expression levels, and was phylogenetically distinct from the chalcone reductases, which belongs to the AKR 4A sub-family in legumes. DNA sequence variation and expression profiles of DvAKR1 gene were correlated with 6'-deoxychalcone accumulation in the tested dahlia cultivars. A single over-expression analysis of DvAKR1 was not sufficient to initiate the accumulation of isoliquiritigenin in tobacco, in contrast, its co-overexpression with a chalcone 4'-O-glucosyltransferase (Am4'CGT) from Antirrhinum majus and a MYB transcription factor, CaMYBA from Capsicum annuum successfully induced isoliquiritigenin accumulation. In addition, DvAKR1 homologous gene expression was detected in Coreopsideae species accumulating 6'-deoxychalcone, but not in Asteraceae species lacking 6'-deoxychalcone production. These results not only demonstrate the involvement of DvAKR1 in the biosynthesis of 6'-deoxychalcone in dahlia, but also show that 6'-deoxychalcone occurrence in Coreopsideae species developed evolutionarily independent from legume species.
Collapse
Affiliation(s)
- Sho Ohno
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan.
| | - Haruka Yamada
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Kei Maruyama
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Ayumi Deguchi
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
- Chiba University, Chiba, 271-8510, Japan
| | - Yasunari Kato
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Mizuki Yokota
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Fumi Tatsuzawa
- Faculty of Agriculture, Iwate University, Iwate, Morioka, 020-8550, Japan
| | - Munetaka Hosokawa
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
- Kindai University, Nara, 631-0052, Japan
| | - Motoaki Doi
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| |
Collapse
|
17
|
Li J, Wu K, Li L, Ma G, Fang L, Zeng S. AcMYB1 Interacts With AcbHLH1 to Regulate Anthocyanin Biosynthesis in Aglaonema commutatum. FRONTIERS IN PLANT SCIENCE 2022; 13:886313. [PMID: 35928704 PMCID: PMC9344012 DOI: 10.3389/fpls.2022.886313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Aglaonema commutatum is one of the most popular foliage plants with abundant leaf phenotypes; therefore, anthocyanin coloration is a vital economic trait in A. commutatum. However, the molecular mechanisms underlying anthocyanin biosynthesis and its regulation remain unclear. In this study, AcMYB1 and AcbHLH1, transcription factor genes related to an R2R3-myeloblast (MYB) and a basic helix-loop-helix (bHLH), respectively, were isolated from A. commutatum "Red Valentine" and functionally characterized. AcMYB1 and AcbHLH1 were found to interact by Y2H and BiFC assay. AcMYB1 was grouped into the AN2 subgroup and shared high homology with the known regulators of anthocyanin biosynthesis. Gene expression analysis showed that both AcMYB1 and AcbHLH1 have similar expression patterns to anthocyanin structural genes and correlate with anthocyanin distribution in different tissues of A. commutatum. Light strongly promoted anthocyanin accumulation by upregulating the expression of anthocyanin-related genes in A. commutatum leaves. Ectopic expression of AcMYB1 in tobacco remarkably increased anthocyanin accumulation in both vegetative and reproductive tissues at various developmental stages. These results provide insights into the regulation of anthocyanin biosynthesis in A. commutatum and are useful for breeding new A. commutatum cultivars with enhanced ornamental value.
Collapse
Affiliation(s)
- Ji Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kunlin Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Lin Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Guohua Ma
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Lin Fang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Songjun Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
18
|
Wang D, Wang J, Wang Y, Yao D, Niu Y. Metabolomic and Transcriptomic Profiling Uncover the Underlying Mechanism of Color Differentiation in Scutellaria baicalensis Georgi. Flowers. FRONTIERS IN PLANT SCIENCE 2022; 13:884957. [PMID: 35755689 PMCID: PMC9218823 DOI: 10.3389/fpls.2022.884957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Scutellaria baicalensis Georgi. (Chinese skullcap or Huang-qin) is an extremely crucial medicinal plant in the Labiate family, and the color of its flowers naturally appears purple. However, during the long-term cultivation of S. baicalensis, very few plants of S. baicalensis also present white and purple-red flower colors under the same ecological conditions. However, the complex metabolic and transcriptional networks underlying color formation in white, purple-red, and purple flowers of S. baicalensis remain largely unclarified. To gain an insight into this issue, we conducted transcriptome and metabolomic profiling to elucidate the anthocyanin synthesis metabolic pathway in the flowers of S. baicalensis, and to identify the differentially expressed candidate genes potentially involved in the biosynthesis of anthocyanins. The results showed that 15 anthocyanins were identified, among which cyanidin 3-rutinoside and delphin chloride were the primary anthocyanins, and accumulation was significantly related to the flower color changes of S. baicalensis. Furthermore, the down-regulation of SbDFR (Sb02g31040) reduced the anthocyanin levels in the flowers of S. baicalensis. The differential expression of the Sb3GT (Sb07g04780 and Sb01g72290) gene in purple and purple-red flowers affected anthocyanin accumulation, suggesting that anthocyanin levels were closely associated with the expression of SbDFR and Sb3GT, which play important roles in regulating the anthocyanin biosynthesis process of S. baicalensis flowers. Transcriptomic analysis revealed that transcription factors WRKY, bHLH, and NAC were also highly correlated with anthocyanin accumulation, especially for NAC35, which positively regulated SbDFR (Sb02g31040) gene expression and modulated anthocyanin biosynthesis in flower color variation of S. baicalensis. Overall, this study presents the first experimental evidence for the metabolomic and transcriptomic profiles of S. baicalensis in response to flower coloration, which provides a foundation for dynamic metabolic engineering and plant breeding, and to understand floral evolution in S. baicalensis plants.
