1
|
Zhu L, Diao S, Li T, Guo J. Deciphering the multi- partite mitochondrial genome of Crataegus pinnatifida: insights into the evolution and genetics of cultivated Hawthorn. BMC PLANT BIOLOGY 2024; 24:929. [PMID: 39370506 PMCID: PMC11457364 DOI: 10.1186/s12870-024-05645-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
Flowering plant (angiosperm) mitochondrial genomes are remarkably dynamic in their structures. We present the complete mitochondrial genome of hawthorn (Crataegus pinnatifida Bunge), a shrub that bears fruit and is celebrated for its extensive medicinal history. We successfully assembled the hawthorn mitogenome utilizing the PacBio long-read sequencing technique, which yielded 799,862 reads, and the Illumina novaseq6000 sequencing platform, which producing 6.6 million raw paired reads. The C. pinnatifida mitochondria sequences encompassed a total length of 440,295 bp with a GC content of 45.42%. The genome annotates 54 genes, including 34 that encode proteins, 17 that encode tRNA, and three genes for rRNA. A fascinating interplay was observed between the chloroplast and mitochondrial genomes, which share 17 homologous sequences sequences that rotal 1,933 bp. A total of 134 SSRs, 22 tandem repeats and 42 dispersed repeats were identified in the mitogenome. Four conformations of C. pinnatifida mitochondria sequences recombination were verified through PCR experiments and Sanger sequencing, and C. pinnatifida mitogenome is more likely to be assembled into three circular-mapping chromosomes. All the RNA editing sites that were identified C-U edits, which predominantly occurred at the first and second positions of the codons. Phylogenetic and collinearity analyses identified the evolutionary trajectory of C. pinnatifida, which reinforced the genetic identity of the hawthorn section. This unveiling of the unique multi-partite structure of the hawthorn mitogenome offers a foundational reference for future study into the evolution and genetics of C. pinnatifida.
Collapse
Affiliation(s)
- Lili Zhu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Songfeng Diao
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003, China.
- National Resource Center for Chinese Materia Medica, China, Academy of Chinese Medical Sciences , Beijing, 100700, China.
| | - Taishan Li
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003, China
| | - Juan Guo
- National Resource Center for Chinese Materia Medica, China, Academy of Chinese Medical Sciences , Beijing, 100700, China
| |
Collapse
|
2
|
Zhang M, Zhang X, Huang Y, Chen Z, Chen B. Comparative mitochondrial genomics of Terniopsis yongtaiensis in Malpighiales: structural, sequential, and phylogenetic perspectives. BMC Genomics 2024; 25:853. [PMID: 39267005 PMCID: PMC11391645 DOI: 10.1186/s12864-024-10765-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Terniopsis yongtaiensis, a member of the Podostemaceae family, is an aquatic flowering plant displaying remarkable adaptive traits that enable survival in submerged, turbulent habitats. Despite the progressive expansion of chloroplast genomic information within this family, mitochondrial genome sequences have yet to be reported. RESULTS In current study, the mitochondrial genome of the T. yongtaiensis was characterized by a circular genome of 426,928 bp encoding 31 protein-coding genes (PCGs), 18 tRNAs, and 3 rRNA genes. Our comprehensive analysis focused on gene content, repeat sequences, RNA editing processes, intracellular gene transfer, phylogeny, and codon usage bias. Numerous repeat sequences were identified, including 130 simple sequence repeats, 22 tandem repeats, and 220 dispersed repeats. Phylogenetic analysis positioned T. yongtaiensis (Podostemaceae) within the Malpighiales order, showing a close relationship with the Calophyllaceae family, which was consistent with the APG IV classification. A comparative analysis with nine other Malpighiales species revealed both variable and conserved regions, providing insights into the genomic evolution within this order. Notably, the GC content of T. yongtaiensis was distinctively lower compared to other Malpighilales, primarily due to variations in non-coding regions and specific protein-coding genes, particularly the nad genes. Remarkably, the number of RNA editing sites was low (276), distributed unevenly across 27 PCGs. The dN/dS analysis showed only the ccmB gene of T. yongtaiensis was positively selected, which plays a crucial role in cytochrome c biosynthesis. Additionally, there were 13 gene-containing homologous regions between the mitochondrial and chloroplast genomes of T. yongtaiensis, suggesting the gene transfer events between these organellar genomes. CONCLUSIONS This study assembled and annotated the first mitochondrial genome of the Podostemaceae family. The comparison results of mitochondrial gene composition, GC content, and RNA editing sites provided novel insights into the adaptive traits and genetic reprogramming of this aquatic eudicot group and offered a foundation for future research on the genomic evolution and adaptive mechanisms of Podostemaceae and related plant families in the Malpighiales order.
Collapse
Affiliation(s)
- Miao Zhang
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Xiaohui Zhang
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
- Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Normal University, Fuzhou, 350117, China
| | - Yinglin Huang
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
- Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Normal University, Fuzhou, 350117, China
| | - Zhangxue Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
- Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Normal University, Fuzhou, 350117, China
| | - Binghua Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China.
- Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Normal University, Fuzhou, 350117, China.
| |
Collapse
|
3
|
Roulet ME, Ceriotti LF, Gatica-Soria L, Sanchez-Puerta MV. Horizontally transferred mitochondrial DNA tracts become circular by microhomology-mediated repair pathways. THE NEW PHYTOLOGIST 2024; 243:2442-2456. [PMID: 39044460 DOI: 10.1111/nph.19984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024]
Abstract
The holoparasitic plant Lophophytum mirabile exhibits remarkable levels of mitochondrial horizontal gene transfer (HGT). Gathering comparative data from other individuals and host plants can provide insights into the HGT process. We sequenced the mitochondrial genome (mtDNA) from individuals of two species of Lophophytum and from mimosoid hosts. We applied a stringent phylogenomic approach to elucidate the origin of the whole mtDNAs, estimate the timing of the transfers, and understand the molecular mechanisms involved. Ancestral and recent HGT events replaced and enlarged the multichromosomal mtDNA of Lophophytum spp., with the foreign DNA ascending to 74%. A total of 14 foreign mitochondrial chromosomes originated from continuous regions in the host mtDNA flanked by short direct repeats. These foreign tracts are circularized by microhomology-mediated repair pathways and replicate independently until they are lost or they eventually recombine with other chromosomes. The foreign noncoding chromosomes are variably present in the population and likely evolve by genetic drift. We present the 'circle-mediated HGT' model in which foreign mitochondrial DNA tracts become circular and are maintained as plasmid-like molecules. This model challenges the conventional belief that foreign DNA must be integrated into the recipient genome for successful HGT.