Collapse
Affiliation(s)
| | | | | | | | - Yanbing Niu
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
19
|
Zhang H, Wang J, Tian S, Hao W, Du L. Two B-Box Proteins, MaBBX20 and MaBBX51, Coordinate Light-Induced Anthocyanin Biosynthesis in Grape Hyacinth. Int J Mol Sci 2022; 23:5678. [PMID: 35628488 PMCID: PMC9146254 DOI: 10.3390/ijms23105678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Floral colour is an important agronomic trait that influences the commercial value of ornamental plants. Anthocyanins are a class of flavonoids and confer diverse colours, and elucidating the molecular mechanisms that regulate their pigmentation could facilitate artificial manipulation of flower colour in ornamental plants. Here, we investigated the regulatory mechanism of light-induced anthocyanin biosynthesis during flower colouration in grape hyacinth (Muscari spp.). We studied the function of two B-box proteins, MaBBX20 and MaBBX51. The qPCR revealed that MaBBX20 and MaBBX51 were associated with light-induced anthocyanin biosynthesis. Both MaBBX20 and MaBBX51 are transcript factors and are specifically localised in the nucleus. Besides, overexpression of MaBBX20 in tobacco slightly increased the anthocyanin content of the petals, but reduced in MaBBX51 overexpression lines. The yeast one-hybrid assays indicated that MaBBX20 and MaBBX51 did not directly bind to the MaMybA or MaDFR promoters, but MaHY5 did. The BiFC assay revealed that MaBBX20 and MaBBX51 physically interact with MaHY5. A dual luciferase assay further confirmed that the MaBBX20-MaHY5 complex can strongly activate the MaMybA and MaDFR transcription in tobacco. Moreover, MaBBX51 hampered MaBBX20-MaHY5 complex formation and repressed MaMybA and MaDFR transcription by physically interacting with MaHY5 and MaBBX20. Overall, the results suggest that MaBBX20 positively regulates light-induced anthocyanin biosynthesis in grape hyacinth, whereas MaBBX51 is a negative regulator.
Collapse
Affiliation(s)
- Han Zhang
- College of Landscape Architecture and Arts, Northwest A & F University, Yangling 712100, China; (H.Z.); (J.W.); (S.T.); (W.H.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Jiangyu Wang
- College of Landscape Architecture and Arts, Northwest A & F University, Yangling 712100, China; (H.Z.); (J.W.); (S.T.); (W.H.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Shuting Tian
- College of Landscape Architecture and Arts, Northwest A & F University, Yangling 712100, China; (H.Z.); (J.W.); (S.T.); (W.H.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Wenhui Hao
- College of Landscape Architecture and Arts, Northwest A & F University, Yangling 712100, China; (H.Z.); (J.W.); (S.T.); (W.H.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Lingjuan Du
- College of Landscape Architecture and Arts, Northwest A & F University, Yangling 712100, China; (H.Z.); (J.W.); (S.T.); (W.H.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, China
| |
Collapse
|
20
|
Cui Y, Fan J, Lu C, Ren J, Qi F, Huang H, Dai S. ScGST3 and multiple R2R3-MYB transcription factors function in anthocyanin accumulation in Senecio cruentus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111094. [PMID: 34763879 DOI: 10.1016/j.plantsci.2021.111094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Anthocyanins are important flavonoid pigments involved in the colouring of flowers and fruits. They are synthesized on the cytoplasmic surface of the endoplasmic reticulum and transported into the vacuole for storage. Previous reports have suggested that glutathione S-transferase (GST) is involved in anthocyanin transport. However, due to the limitation of plant materials, most GSTs only participate in the cyanidin or delphinidin transport pathway. Here, an anthocyanin-related GST, ScGST3, was identified from the transcriptome of cineraria. The expression pattern of ScGST3 was highly consistent with anthocyanin accumulation in ray florets. Molecular complementation of Arabidopsis tt19 indicated that the overexpression of ScGST3 restores the anthocyanin-deficient phenotype of the mutant. Virus-induced gene silencing (VIGS) of ScGST3 in carmine and blue cineraria leaves could inhibit anthocyanin accumulation, further confirming the function of ScGST3 in anthocyanin accumulation. In vitro assays showed that ScGST3 increases the water solubility of cyanidin-3-O-glucoside (C3G) and delphinidin-3-O-glucosid (D3G). In addition, we also identified two anthocyanin-related MYB transcription factors, ScMYB3 and ScMYB6. The expression pattern of these two genes was also highly consistent with anthocyanin accumulation. Faded abaxial leaf phenotypes were observed after the silencing of ScMYB3 and ScMYB6, and the expression levels of partial structural genes were repressed. Based on the results from dual-luciferase assays and yeast one-hybrid assays, ScMYB3 can activate the promoter of ScGST3. Collectively, the transcription of ScGST3 is regulated by ScMYB3, which plays an important role in the transport of C3G and D3G in cineraria.