Collapse
Affiliation(s)
- M Emilia Roulet
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
| | - Luis Federico Ceriotti
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA, Mendoza, Argentina
| | - Leonardo Gatica-Soria
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA, Mendoza, Argentina
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA, Mendoza, Argentina
| |
Collapse
|
4
|
Luo X, Gu C, Gao S, Li M, Zhang H, Zhu S. Complete mitochondrial genome assembly of Zizania latifolia and comparative genome analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1381089. [PMID: 39184575 PMCID: PMC11341417 DOI: 10.3389/fpls.2024.1381089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/26/2024] [Indexed: 08/27/2024]
Abstract
Zizania latifolia (Griseb.) Turcz. ex Stapf has been cultivated as a popular aquatic vegetable in China due to its important nutritional, medicinal, ecological, and economic values. The complete mitochondrial genome (mitogenome) of Z. latifolia has not been previously studied and reported, which has hindered its molecular systematics and understanding of evolutionary processes. Here, we assembled the complete mitogenome of Z. latifolia and performed a comprehensive analysis including genome organization, repetitive sequences, RNA editing event, intercellular gene transfer, phylogenetic analysis, and comparative mitogenome analysis. The mitogenome of Z. latifolia was estimated to have a circular molecule of 392,219 bp and 58 genes consisting of three rRNA genes, 20 tRNA genes, and 35 protein-coding genes (PCGs). There were 46 and 20 simple sequence repeats (SSRs) with different motifs identified from the mitogenome and chloroplast genome of Z. latifolia, respectively. Furthermore, 49 homologous fragments were observed to transfer from the chloroplast genome to the mitogenome of Z. latifolia, accounting for 47,500 bp, presenting 12.1% of the whole mitogenome. In addition, there were 11 gene-containing homologous regions between the mitogenome and chloroplast genome of Z. latifolia. Also, approximately 85% of fragments from the mitogenome were duplicated in the Z. latifolia nuclear genome. Selection pressure analysis revealed that most of the mitochondrial genes were highly conserved except for ccmFc, ccmFn, matR, rps1, and rps3. A total of 93 RNA editing sites were found in the PCGs of the mitogenome. Z. latifolia and Oryza minuta are the most closely related, as shown by collinear analysis and the phylogenetic analysis. We found that repeat sequences and foreign sequences in the mitogenomes of Oryzoideae plants were associated with genome rearrangements. In general, the availability of the Z. latifolia mitogenome will contribute valuable information to our understanding of the molecular and genomic aspects of Zizania.
Collapse
Affiliation(s)
| | | | | | | | | | - Shidong Zhu
- College of Horticulture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
5
|
Zheng Q, Luo X, Huang Y, Ke SJ, Liu ZJ. The Complete Mitogenome of Apostasia fujianica Y.Li & S.Lan and Comparative Analysis of Mitogenomes across Orchidaceae. Int J Mol Sci 2024; 25:8151. [PMID: 39125719 PMCID: PMC11311346 DOI: 10.3390/ijms25158151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Apostasia fujianica belongs to the genus Apostasia and is part of the basal lineage in the phylogenetic tree of the Orchidaceae. Currently, there are only ten reported complete mitochondrial genomes in orchids, which greatly hinders the understanding of mitochondrial evolution in Orchidaceae. Therefore, we assembled and annotated the mitochondrial genome of A. fujianica, which has a length of 573,612 bp and a GC content of 44.5%. We annotated a total of 44 genes, including 30 protein-coding genes, 12 tRNA genes, and two rRNA genes. We also performed relative synonymous codon usage (RSCU) analysis, repeat sequence analysis, intergenomic transfer (IGT) analysis, and Ka/Ks analysis for A. fujianica and conducted RNA editing site analysis on the mitochondrial genomes of eight orchid species. We found that most protein-coding genes are under purifying selection, but nad6 is under positive selection, with a Ka/Ks value of 1.35. During the IGT event in A. fujianica's mitogenome, the trnN-GUU, trnD-GUC, trnW-CCA, trnP-UGG, and psaJ genes were identified as having transferred from the plastid to the mitochondrion. Compared to other monocots, the family Orchidaceae appears to have lost the rpl10, rpl14, sdh3, and sdh4 genes. Additionally, to further elucidate the evolutionary relationships among monocots, we constructed a phylogenetic tree based on the complete mitogenomes of monocots. Our study results provide valuable data on the mitogenome of A. fujianica and lay the groundwork for future research on genetic variation, evolutionary relationships, and breeding of Orchidaceae.
Collapse
Affiliation(s)
- Qinyao Zheng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoting Luo
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ye Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shi-Jie Ke
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
6
|
Chen L, Dong X, Huang H, Xu H, Rono PC, Cai X, Hu G. Assembly and comparative analysis of the initial complete mitochondrial genome of Primulina hunanensis (Gesneriaceae): a cave-dwelling endangered plant. BMC Genomics 2024; 25:322. [PMID: 38561677 PMCID: PMC10983754 DOI: 10.1186/s12864-024-10247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Primulina hunanensis, a troglobitic plant within the Primulina genus of Gesneriaceae family, exhibits robust resilience to arid conditions and holds great horticultural potential as an ornamental plant. The work of chloroplast genome (cpDNA) has been recently accomplished, however, the mitochondrial genome (mtDNA) that is crucial for plant evolution has not been reported. RESULTS In this study, we sequenced and assembled the P. hunanensis complete mtDNA, and elucidated its evolutionary and phylogenetic relationships. The assembled mtDNA spans 575,242 bp with 43.54% GC content, encompassing 60 genes, including 37 protein-coding genes (PCGs), 20 tRNA genes, and 3 rRNA genes. Notably, high number of repetitive sequences in the mtDNA and substantial sequence translocation from chloroplasts to mitochondria were observed. To determine the evolutionary and taxonomic positioning of P. hunanensis, a phylogenetic tree was constructed using mitochondrial PCGs from P. hunanensis and 32 other taxa. Furthermore, an exploration of PCGs relative synonymous codon usage, identification of RNA editing events, and an investigation of collinearity with closely related species were conducted. CONCLUSIONS This study reports the initial assembly and annotation of P. hunanensis mtDNA, contributing to the limited mtDNA repository for Gesneriaceae plants and advancing our understanding of their evolution for improved utilization and conservation.
Collapse
Affiliation(s)
- Lingling Chen
- Department of Botany, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xiang Dong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang Huang
- Department of Botany, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Haixia Xu
- Department of Botany, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Peninah Cheptoo Rono
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xiuzhen Cai
- Department of Botany, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| | - Guangwan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Hubei Jiangxia Laboratory, Wuhan, 430200, China.
| |
Collapse
|
7
|
Zhang R, Xiang N, Qian C, Liu S, Zhao Y, Zhang G, Wei P, Li J, Yuan T. Comparative analysis of the organelle genomes of Aconitum carmichaelii revealed structural and sequence differences and phylogenetic relationships. BMC Genomics 2024; 25:260. [PMID: 38454328 PMCID: PMC10921738 DOI: 10.1186/s12864-024-10136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/17/2024] [Indexed: 03/09/2024] Open
Abstract
In this study, we conducted an assembly and analysis of the organelle genomes of Aconitum carmichaelii. Our investigation encompassed the examination of organelle genome structures, gene transfer events, and the environmental selection pressures affecting A. carmichaelii. The results revealed distinct evolutionary patterns in the organelle genomes of A. carmichaelii. Especially, the plastome exhibited a more conserved structure but a higher nucleotide substitution rate (NSR), while the mitogenome displayed a more complex structure with a slower NSR. Through homology analysis, we identified several instances of unidirectional protein-coding genes (PCGs) transferring from the plastome to the mitogenome. However, we did not observe any events which genes moved from the mitogenome to the plastome. Additionally, we observed multiple transposable element (TE) fragments in the organelle genomes, with both organelles showing different preferences for the type of nuclear TE insertion. Divergence time estimation suggested that rapid differentiation occurred in Aconitum species approximately 7.96 million years ago (Mya). This divergence might be associated with the reduction in CO2 levels and the significant uplift of the Qinghai-Tibet Plateau (QTP) during the late Miocene. Selection pressure analysis indicated that the dN/dS values of both organelles were less than 1, suggested that organelle PCGs were subject to purification selection. However, we did not detect any positively selected genes (PSGs) in Subg. Aconitum and Subg. Lycoctonum. This observation further supports the idea that stronger negative selection pressure on organelle genes in Aconitum results in a more conserved amino acid sequence. In conclusion, this study contributes to a deeper understanding of organelle evolution in Aconitum species and provides a foundation for future research on the genetic mechanisms underlying the structure and function of the Aconitum plastome and mitogenome.
Collapse
Affiliation(s)
- Rongxiang Zhang
- School of Biological Science, Guizhou Education University, Guiyang, 550018, China
- Key Laboratory of Development and Utilization of Biological Resources in Colleges and Universities of Guizhou Province, Guizhou Education University, Guiyang, 550018, China
| | - Niyan Xiang
- School of Ecology and Environment, Tibet University, Lhasa, 850000, China
| | - Changjiang Qian
- School of Biological Science, Guizhou Education University, Guiyang, 550018, China
| | - Shuwen Liu
- School of Biological Science, Guizhou Education University, Guiyang, 550018, China
| | - Yuemei Zhao
- School of Biological Science, Guizhou Education University, Guiyang, 550018, China
| | - Guiyu Zhang
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Pei Wei
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jianfeng Li
- School of Biological Science, Guizhou Education University, Guiyang, 550018, China.
- Key Laboratory of Development and Utilization of Biological Resources in Colleges and Universities of Guizhou Province, Guizhou Education University, Guiyang, 550018, China.
| | - Tao Yuan
- School of Ecology and Environment, Tibet University, Lhasa, 850000, China.
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
8
|
Wang L, Liu X, Xu Y, Zhang Z, Wei Y, Hu Y, Zheng C, Qu X. Assembly and comparative analysis of the first complete mitochondrial genome of a traditional Chinese medicine Angelica biserrata (Shan et Yuan) Yuan et Shan. Int J Biol Macromol 2024; 257:128571. [PMID: 38052286 DOI: 10.1016/j.ijbiomac.2023.128571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/07/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023]
Abstract
Duhuo, a member of the Angelica family, is widely used to treat ailments such as rheumatic pain. It possesses a diverse array of bioactivities, including anti-tumor, anti-inflammatory, and analgesic properties, as recent pharmacological research has revealed. Nevertheless, the mtDNA of Angelica species remains relatively unexplored. To address this gap, we sequenced and assembled the mtDNA of A. biserrata to shed light on its genetic mechanisms and evolutionary pathways. Our investigation indicated a distinctive multi-branched conformation in the A. biserrata mtDNA. A comprehensive analysis of protein-coding sequences (PCGs) across six closely related species revealed the presence of 11 shared genes in their mitochondrial genomes. Intriguingly, positive selection emerged as a significant factor in the evolution of the atp4, matR, nad3, and nad7 genes. In addition, our data highlighted a recurring trend of homologous fragment migration between chloroplast and mitochondrial organelles. We identified 13 homologous fragments spanning both chloroplast and mitochondrial genomes. The phylogenetic tree established a close relationship between A. biserrata and Saposhnikovia divaricata. To sum up, our research would contribute to the application of population genetics and evolutionary studies in the genus Acanthopanax and other genera in the Araliaceae family.
Collapse
Affiliation(s)
- Le Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine Resource, Endangered Medicinal Breeding National Engineering Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing, China; College of Life Science and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Xue Liu
- Chongqing Key Laboratory of Traditional Chinese Medicine Resource, Endangered Medicinal Breeding National Engineering Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing, China.
| | - Yuanjiang Xu
- Chongqing Key Laboratory of Traditional Chinese Medicine Resource, Endangered Medicinal Breeding National Engineering Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Zhiwei Zhang
- Chongqing Key Laboratory of Traditional Chinese Medicine Resource, Endangered Medicinal Breeding National Engineering Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Yongsheng Wei
- Chongqing Key Laboratory of Traditional Chinese Medicine Resource, Endangered Medicinal Breeding National Engineering Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Ying Hu
- Chongqing Key Laboratory of Traditional Chinese Medicine Resource, Endangered Medicinal Breeding National Engineering Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Changbing Zheng
- Chongqing Yintiaoling National Nature Reserve Management Affairs Center, Chongqing, China
| | - Xianyou Qu
- Chongqing Key Laboratory of Traditional Chinese Medicine Resource, Endangered Medicinal Breeding National Engineering Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| |
Collapse
|
9
|
de Souza FD, Marques A, Almeida C. Mitochondrial genome of Hancornia speciosa gomes: intergenic regions containing retrotransposons and predicted genes. Mol Biol Rep 2024; 51:132. [PMID: 38236560 DOI: 10.1007/s11033-023-09184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Plant mitochondrial genomes are characterized by high homologous recombination, extensive intergenic spacers, conservation in DNA sequences, and gene content. The Hancornia genus belongs to the Apocynaceae family, with H. speciosa Gomes being the sole species in the genus. It is an siganificant commercial fruit crop; however, only a number of studies have been conducted. In this study, we present the mitochondrial genome of H. speciosa and compare it with other mitochondrial genomes within the Apocynaceae family. METHODS AND RESULTS A total of 2.8 Gb of Illumina paired-end reads were used to obtain the mitogenome, resulting in 22 contigs that were merged using 6.1 Gb of Illumina mate-pair reads to obtain a circular chromosome. The mitochondrial genome of H. speciosa is circular, containing 63 predicted functional genes, spanning a length of 741,811 bp, with a CG content of 44%. Within the mitogenome, 50 chloroplast DNA sequences, equivalent to 1.72% of the genome, were detected. However, intergenic spaces accounted for 703,139 bp (94.79% of the genome), and 287 genes were predicted, totaling 173,721 bp. CONCLUSION This suggests the incorporation of nuclear DNA into the mitogenome of H. speciosa and self duplication. Comparative analysis among the mitogenomes in the Apocynaceae family revealed a diversity in the structure mediated by recombination, with similar gene content and large intergenic spaces.