Collapse
Affiliation(s)
- Yumeng Cui
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jiawei Fan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Chenfei Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jiangshan Ren
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Fangting Qi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - He Huang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| | - Silan Dai
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
21
|
Zhu J, Guo X, Li X, Tang D. Composition of Flavonoids in the Petals of Freesia and Prediction of Four Novel Transcription Factors Involving in Freesia Flavonoid Pathway. FRONTIERS IN PLANT SCIENCE 2021; 12:756300. [PMID: 34868147 PMCID: PMC8634401 DOI: 10.3389/fpls.2021.756300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Freesia hybrida is rich in flower colors with beautiful flower shapes and pleasant aroma. Flavonoids are vital to the color formation of its flowers. In this study, five Freesia cultivars with different flower colors were used to study on the level of accumulation of their flavonoids and expression of flavonoid-related genes and further explore new novel transcription factor (TF). Ultra-high-performance liquid chromatography and VION ion mobility quadrupole time-of-flight mass spectrometer (UPLC-Q-TOF-MS) were used to determine the flavonoids. Combined with transcriptome sequencing technology, the molecular mechanism of the flavonoid metabolism difference in Freesia was revealed. A total of 10 anthoxanthin components and 12 anthocyanin components were detected using UPLC-Q-TOF-MS. All six common anthocyanin aglycones in high plants, including cyanidin, delphinidin, petunidin, peonidin, malvidin, and pelargonidin, were detected in Freesia at first time in this study. In orange, yellow, and white cultivars, anthoxanthins gradually decreased with the opening of the petals, while in red and purple cultivars, anthoxanthins first increased and then decreased. No anthocyanin was detected in yellow and white cultivars, while anthocyanins increased with the opening of the petals and reached their maximum at the flowering stage (S3) in other three cultivars. The correlation analysis revealed that the color of Freesia petals was closely related to the composition and content of anthoxanthins and anthocyanins. Petals of five cultivars at S3 were then selected for transcriptome sequencing by using the Illumina Hiseq 4000 platform, and a total of 100,539 unigenes were obtained. There were totally 5,162 differentially expressed genes (DEGs) when the four colored cultivars were compared with the white cultivar at S3. Comparing all DEGs with gene ontology (GO), KEGG, and Pfam databases, it was found that the genes involved in the flavonoid biosynthesis pathway were significantly different. In addition, AP2, WRKY, and bHLH TF families ranked the top three among all differently expressed TFs in all DEGs. Quantitative real-time PCR (qRT-PCR) technology was used to analyze the expression patterns of the structural genes of flavonoid biosynthesis pathway in Freesia. The results showed that metabolic process was affected significantly by structural genes in this pathway, such as CHS1, CHI2, DFR1, ANS1, 3GT1, and FLS1. Cluster analysis was performed by using all annotated WRKY and AP2 TFs and the above structural genes based on their relatively expression. Four novel candidate TFs of WRKY and AP2 family were screened. Their spatiotemporal expression patterns revealed that these four novel TFs may participate in the regulation of the flavonoid biosynthesis, thus controlling its color formation in Freesia petals.
Collapse
Affiliation(s)
- Jiayi Zhu
- School of Design, Shanghai Jiao Tong University, Shanghai, China
| | - Xueying Guo
- School of Design, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Li
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Dongqin Tang
- School of Design, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
22
|
Xing M, Cao Y, Ren C, Liu Y, Li J, Grierson D, Martin C, Sun C, Chen K, Xu C, Li X. Elucidation of myricetin biosynthesis in Morella rubra of the Myricaceae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:411-425. [PMID: 34331782 DOI: 10.1111/tpj.15449] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/17/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Flavonols are health-promoting bioactive compounds important for plant defense and human nutrition. Quercetin (Q) and kaempferol (K) biosynthesis have been studied extensively while little is known about myricetin (M) biosynthesis. The roles of flavonol synthases (FLSs) and flavonoid 3',5'-hydroxylase (F3'5'H) in M biosynthesis in Morella rubra, a member of the Myricaceae rich in M-based flavonols, were investigated. The level of MrFLS transcripts alone did not correlate well with the accumulation of M-based flavonols. However, combined transcript data for MrFLS1 and MrF3'5'H showed a good correlation with the accumulation of M-based flavonols in different tissues of M. rubra. Recombinant MrFLS1 and MrFLS2 proteins showed strong activity with dihydroquercetin (DHQ), dihydrokaempferol (DHK), and dihydromyricetin (DHM) as substrates, while recombinant MrF3'5'H protein preferred converting K to M, amongst a range of substrates. Tobacco (Nicotiana tabacum) overexpressing 35S::MrFLSs produced elevated levels of K-based and Q-based flavonols without affecting M-based flavonol levels, while tobacco overexpressing 35S::MrF3'5'H accumulated significantly higher levels of M-based flavonols. We conclude that M accumulation in M. rubra is affected by gene expression and enzyme specificity of FLS and F3'5'H as well as substrate availability. In the metabolic grid of flavonol biosynthesis, the strong activity of MrF3'5'H with K as substrate additionally promotes metabolic flux towards M in M. rubra.