Collapse
Affiliation(s)
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, 50829, Cologne, NRW, Germany
| | - Cícero Almeida
- Laboratório de Recursos Genéticos, Universidade Federal de Alagoas, Campus Arapiraca, Arapiraca, Brazil.
| |
Collapse
|
10
|
Sanchez-Puerta MV, Ceriotti LF, Gatica-Soria LM, Roulet ME, Garcia LE, Sato HA. Invited Review Beyond parasitic convergence: unravelling the evolution of the organellar genomes in holoparasites. ANNALS OF BOTANY 2023; 132:909-928. [PMID: 37503831 PMCID: PMC10808021 DOI: 10.1093/aob/mcad108] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND The molecular evolution of organellar genomes in angiosperms has been studied extensively, with some lineages, such as parasitic ones, displaying unique characteristics. Parasitism has emerged 12 times independently in angiosperm evolution. Holoparasitism is the most severe form of parasitism, and is found in ~10 % of parasitic angiosperms. Although a few holoparasitic species have been examined at the molecular level, most reports involve plastomes instead of mitogenomes. Parasitic plants establish vascular connections with their hosts through haustoria to obtain water and nutrients, which facilitates the exchange of genetic information, making them more susceptible to horizontal gene transfer (HGT). HGT is more prevalent in the mitochondria than in the chloroplast or nuclear compartments. SCOPE This review summarizes current knowledge on the plastid and mitochondrial genomes of holoparasitic angiosperms, compares the genomic features across the different lineages, and discusses their convergent evolutionary trajectories and distinctive features. We focused on Balanophoraceae (Santalales), which exhibits extraordinary traits in both their organelles. CONCLUSIONS Apart from morphological similarities, plastid genomes of holoparasitic plants also display other convergent features, such as rampant gene loss, biased nucleotide composition and accelerated evolutionary rates. In addition, the plastomes of Balanophoraceae have extremely low GC and gene content, and two unexpected changes in the genetic code. Limited data on the mitochondrial genomes of holoparasitic plants preclude thorough comparisons. Nonetheless, no obvious genomic features distinguish them from the mitochondria of free-living angiosperms, except for a higher incidence of HGT. HGT appears to be predominant in holoparasitic angiosperms with a long-lasting endophytic stage. Among the Balanophoraceae, mitochondrial genomes exhibit disparate evolutionary paths with notable levels of heteroplasmy in Rhopalocnemis and unprecedented levels of HGT in Lophophytum. Despite their differences, these Balanophoraceae share a multichromosomal mitogenome, a feature also found in a few free-living angiosperms.
Collapse
Affiliation(s)
- M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - Luis F Ceriotti
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - Leonardo M Gatica-Soria
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - M Emilia Roulet
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
| | - Laura E Garcia
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - Hector A Sato
- Facultad de Ciencias Agrarias, Cátedra de Botánica General–Herbario JUA, Alberdi 47, Universidad Nacional de Jujuy, 4600 Jujuy, Argentina
| |
Collapse
|
11
|
Wang M, Yu W, Yang J, Hou Z, Li C, Niu Z, Zhang B, Xue Q, Liu W, Ding X. Mitochondrial genome comparison and phylogenetic analysis of Dendrobium (Orchidaceae) based on whole mitogenomes. BMC PLANT BIOLOGY 2023; 23:586. [PMID: 37993773 PMCID: PMC10666434 DOI: 10.1186/s12870-023-04618-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Mitochondrial genomes are essential for deciphering the unique evolutionary history of seed plants. However, the rules of their extreme variation in genomic size, multi-chromosomal structure, and foreign sequences remain unresolved in most plant lineages, which further hindered the application of mitogenomes in phylogenetic analyses. RESULTS Here, we took Dendrobium (Orchidaceae) which shows the great divergence of morphology and difficulty in species taxonomy as the study focus. We first de novo assembled two complete mitogenomes of Dendrobium wilsonii and Dendrobium henanense that were 763,005 bp and 807,551 bp long with multichromosomal structures. To understand the evolution of Dendrobium mitogenomes, we compared them with those of four other orchid species. The results showed great variations of repetitive and chloroplast-derived sequences in Dendrobium mitogenomes. Moreover, the intergenic content of Dendrobium mitogenomes has undergone expansion during evolution. We also newly sequenced mitogenomes of 26 Dendrobium species and reconstructed phylogenetic relationships of Dendrobium based on genomic mitochondrial and plastid data. The results indicated that the existence of chloroplast-derived sequences made the mitochondrial phylogeny display partial characteristics of the plastid phylogeny. Additionally, the mitochondrial phylogeny provided new insights into the phylogenetic relationships of Dendrobium species. CONCLUSIONS Our study revealed the evolution of Dendrobium mitogenomes and the potential of mitogenomes in deciphering phylogenetic relationships at low taxonomic levels.
Collapse
Grants
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
Collapse
Affiliation(s)
- Mengting Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Cixi, China
| | - Wenhui Yu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jiapeng Yang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhenyu Hou
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chao Li
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhitao Niu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Benhou Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qingyun Xue
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wei Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaoyu Ding
- College of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
12
|
Li J, Cullis C. Comparative Analysis of Tylosema esculentum Mitochondrial DNA Revealed Two Distinct Genome Structures. BIOLOGY 2023; 12:1244. [PMID: 37759643 PMCID: PMC10525999 DOI: 10.3390/biology12091244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Tylosema esculentum, commonly known as the marama bean, is an underutilized legume with nutritious seeds, holding potential to enhance food security in southern Africa due to its resilience to prolonged drought and heat. To promote the selection of this agronomically valuable germplasm, this study assembled and compared the mitogenomes of 84 marama individuals, identifying variations in genome structure, single-nucleotide polymorphisms (SNPs), insertions/deletions (indels), heteroplasmy, and horizontal transfer. Two distinct germplasms were identified, and a novel mitogenome structure consisting of three circular molecules and one long linear chromosome was discovered. The structural variation led to an increased copy number of specific genes, nad5, nad9, rrnS, rrn5, trnC, and trnfM. The two mitogenomes also exhibited differences at 230 loci, with only one notable nonsynonymous substitution in the matR gene. Heteroplasmy was concentrated at certain loci on chromosome LS1 (OK638188). Moreover, the marama mitogenome contained an over 9 kb insertion of cpDNA, originating from chloroplast genomes, but had accumulated mutations and lost gene functionality. The evolutionary and comparative genomics analysis indicated that mitogenome divergence in marama might not be solely constrained by geographical factors. Additionally, marama, as a member from the Cercidoideae subfamily, tends to possess a more complete set of mitochondrial genes than Faboideae legumes.
Collapse
Affiliation(s)
| | - Christopher Cullis
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
13
|
Contreras-Díaz R, Carevic FS, van den Brink L. Comparative analysis of the complete mitogenome of Geoffroea decorticans: a native tree surviving in the Atacama Desert. Front Genet 2023; 14:1226052. [PMID: 37636265 PMCID: PMC10448962 DOI: 10.3389/fgene.2023.1226052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Chañar (Geoffroea decorticans (Gill., ex Hook. & Arn.) Burkart) has been highly significant for indigenous people in the Atacama Desert for over 3,000 years. Through evolutionary processes, the G. decorticans mitogenome likely underwent changes facilitating its adaptation to the extreme conditions of the Atacama Desert. Here, we compare the mitochondrial genome of G. decorticans with those of other Papilionoideae family species. The complete mitogenome of G. decorticans was sequenced and assembled, making it the first in the genus Geoffroea. The mitogenome contained 383,963 base pairs, consisting of 33 protein coding genes, 21 transfer RNA genes, and 3 ribosomal RNA genes. The Chañar mitogenome is relatively compact, and has two intact genes (sdh4 and nad1) which were not observed in most other species. Additionally, Chañar possessed the highest amount of mitochondrial DNA of plastid origin among angiosperm species. The phylogenetic analysis of the mitogenomes of Chañar and 12 other taxa displayed a high level of consistency in taxonomic classification, when compared to those of the plastid genome. Atp8 was subjected to positive selection, while the ccmFc and rps1 were subjected to neutral selection. This study provides valuable information regarding its ability to survive the extreme environmental conditions of the Atacama Desert.
Collapse
Affiliation(s)
- Roberto Contreras-Díaz
- Núcleo Milenio de Ecología Histórica Aplicada para los Bosques Áridos (AFOREST), CRIDESAT, Universidad de Atacama, Copiapó, Chile
| | - Felipe S. Carevic
- Laboratorio de Ecología Vegetal, Facultad de Recursos Naturales Renovables, Núcleo Milenio de Ecología Histórica Aplicada para los Bosques Áridos (AFOREST), Universidad Arturo Prat, Iquique, Chile
| | - Liesbeth van den Brink
- Institute of Evolution and Ecology, Plant Ecology Group, Universität Tübingen, Tübingen, Germany
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, ECOBIOSIS, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
14
|
Edera AA, Howell KA, Nevill PG, Small I, Sanchez-Puerta MV. Evolution of cox2 introns in angiosperm mitochondria and efficient splicing of an elongated cox2i691 intron. Gene 2023; 869:147393. [PMID: 36966978 DOI: 10.1016/j.gene.2023.147393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
In angiosperms, the mitochondrial cox2 gene harbors up to two introns, commonly referred to as cox2i373 and cox2i691. We studied the cox2 from 222 fully-sequenced mitogenomes from 30 angiosperm orders and analyzed the evolution of their introns. Unlike cox2i373, cox2i691 shows a distribution among plants that is shaped by frequent intron loss events driven by localized retroprocessing. In addition, cox2i691 exhibits sporadic elongations, frequently in domain IV of introns. Such elongations are poorly related to repeat content and two of them showed the presence of LINE transposons, suggesting that increasing intron size is very likely due to nuclear intracelular DNA transfer followed by incorporation into the mitochondrial DNA. Surprisingly, we found that cox2i691 is erroneously annotated as absent in 30 mitogenomes deposited in public databases. Although each of the cox2 introns is ∼1.5 kb in length, a cox2i691 of 4.2 kb has been reported in Acacia ligulata (Fabaceae). It is still unclear whether its unusual length is due to a trans-splicing arrangement or the loss of functionality of the interrupted cox2. Through analyzing short-read RNA sequencing of Acacia with a multi-step computational strategy, we found that the Acacia cox2 is functional and its long intron is spliced in cis in a very efficient manner despite its length.
Collapse
Affiliation(s)
- Alejandro A Edera
- Research Institute for Signals, Systems and Computational Intelligence, sinc(i), FICH-UNL, CONICET, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina.
| | - Katharine A Howell
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Paul G Nevill
- Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, Fraser Avenue, Kings Park, Western Australia, Australia; School of Plant Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia; Centre of Excellence in Computational Systems Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| |
Collapse
|
15
|
Zhong F, Ke W, Li Y, Chen X, Zhou T, Xu B, Qi L, Yan Z, Ma Y. Comprehensive analysis of the complete mitochondrial genomes of three Coptis species ( C. chinensis, C. deltoidea and C. omeiensis): the important medicinal plants in China. FRONTIERS IN PLANT SCIENCE 2023; 14:1166420. [PMID: 37313257 PMCID: PMC10258346 DOI: 10.3389/fpls.2023.1166420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/11/2023] [Indexed: 06/15/2023]
Abstract
Coptis plants (Ranunculaceae) contain high levels of isoquinoline alkaloids and have a long history of medicinal use. Coptis species are of great value in pharmaceutical industries and scientific research. Mitochondria are considered as one of the central units for receiving stress signals and arranging immediate responses. Comprehensive characterizations of plant mitogenomes are imperative for revealing the relationship between mitochondria, elucidating biological functions of mitochondria and understanding the environmental adaptation mechanisms of plants. Here, the mitochondrial genomes of C. chinensis, C. deltoidea and C. omeiensis were assembled through the Nanopore and Illumina sequencing platform for the first time. The genome organization, gene number, RNA editing sites, repeat sequences, gene migration from chloroplast to mitochondria were compared. The mitogenomes of C. chinensis, C. deltoidea and C. omeiensis have six, two, two circular-mapping molecules with the total length of 1,425,403 bp, 1,520,338 bp and 1,152,812 bp, respectively. The complete mitogenomes harbors 68-86 predicted functional genes including 39-51 PCGs, 26-35 tRNAs and 2-5 rRNAs. C. deltoidea mitogenome host the most abundant repeat sequences, while C. chinensis mitogenome has the largest number of transferred fragments from its chloroplasts. The large repeat sequences and foreign sequences in the mitochondrial genomes of Coptis species were related to substantial rearrangements, changes in relative position of genes and multiple copy genes. Further comparative analysis illustrated that the PCGs under selected pressure in mitochondrial genomes of the three Coptis species mainly belong to the mitochondrial complex I (NADH dehydrogenase). Heat stress adversely affected the mitochondrial complex I and V, antioxidant enzyme system, ROS accumulation and ATP production of the three Coptis species. The activation of antioxidant enzymes, increase of T-AOC and maintenance of low ROS accumulation in C. chinensis under heat stress were suggested as the factors for its thermal acclimation and normal growth at lower altitudes. This study provides comprehensive information on the Coptis mitogenomes and is of great importance to elucidate the mitochondrial functions, understand the different thermal acclimation mechanisms of Coptis plants, and breed heat-tolerant varieties.