Collapse
Affiliation(s)
- Mengyun Xing
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Yunlin Cao
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Chuanhong Ren
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Yilong Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Jiajia Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Donald Grierson
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Cathie Martin
- Department of Metabolic Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Chongde Sun
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Kunsong Chen
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Changjie Xu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Xian Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| |
Collapse
|
23
|
Abbas F, Ke Y, Zhou Y, Yu R, Imran M, Amanullah S, Rothenberg DO, Wang Q, Wang L, Fan Y. Functional Characterization of Hedychium coronarium J. Koenig MYB132 Confers the Potential Role in Floral Aroma Synthesis. PLANTS (BASEL, SWITZERLAND) 2021; 10:2014. [PMID: 34685822 PMCID: PMC8541032 DOI: 10.3390/plants10102014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022]
Abstract
The R2R3-MYB transcription factors (TFs) play several key roles in numerous plant biological processes. Hedychium coronarium is an important ornamental plant well-known for its elegant flower shape and abundant aroma type. The floral aroma of H. coronarium is due to the presence of a large amount of terpenes and benzenoids. However, less is known about the role of R2R3-MYB TFs in the regulatory mechanism of floral aroma production in this breed. Herein, we isolate and functionally characterize the R2R3-MYB TF HcMYB132, which is potentially involved in regulating floral aroma synthesis. Sequence alignment analysis revealed that it includes a nuclear localization signal NLS(s) and a 2R, 3R motif signature in the sequences. A subcellular localization assay revealed that HcMYB132 protein localizes to the nucleus. Real-time qPCR assays showed that HcMYB132 is specifically expressed in flowers and its expression pattern correlates with the emission of floral volatile compounds. In HcMYB132-silenced flowers, the levels of floral volatile compounds were significantly reduced, and the expression of key structural volatile synthesis genes was downregulated compared to control. Collectively, these results suggest that HcMYB132 might play a significant role in the regulation of terpenoid biosynthesis in H. coronarium.
Collapse
Affiliation(s)
- Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (F.A.); (Y.K.); (Y.Z.); (Q.W.); (L.W.)
| | - Yanguo Ke
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (F.A.); (Y.K.); (Y.Z.); (Q.W.); (L.W.)
- College of Economics and Management, Kunming University, Kunming 650214, China
| | - Yiwei Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (F.A.); (Y.K.); (Y.Z.); (Q.W.); (L.W.)
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China;
| | - Muhammad Imran
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China;
| | - Sikandar Amanullah
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China;
| | | | - Qin Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (F.A.); (Y.K.); (Y.Z.); (Q.W.); (L.W.)
| | - Lan Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (F.A.); (Y.K.); (Y.Z.); (Q.W.); (L.W.)
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (F.A.); (Y.K.); (Y.Z.); (Q.W.); (L.W.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
24
|
Lou Q, Liu H, Luo W, Chen K, Liu Y. Creating a novel petal regeneration system for function identification of colour gene of grape hyacinth. PLANT METHODS 2021; 17:94. [PMID: 34530873 PMCID: PMC8444494 DOI: 10.1186/s13007-021-00794-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Grape hyacinth (Muscari spp.) is one of the most important ornamental bulbous plants. However, its lengthy juvenile period and time-consuming transformation approaches under the available protocols impedes the functional characterisation of its genes in flower tissues. In vitro flower organogenesis has long been used to hasten the breeding cycle of plants but has not been exploited for shortening the period of gene transformation and characterisation in flowers. RESULTS A petal regeneration system was established for stable transformation and function identification of colour gene in grape hyacinth. By culturing on Murashige and Skoog medium (MS) with 0.45 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 8.88 μM 6-benzyladenine (6-BA), during the colour-changing period, the flower bud explants gave rise to regeneration petals in less than 3 months, instead of the 3 years required in field-grown plants. By combining this system with Agrobacterium-mediated transformation, a glucuronidase reporter gene (GUS) was delivered into grape hyacinth petals. Ultimately, 214 transgenic petals were regenerated from 24 resistant explants. PCR and GUS quantitative analyses confirmed that these putative transgenic petals have stably overexpressed GUS genes. Furthermore, an RNAi vector of the anthocyanidin 3-O-glucosyltransferase gene (MaGT) was integrated into grape hyacinth petals using the same strategy. Compared with the non-transgenic controls, reduced expression of the MaGT occurred in all transgenic petals, which caused pigmentation loss by repressing anthocyanin accumulation. CONCLUSION The Agrobacterium transformation method via petal organogenesis of grape hyacinth took only 3-4 months to implement, and was faster and easier to perform than other gene-overexpressing or -silencing techniques that are currently available.