Collapse
Affiliation(s)
- Furong Zhong
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenjia Ke
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yirou Li
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyan Chen
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Zhou
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Binjie Xu
- Innovative institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Luming Qi
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health, State Administration of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhuyun Yan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuntong Ma
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Sheng W, Deng J, Wang C, Kuang Q. The garden asparagus ( Asparagus officinalis L.) mitochondrial genome revealed rich sequence variation throughout whole sequencing data. FRONTIERS IN PLANT SCIENCE 2023; 14:1140043. [PMID: 37051082 PMCID: PMC10084930 DOI: 10.3389/fpls.2023.1140043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Garden asparagus (Asparagus officinalis L.) is a horticultural crop with high nutritional and medical value, considered an ideal plant for sex determination research among many dioecious plants, whose genomic information can support genetic analysis and breeding programs. In this research, the entire mitochondrial genome of A. officinalis was sequenced, annotated and assembled using a mixed Illumina and PacBio data. The garden asparagus circular mitochondrial genome measures 492,062 bp with a GC value of 45.9%. Thirty-six protein-coding genes, 17 tRNA and 6 rRNA genes were annotated, among which 8 protein-coding genes contained 16 introns. In addition, 254 SSRs with 10 complete tandem repeats and 293 non-tandem repeats were identified. It was found that the codons of edited sites located in the amino acids showed a leucine-formation trend, and RNA editing sites mainly caused the mutual transformation of amino acids with the same properties. Furthermore, 72 sequence fragments accounting for 20,240 bp, presentating 4.11% of the whole mitochondrial genome, were observed to migrate from chloroplast to mitochondrial genome of A. officinalis. The phylogenetic analysis showed that the closest genetic relationship between A. officinalis with onion (Allium cepa) inside the Liliaceae family. Our results demonstrated that high percentage of protein-coding genes had evolutionary conservative properties, with Ka/Ks values less than 1. Therefore, this study provides a high-quality garden asparagus mitochondrial genome, useful to promote better understanding of gene exchange between organelle genomes.
Collapse
Affiliation(s)
- Wentao Sheng
- Department of Biological Technology, Nanchang Normal University, Nanchang, Jiangxi, China
| | - Jianlan Deng
- School of Foreign Language, Nanchang Normal University, Nanchang, Jiangxi, China
| | - Chao Wang
- Department of Biological Technology, Nanchang Normal University, Nanchang, Jiangxi, China
| | - Quan Kuang
- Department of Biological Technology, Nanchang Normal University, Nanchang, Jiangxi, China
| |
Collapse
|
17
|
Szandar K, Jakub S, Paukszto Ł, Krawczyk K, Szczecińska M. Are the Organellar Genomes Useful for Fine Scale Population Structure Analysis of Endangered Plants?-A Case Study of Pulsatilla patens (L.) Mill. Genes (Basel) 2022; 14:genes14010067. [PMID: 36672808 PMCID: PMC9859050 DOI: 10.3390/genes14010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Pulsatilla patens is a rare and endangered species in Europe and its population resources have significantly decreased over the past decades. Previous genetic studies of this species made it possible to estimate the genetic diversity of the European population and to describe the structure of chloroplast and mitochondrial genomes. The main aim of these studies was to characterize the variability of chloroplast and mitochondrial genomes in more detail at the intra-population and inter-population levels. Our study presents new organelle genome reference sequences that allow the design of novel markers that can be the starting point for testing hypotheses, past and modern biogeography of rare and endangered species P. patens, and adaptive responses of this species to changing environments. The study included sixteen individuals from five populations located in Northeastern Poland. Comparative analysis of 16 P. patens plastomes from 5 populations enabled us to identify 160 point mutations, including 64 substitutions and 96 InDels. The most numerous detected SNPs and Indels (75%) were accumulated in three intergenic spacers: ndhD-ccsA, rps4-rps16, and trnL(UAG)-ndhF. The mitogenome dataset, which was more than twice as large as the plastome (331 kbp vs. 151 kbp), revealed eight times fewer SNPs (8 vs. 64) and six times fewer InDels (16 vs. 96). Both chloroplast and mitochondrial genome identified the same number of haplotypes-11 out of 16 individuals, but both organellar genomes slightly differ in haplotype clustering. Despite the much lower variation, mitogenomic data provide additional resolution in the haplotype detection of P. patens, enabling molecular identification of individuals, which were unrecognizable based on the plastome dataset.
Collapse
Affiliation(s)
- Kamil Szandar
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland
| | - Sawicki Jakub
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland
- Correspondence:
| | - Łukasz Paukszto
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland
| | - Katarzyna Krawczyk
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland
| | - Monika Szczecińska
- Department of Ecology and Environmental Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| |
Collapse
|
18
|
Sun M, Zhang M, Chen X, Liu Y, Liu B, Li J, Wang R, Zhao K, Wu J. Rearrangement and domestication as drivers of Rosaceae mitogenome plasticity. BMC Biol 2022; 20:181. [PMID: 35986276 PMCID: PMC9392253 DOI: 10.1186/s12915-022-01383-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background The mitochondrion is an important cellular component in plants and that functions in producing vital energy for the cell. However, the evolution and structure of mitochondrial genomes (mitogenomes) remain unclear in the Rosaceae family. In this study, we assembled 34 Rosaceae mitogenomes and characterized genome variation, rearrangement rate, and selection signal variation within these mitogenomes. Results Comparative analysis of six genera from the Amygdaloideae and five from the Rosoideae subfamilies of Rosaceae revealed that three protein-coding genes were absent from the mitogenomes of five Rosoideae genera. Positive correlations between genome size and repeat content were identified in 38 Rosaceae mitogenomes. Twenty repeats with high recombination frequency (> 50%) provided evidence for predominant substoichiometric conformation of the mitogenomes. Variations in rearrangement rates were identified between eleven genera, and within the Pyrus, Malus, Prunus, and Fragaria genera. Based on population data, phylogenetic inferences from Pyrus mitogenomes supported two distinct maternal lineages of Asian cultivated pears. A Pyrus-specific deletion (DEL-D) in selective sweeps was identified based on the assembled genomes and population data. After the DEL-D sequence fragments originally arose, they may have experienced a subsequent doubling event via homologous recombination and sequence transfer in the Amygdaloideae; afterwards, this variant sequence may have significantly expanded to cultivated groups, thereby improving adaptation during the domestication process. Conclusions This study characterizes the variations in gene content, genome size, rearrangement rate, and the impact of domestication in Rosaceae mitogenomes and provides insights into their structural variation patterns and phylogenetic relationships. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01383-3.