Collapse
Affiliation(s)
- Qian Lou
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Hongli Liu
- College of Landscape Architecture and Arts, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Wen Luo
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Kaili Chen
- College of Landscape Architecture and Arts, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Yali Liu
- College of Landscape Architecture and Arts, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
25
|
Zhang Y, Xu S, Ma H, Duan X, Gao S, Zhou X, Cheng Y. The R2R3-MYB gene PsMYB58 positively regulates anthocyanin biosynthesis in tree peony flowers. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 164:279-288. [PMID: 34020168 DOI: 10.1016/j.plaphy.2021.04.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Tree peony (Paeonia suffruticosa Andr.) is a well-known ornamental flower in China with diverse colors. Flower color is one of the most important economic characteristics of tree peony and is mainly determined by anthocyanins. In this study, we cloned a PsMYB58 gene, which contained a 654 bp open reading frame (ORF), encoding a polypeptide of 218 amino acids. Sequence and phylogenetic analysis indicated that PsMYB58 is an anthocyanin regulatory R2R3-MYB gene. The transcription levels of PsMYB58 in different developmental stages of tree peony flowers were similar to those of the anthocyanin biosynthetic genes PsCHS, PsCHI, PsDFR, and PsANS. A bimolecular fluorescence complementation assay showed that PsMYB58 interacted with PsbHLH1 and PsbHLH3 in vivo. The overexpression of PsMYB58 in tobacco enhanced anthocyanin accumulation in various organs. Comparative transcriptome analysis showed that 943 genes were upregulated and 1203 downregulated in PsMYB58 transgenic tobacco, among which genes involved in the anthocyanin pathway were positively activated. Real-time quantitative PCR analysis verified that anthocyanin biosynthetic genes, including NtCHS, NtCHI, NtF3H, NtF3'H, NtDFR, and NtANS, and an anthocyanin regulatory bHLH gene, NtAN1b, were significantly upregulated in PsMYB58 transgenic tobacco. Our results indicated that PsMYB58 is a positive anthocyanin regulator in tree peony flowers. In summary, the functional identification of PsMYB58 furthers our understanding of the mechanism of peony flower color formation, thus providing a foundation for flower color improvement and molecular breeding.
Collapse
Affiliation(s)
- Yanzhao Zhang
- Life Science Department, Luoyang Normal University, Luoyang 471022, China.
| | - Shuzhen Xu
- Life Science Department, Luoyang Normal University, Luoyang 471022, China
| | - Huiping Ma
- Luoyang Institute of Agriculture and Forestry Sciences, Luoyang 471022, China
| | - Xujia Duan
- Life Science Department, Luoyang Normal University, Luoyang 471022, China
| | - Shouxin Gao
- Life Science Department, Luoyang Normal University, Luoyang 471022, China
| | - Xiaojun Zhou
- Life Science Department, Luoyang Normal University, Luoyang 471022, China
| | - Yanwei Cheng
- Life Science Department, Luoyang Normal University, Luoyang 471022, China
| |
Collapse
|
26
|
Yan H, Pei X, Zhang H, Li X, Zhang X, Zhao M, Chiang VL, Sederoff RR, Zhao X. MYB-Mediated Regulation of Anthocyanin Biosynthesis. Int J Mol Sci 2021; 22:3103. [PMID: 33803587 PMCID: PMC8002911 DOI: 10.3390/ijms22063103] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
Anthocyanins are natural water-soluble pigments that are important in plants because they endow a variety of colors to vegetative tissues and reproductive plant organs, mainly ranging from red to purple and blue. The colors regulated by anthocyanins give plants different visual effects through different biosynthetic pathways that provide pigmentation for flowers, fruits and seeds to attract pollinators and seed dispersers. The biosynthesis of anthocyanins is genetically determined by structural and regulatory genes. MYB (v-myb avian myeloblastosis viral oncogene homolog) proteins are important transcriptional regulators that play important roles in the regulation of plant secondary metabolism. MYB transcription factors (TFs) occupy a dominant position in the regulatory network of anthocyanin biosynthesis. The TF conserved binding motifs can be combined with other TFs to regulate the enrichment and sedimentation of anthocyanins. In this study, the regulation of anthocyanin biosynthetic mechanisms of MYB-TFs are discussed. The role of the environment in the control of the anthocyanin biosynthesis network is summarized, the complex formation of anthocyanins and the mechanism of environment-induced anthocyanin synthesis are analyzed. Some prospects for MYB-TF to modulate the comprehensive regulation of anthocyanins are put forward, to provide a more relevant basis for further research in this field, and to guide the directed genetic modification of anthocyanins for the improvement of crops for food quality, nutrition and human health.
Collapse
Affiliation(s)
- Huiling Yan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Xiaona Pei
- Harbin Research Institute of Forestry Machinery, State Administration of Forestry and Grassland, Harbin 150086, China;
- Research Center of Cold Temperate Forestry, CAF, Harbin 150086, China
| | - Heng Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Xiang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Xinxin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Minghui Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA;
| | - Ronald Ross Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA;
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| |
Collapse
|
27
|
Li X, Xiang F, Han W, Qie B, Zhai R, Yang C, Wang Z, Xu L. The MIR-Domain of PbbHLH2 Is Involved in Regulation of the Anthocyanin Biosynthetic Pathway in "Red Zaosu" ( PyrusBretschneideri Rehd.) Pear Fruit. Int J Mol Sci 2021; 22:ijms22063026. [PMID: 33809693 PMCID: PMC8002321 DOI: 10.3390/ijms22063026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 02/05/2023] Open
Abstract
The N-terminal of Myc-like basic helix-loop-helix transcription factors (bHLH TFs) contains an interaction domain, namely the MYB-interacting region (MIR), which interacts with the R2R3-MYB proteins to regulate genes involved in the anthocyanin biosynthetic pathway. However, the functions of MIR-domain bHLHs in this pathway are not fully understood. In this study, PbbHLH2 containing the MIR-domain was identified and its function investigated. The overexpression of PbbHLH2 in ”Zaosu” pear peel increased the anthocyanin content and the expression levels of late biosynthetic genes. Bimolecular fluorescence complementation showed that PbbHLH2 interacted with R2R3-MYB TFs PbMYB9, 10, and 10b in onion epidermal cells and confirmed that MIR-domain plays important roles in the interaction between the MIR-domain bHLH and R2R3-MYB TFs. Moreover, PbbHLH2 bound and activated the dihydroflavonol reductase promoter in yeast one-hybrid (Y1H) and dual-luciferase assays. Taken together these results suggested that the MIR domain of PbbHLH2 regulated anthocyanin biosynthesis in pear fruit peel.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lingfei Xu
- Correspondence: ; Tel.: +86-029–87081023
| |
Collapse
|
28
|
Abbas F, Ke Y, Zhou Y, Yu Y, Waseem M, Ashraf U, Wang C, Wang X, Li X, Yue Y, Yu R, Fan Y. Genome-Wide Analysis Reveals the Potential Role of MYB Transcription Factors in Floral Scent Formation in Hedychium coronarium. FRONTIERS IN PLANT SCIENCE 2021; 12:623742. [PMID: 33719296 PMCID: PMC7952619 DOI: 10.3389/fpls.2021.623742] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/11/2021] [Indexed: 05/19/2023]
Abstract
The MYB gene family is one of the largest groups of transcription factors (TFs) playing diverse roles in several biological processes. Hedychium coronarium (white ginger lily) is a renowned ornamental plant both in tropical and subtropical regions due to its flower shape and strong floral scent mainly composed of terpenes and benzenoids. However, there is no information available regarding the role of the MYB gene family in H. coronarium. In the current study, the MYB gene family was identified and extensively analyzed. The identified 253 HcMYB genes were unevenly mapped on 17 chromosomes at a different density. Promoter sequence analysis showed numerous phytohormones related to cis-regulatory elements. The majority of HcMYB genes contain two to three introns and motif composition analysis showed their functional conservation. Phylogenetic analysis revealed that HcMYBs could be classified into 15 distinct clades, and the segmental duplication events played an essential role in the expansion of the HcMYB gene family. Tissue-specific expression patterns of HcMYB genes displayed spatial and temporal expression. Furthermore, seven HcMYB (HcMYB7/8/75/79/145/238/248) were selected for further investigation. Through RT-qPCR, the response of candidates HcMYB genes toward jasmonic acid methyl ester (MeJA), abscisic acid (ABA), ethylene, and auxin was examined. Yeast one-hybrid (Y1H) assays revealed that candidate genes directly bind to the promoter of bottom structural volatile synthesis genes (HcTPS1, HcTPS3, HcTPS10, and HcBSMT2). Moreover, yeast two-hybrid (Y2H) assay showed that HcMYB7/8/75/145/248 interact with HcJAZ1 protein. In HcMYB7/8/79/145/248-silenced flowers, the floral volatile contents were decreased and downregulated the expression of key structural genes, suggesting that these genes might play crucial roles in floral scent formation in H. coronarium by regulating the expression of floral scent biosynthesis genes. Collectively, these findings indicate that HcMYB genes might be involved in the regulatory mechanism of terpenoids and benzenoid biosynthesis in H. coronarium.