Collapse
|
19
|
Gatica-Soria LM, Ceriotti LF, Garcia LE, Virginia Sanchez-Puerta M. Native and foreign mitochondrial and nuclear encoded proteins conform the OXPHOS complexes of a holoparasitic plant. Gene 2022; 817:146176. [PMID: 35031426 DOI: 10.1016/j.gene.2021.146176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/02/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022]
Abstract
The intimate contact between the holoparasitic plant Lophophytum mirabile (Balanophoraceae) and its host plant (Fabaceae) facilitates the exchange of genetic information, increasing the frequency of horizontal gene transfer (HGT). Lophophytum stands out because it acquired a large number of mitochondrial genes (greater than 20) from its legume host that replaced the majority of the native homologs. These foreign genes code for proteins that form multisubunit enzyme complexes, such as those in the oxidative phosphorylation system (OXPHOS) and cytochrome c maturation (ccm) system, together with dozens of nuclear-encoded subunits. However, the existence and the origin of the nuclear subunits that form the major part of the OXPHOS and ccm system in Lophophytum remain unknown. It was proposed that nuclear-encoding genes whose products interact with foreign mitochondrial proteins are also foreign, minimizing the incompatibilities that could arise in the assembly and functioning of these multiprotein complexes. We identified a nearly complete set of OXPHOS and ccm system subunits evolving under selective constraints in the transcriptome of Lophophytum, indicating that OXPHOS is functional and resembles that of free-living angiosperms. Maximum Likelihood phylogenetic analyses revealed a single case of HGT in the nuclear genes, which results in mosaic OXPHOS and ccm system in Lophophytum. These observations raise new questions about the evolution and physiology of this parasitic plant. A putative case of cooperation between two foreign (one mitochondrial and one nuclear) genes is presented.
Collapse
Affiliation(s)
- Leonardo M Gatica-Soria
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina
| | - Luis F Ceriotti
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina
| | - Laura E Garcia
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina.
| |
Collapse
|
20
|
Choi IS, Wojciechowski MF, Steele KP, Hunter SG, Ruhlman TA, Jansen RK. Born in the mitochondrion and raised in the nucleus: evolution of a novel tandem repeat family in Medicago polymorpha (Fabaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:389-406. [PMID: 35061308 DOI: 10.1111/tpj.15676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Plant nuclear genomes harbor sequence elements derived from the organelles (mitochondrion and plastid) through intracellular gene transfer (IGT). Nuclear genomes also show a dramatic range of repeat content, suggesting that any sequence can be readily amplified. These two aspects of plant nuclear genomes are well recognized but have rarely been linked. Through investigation of 31 Medicago taxa we detected exceptionally high post-IGT amplification of mitochondrial (mt) DNA sequences containing rps10 in the nuclear genome of Medicago polymorpha and closely related species. The amplified sequences were characterized as tandem arrays of five distinct repeat motifs (2157, 1064, 987, 971, and 587 bp) that have diverged from the mt genome (mitogenome) in the M. polymorpha nuclear genome. The mt rps10-like arrays were identified in seven loci (six intergenic and one telomeric) of the nuclear chromosome assemblies and were the most abundant tandem repeat family, representing 1.6-3.0% of total genomic DNA, a value approximately three-fold greater than the entire mitogenome in M. polymorpha. Compared to a typical mt gene, the mt rps10-like sequence coverage level was 691.5-7198-fold higher in M. polymorpha and closely related species. In addition to the post-IGT amplification, our analysis identified the canonical telomeric repeat and the species-specific satellite arrays that are likely attributable to an ancestral chromosomal fusion in M. polymorpha. A possible relationship between chromosomal instability and the mt rps10-like tandem repeat family in the M. polymorpha clade is discussed.
Collapse
Affiliation(s)
- In-Su Choi
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | | | - Kelly P Steele
- Division of Science and Mathematics, Arizona State University, Mesa, AZ, 85212, USA
| | - Sarah G Hunter
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
- Centre of Excellence in Bionanoscience Research, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
21
|
Ma Q, Wang Y, Li S, Wen J, Zhu L, Yan K, Du Y, Ren J, Li S, Chen Z, Bi C, Li Q. Assembly and comparative analysis of the first complete mitochondrial genome of Acer truncatum Bunge: a woody oil-tree species producing nervonic acid. BMC PLANT BIOLOGY 2022; 22:29. [PMID: 35026989 PMCID: PMC8756732 DOI: 10.1186/s12870-021-03416-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/27/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Acer truncatum (purpleblow maple) is a woody tree species that produces seeds with high levels of valuable fatty acids (especially nervonic acid). The species is admired as a landscape plant with high developmental prospects and scientific research value. The A. truncatum chloroplast genome has recently been reported; however, the mitochondrial genome (mitogenome) is still unexplored. RESULTS We characterized the A. truncatum mitogenome, which was assembled using reads from PacBio and Illumina sequencing platforms, performed a comparative analysis against different species of Acer. The circular mitogenome of A. truncatum has a length of 791,052 bp, with a base composition of 27.11% A, 27.21% T, 22.79% G, and 22.89% C. The A. truncatum mitogenome contains 62 genes, including 35 protein-coding genes, 23 tRNA genes and 4 rRNA genes. We also examined codon usage, sequence repeats, RNA editing and selective pressure in the A. truncatum mitogenome. To determine the evolutionary and taxonomic status of A. truncatum, we conducted a phylogenetic analysis based on the mitogenomes of A. truncatum and 25 other taxa. In addition, the gene migration from chloroplast and nuclear genomes to the mitogenome were analyzed. Finally, we developed a novel NAD1 intron indel marker for distinguishing several Acer species. CONCLUSIONS In this study, we assembled and annotated the mitogenome of A. truncatum, a woody oil-tree species producing nervonic acid. The results of our analyses provide comprehensive information on the A. truncatum mitogenome, which would facilitate evolutionary research and molecular barcoding in Acer.
Collapse
Affiliation(s)
- Qiuyue Ma
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Yuxiao Wang
- Nanjing Forestry University, Nanjing, 210037 China
| | - Shushun Li
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Jing Wen
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Lu Zhu
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Kunyuan Yan
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Yiming Du
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Jie Ren
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, 40 Nongkenanlu, Hefei, 230031 Anhui China
| | - Shuxian Li
- Nanjing Forestry University, Nanjing, 210037 China
| | - Zhu Chen
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, 40 Nongkenanlu, Hefei, 230031 Anhui China
| | - Changwei Bi
- Nanjing Forestry University, Nanjing, 210037 China
| | - Qianzhong Li
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| |
Collapse
|
22
|
Insights into molecular structure, genome evolution and phylogenetic implication through mitochondrial genome sequence of Gleditsia sinensis. Sci Rep 2021; 11:14850. [PMID: 34290263 PMCID: PMC8295344 DOI: 10.1038/s41598-021-93480-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/23/2021] [Indexed: 11/14/2022] Open
Abstract
Gleditsia sinensis is an endemic species widely distributed in China with high economic and medicinal value. To explore the genomic evolution and phylogenetic relationships of G. sinensis, the complete mitochondrial (mt) genome of G. sinensis was sequenced and assembled, which was firstly reported in Gleditsia. The mt genome was circular and 594,121 bp in length, including 37 protein-coding genes (PCGs), 19 transfer RNA (tRNA) genes and 3 ribosomal RNA (rRNA) genes. The overall base composition of the G. sinensis mt genome was 27.4% for A, 27.4% for T, 22.6% for G, 22.7% for C. The comparative analysis of PCGs in Fabaceae species showed that most of the ribosomal protein genes and succinate dehydrogenase genes were lost. In addition, we found that the rps4 gene was only lost in G. sinensis, whereas it was retained in other Fabaceae species. The phylogenetic analysis based on shared PCGs of 24 species (22 Fabaceae and 2 Solanaceae) showed that G. sinensis is evolutionarily closer to Senna species. In general, this research will provide valuable information for the evolution of G. sinensis and provide insight into the phylogenetic relationships within the family Fabaceae.