Collapse
Affiliation(s)
- Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yanguo Ke
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- College of Economics and Management, Kunming University, Kunming, China
| | - Yiwei Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Muhammad Waseem
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Punjab, Pakistan
| | - Chutian Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xiaoyu Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yuechong Yue
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
- *Correspondence: Yanping Fan,
| |
Collapse
|
29
|
Lu C, Li Y, Cui Y, Ren J, Qi F, Qu J, Huang H, Dai S. Isolation and Functional Analysis of Genes Involved in Polyacylated Anthocyanin Biosynthesis in Blue Senecio cruentus. FRONTIERS IN PLANT SCIENCE 2021; 12:640746. [PMID: 33692819 PMCID: PMC7937962 DOI: 10.3389/fpls.2021.640746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/01/2021] [Indexed: 05/07/2023]
Abstract
Polyacylated anthocyanins with multiple glycosyl and aromatic acyl groups tend to make flowers display bright and stable blue colours. However, there are few studies on the isolation and functional characterization of genes involved in the polyacylated anthocyanin biosynthesis mechanism, which limits the molecular breeding of truly blue flowers. Senecio cruentus is an important potted ornamental plant, and its blue flowers contain 3',7-polyacylated delphinidin-type anthocyanins that are not reported in any other plants, suggesting that it harbours abundant gene resources for the molecular breeding of blue flowers. In this study, using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis of blue, carmine and white colours of cineraria cultivars "Venezia" (named VeB, VeC, and VeW, respectively), we found that 3',7-polyacylated anthocyanin, cinerarin, was the main pigment component that determined the blue colour of ray florets of cineraria. Based on the transcriptome sequencing and differential gene expression (DEG) analysis combined with RT- and qRT-PCR, we found two genes encoding uridine diphosphate glycosyltransferase, named ScUGT1 and ScUGT4; two genes encoding acyl-glucoside-dependent glucosyltransferases which belong to glycoside hydrolase family 1 (GH1), named ScAGGT11 and ScAGGT12; one gene encoding serine carboxypeptidase-like acyltransferase ScSCPL2; and two MYB transcriptional factor genes ScMYB2 and ScMYB4, that were specifically highly expressed in the ray florets of VeB, which indicated that these genes may be involved in cinerarin biosynthesis. The function of ScSCPL2 was analysed by virus-induced gene silencing (VIGS) in cineraria leaves combined with HPLC-MS/MS. ScSCPL2 mainly participated in the 3' and 7-position acylation of cinerarin. These results will provide new insight into the molecular basis of the polyacylated anthocyanin biosynthesis mechanism in higher plants and are of great significance for blue flower molecular breeding of ornamental plants.
Collapse
|
30
|
Zhang H, Gong J, Chen K, Yao W, Zhang B, Wang J, Tian S, Liu H, Wang Y, Liu Y, Du L. A novel R3 MYB transcriptional repressor, MaMYBx, finely regulates anthocyanin biosynthesis in grape hyacinth. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110588. [PMID: 32771147 DOI: 10.1016/j.plantsci.2020.110588] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 05/25/2023]
Abstract
R3-MYBs negatively regulate anthocyanin pigmentation in plants. However, how R3-MYB repressors finely modulate anthocyanin biosynthesis in cooperation with R2R3-MYB activators remains unclear in monocots. We previously identified two anthocyanin-related R2R3-MYB activators (MaMybA and MaAN2) in grape hyacinth (Muscari spp.). Here, we isolated a R3-MYB repressor, MaMYBx, and characterized its role in anthocyanin biosynthesis using genetic and biochemical markers. The temporal expression pattern of MaMYBx was similar to that of MaMybA and MaAN2, and it was correlated with anthocyanin accumulation during flower development. MaMYBx could be activated either by MaMybA alone or by MaMybA/MaAN2 and cofactor MabHLH1, and it suppressed its own activation and that of MaMybA promoters mediated by MaMybA/MaAN2 and MabHLH1. Like MaMybA, MaMYBx interacted with MabHLH1. MaDFR and MaANS transcription and anthocyanin accumulation mediated by MaMybA/MaAN2 and MabHLH1 were inhibited by MaMYBx. Overexpression of MaMYBx in tobacco greatly reduced flower pigmentation and repressed the expression of late structural and regulatory anthocyanin pathway genes. Thus, MaMYBx finely regulates anthocyanin biosynthesis by binding to MabHLH1 and disrupting the R2R3 MYB-bHLH complex in grape hyacinth. The regulatory network of transcriptional activators and repressors modulating anthocyanin biosynthesis is conserved within monocots. MaMYBx seems a potentially valuable target for flower color modification in ornamental plants.
Collapse
Affiliation(s)
- Han Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, Shaanxi, PR China; State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China
| | - Jiaxin Gong
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, Shaanxi, PR China; State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China
| | - Kaili Chen
- College of Animal Science, Southwest University, Rongchang 402460, Chongqing, PR China
| | - Wenkong Yao
- School of Agronomy, Ningxia University, Yinchuan 750021, Ningxia, PR China
| | - Boxiao Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, Shaanxi, PR China; State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China
| | - Jiangyu Wang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, Shaanxi, PR China; State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China
| | - Shuting Tian
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, Shaanxi, PR China; State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China
| | - Hongli Liu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, Shaanxi, PR China; State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China
| | - Yanqing Wang
- Life Science Research Core Services, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yali Liu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, Shaanxi, PR China; State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China
| | - Lingjuan Du
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, Shaanxi, PR China; State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
31
|
Jiang T, Zhang M, Wen C, Xie X, Tian W, Wen S, Lu R, Liu L. Integrated metabolomic and transcriptomic analysis of the anthocyanin regulatory networks in Salvia miltiorrhiza Bge. flowers. BMC PLANT BIOLOGY 2020; 20:349. [PMID: 32703155 PMCID: PMC7379815 DOI: 10.1186/s12870-020-02553-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/15/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND The objectives of this study were to reveal the anthocyanin biosynthesis metabolic pathway in white and purple flowers of Salvia miltiorrhiza using metabolomics and transcriptomics, to identify different anthocyanin metabolites, and to analyze the differentially expressed genes involved in anthocyanin biosynthesis. RESULTS We analyzed the metabolomics and transcriptomics data of S. miltiorrhiza flowers. A total of 1994 differentially expressed genes and 84 flavonoid metabolites were identified between the white and purple flowers of S. miltiorrhiza. Integrated analysis of transcriptomics and metabolomics showed that cyanidin 3,5-O-diglucoside, malvidin 3,5-diglucoside, and cyanidin 3-O-galactoside were mainly responsible for the purple flower color of S. miltiorrhiza. A total of 100 unigenes encoding 10 enzymes were identified as candidate genes involved in anthocyanin biosynthesis in S. miltiorrhiza flowers. Low expression of the ANS gene decreased the anthocyanin content but enhanced the accumulation of flavonoids in S. miltiorrhiza flowers. CONCLUSIONS Our results provide valuable information on the anthocyanin metabolites and the candidate genes involved in the anthocyanin biosynthesis pathways in S. miltiorrhiza.
Collapse
Affiliation(s)
- Tao Jiang
- Institute of Cash Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050051, Hebei, China
| | - Meidi Zhang
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, Hubei, China
| | - Chunxiu Wen
- Institute of Cash Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050051, Hebei, China
| | - Xiaoliang Xie
- Institute of Cash Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050051, Hebei, China
| | - Wei Tian
- Institute of Cash Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050051, Hebei, China
| | - Saiqun Wen
- Institute of Cash Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050051, Hebei, China
| | - Ruike Lu
- Institute of Cash Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050051, Hebei, China
| | - Lingdi Liu
- Institute of Cash Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050051, Hebei, China.
| |
Collapse
|
32
|
Liu H, Yang Y, Liu D, Wang X, Zhang L. Transcription factor TabHLH49 positively regulates dehydrin WZY2 gene expression and enhances drought stress tolerance in wheat. BMC PLANT BIOLOGY 2020; 20:259. [PMID: 32503498 PMCID: PMC7275420 DOI: 10.1186/s12870-020-02474-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 05/27/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND As functional proteins, dehydrins are found in many maturing seeds and vegetable tissues under adverse environmental conditions. However, the regulation of dehydrin expression remains unclear. RESULTS In this study, a novel drought stress-related bHLH transcription factor, TabHLH49, was isolated from a wheat cDNA library treated with the drought and cold stress by using yeast one-hybrid system. TabHLH49 protein possesses a typical conserved bHLH domain and is a Myc-type bHLH transcription factor. TabHLH49 was detected in the nucleus of tobacco epidermal cells, and the amino acid sequences at the C-terminus (amino acids 323-362) is necessary for its transactivation activity. Real-time PCR analyses revealed the tissue-specific expression and drought stress-responsive expression of TabHLH49 in wheat. In addition, the verification in Y1H and electrophoretic mobility shift assays illustrated that TabHLH49 protein can bind and interact with the promoter of the wheat WZY2 dehydrin. Furthermore, the dual-luciferase assays showed that TabHLH49 can positively regulate the expression of WZY2 dehydrin. The transient expression and BSMV-mediated gene silencing of TabHLH49 also showed that TabHLH49 positively regulates the expression of WZY2 dehydrin and improves drought stress resistance in wheat. CONCLUSIONS These results provide direct evidences that TabHLH49 positively regulates expression level of dehydrin WZY2 gene and improves drought tolerance of wheat.
Collapse
Affiliation(s)
- Hao Liu
- College of Life Science/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| | - Ying Yang
- College of Life Science/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
- College of Nursing, Weinan Vocational&Technical College, Weinan, 714000, China
| | - Dandan Liu
- School of Agriculture, Yunnan University, Kunming, 650000, China
| | - Xiaoyu Wang
- College of Life Science/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266000, China
| | - Linsheng Zhang
- College of Life Science/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|