Collapse
|
23
|
Comparative Mitogenomic Analysis Reveals Gene and Intron Dynamics in Rubiaceae and Intra-Specific Diversification in Damnacanthus indicus. Int J Mol Sci 2021; 22:ijms22137237. [PMID: 34281291 PMCID: PMC8268409 DOI: 10.3390/ijms22137237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 12/20/2022] Open
Abstract
The dynamic evolution of mitochondrial gene and intron content has been reported across the angiosperms. However, a reference mitochondrial genome (mitogenome) is not available in Rubiaceae. The phylogenetic utility of mitogenome data at a species level is rarely assessed. Here, we assembled mitogenomes of six Damnacanthus indicus (Rubiaceae, Rubioideae) representing two varieties (var. indicus and var. microphyllus). The gene and intron content of D. indicus was compared with mitogenomes from representative angiosperm species and mitochondrial contigs from the other Rubiaceae species. Mitogenome structural rearrangement and sequence divergence in D. indicus were analyzed in six individuals. The size of the mitogenome in D. indicus varied from 417,661 to 419,435 bp. Comparing the number of intact mitochondrial protein-coding genes in other Gentianales taxa (38), D. indicus included 32 genes representing several losses. The intron analysis revealed a shift from cis to trans splicing of a nad1 intron (nad1i728) in D. indicus and it is a shared character with the other four Rubioideae taxa. Two distinct mitogenome structures (type A and B) were identified. Two-step direct repeat-mediated recombination was proposed to explain structural changes between type A and B mitogenomes. The five individuals from two varieties in D. indicus diverged well in the whole mitogenome-level comparison with one exception. Collectively, our study elucidated the mitogenome evolution in Rubiaceae along with D. indicus and showed the reliable phylogenetic utility of the whole mitogenome data at a species-level evolution.
Collapse
|
24
|
Choi IS, Wojciechowski MF, Ruhlman TA, Jansen RK. In and out: Evolution of viral sequences in the mitochondrial genomes of legumes (Fabaceae). Mol Phylogenet Evol 2021; 163:107236. [PMID: 34147655 DOI: 10.1016/j.ympev.2021.107236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
Plant specific mitoviruses in the 'genus' Mitovirus (Narnaviridae) and their integrated sequences (non-retroviral endogenous RNA viral elements or NERVEs) have been recently identified in various plant lineages. However, the sparse phylogenetic coverage of complete plant mitochondrial genome (mitogenome) sequences and the non-conserved nature of mitochondrial intergenic regions have hindered comparative studies on mitovirus NERVEs in plants. In this study, 10 new mitogenomes were sequenced from legumes (Fabaceae). Based on comparative genomic analysis of 27 total mitogenomes, we identified mitovirus NERVEs and transposable elements across the family. All legume mitogenomes included NERVEs and total NERVE length varied from ca. 2 kb in the papilionoid Trifolium to 35 kb in the mimosoid Acacia. Most of the NERVE integration sites were in highly variable intergenic regions, however, some were positioned in six cis-spliced mitochondrial introns. In the Acacia mitogenome, there were L1-like transposon sequences including an almost full-length copy with target site duplications (TSDs). The integration sites of NERVEs in four introns showed evidence of L1-like retrotransposition events. Phylogenetic analysis revealed that there were multiple instances of precise deletion of NERVEs between TSDs. This study provides clear evidence that a L1-like retrotransposition mechanism has a long history of contributing to the integration of viral RNA into plant mitogenomes while microhomology-mediated deletion can restore the integration site.
Collapse
Affiliation(s)
- In-Su Choi
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | | | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA; Centre of Excellence in Bionanoscience Research, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
25
|
Yudina SV, Schelkunov MI, Nauheimer L, Crayn D, Chantanaorrapint S, Hroneš M, Sochor M, Dančák M, Mar SS, Luu HT, Nuraliev MS, Logacheva MD. Comparative Analysis of Plastid Genomes in the Non-photosynthetic Genus Thismia Reveals Ongoing Gene Set Reduction. FRONTIERS IN PLANT SCIENCE 2021; 12:602598. [PMID: 33796122 PMCID: PMC8009136 DOI: 10.3389/fpls.2021.602598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/22/2021] [Indexed: 05/14/2023]
Abstract
Heterotrophic plants provide intriguing examples of reductive evolution. This is especially evident in the reduction of their plastid genomes, which can potentially proceed toward complete genome loss. Several milestones at the beginning of this path of degradation have been described; however, little is known about the latest stages of plastome reduction. Here we analyze a diversity of plastid genomes in a set of closely related non-photosynthetic plants. We demonstrate how a gradual loss of genes shapes the miniaturized plastomes of these plants. The subject of our study, the genus Thismia, represents the mycoheterotrophic monocot family Thismiaceae, a group that may have experienced a very ancient (60-80 mya) transition to heterotrophy. In all 18 species examined, the plastome is reduced to 14-18 kb and is highly AT-biased. The most complete observed gene set includes accD, seven ribosomal protein genes, three rRNA, and two tRNA genes. Different clades of Thismia have undergone further gene loss (complete absence or pseudogenization) compared to this set: in particular, we report two independent losses of rps2 and rps18.
Collapse
Affiliation(s)
- Sophia V. Yudina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Institute for Information Transmission Problems, Moscow, Russia
- Joint Russian-Vietnamese Tropical Scientific and Technological Center, Hanoi, Vietnam
| | - Mikhail I. Schelkunov
- Institute for Information Transmission Problems, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Lars Nauheimer
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
| | - Darren Crayn
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
| | - Sahut Chantanaorrapint
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Michal Hroneš
- Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Michal Sochor
- Centre of the Region Haná for Biotechnological and Agricultural Research, Crop Research Institute, Olomouc, Czechia
| | - Martin Dančák
- Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | | | - Hong Truong Luu
- Southern Institute of Ecology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Maxim S. Nuraliev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Joint Russian-Vietnamese Tropical Scientific and Technological Center, Hanoi, Vietnam
| | - Maria D. Logacheva
- Institute for Information Transmission Problems, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
26
|
Mao JM, Wang Y, Yang L, Yao Q, Chen KP. An Intron of Invertebrate Microphthalmia Transcription Factor Gene Is Evolved from a Longer Ancestral Sequence. Evol Bioinform Online 2021; 17:1176934320988558. [PMID: 33551639 PMCID: PMC7841239 DOI: 10.1177/1176934320988558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/29/2020] [Indexed: 11/18/2022] Open
Abstract
Introns are highly variable in number and size. Sequence simulation is an
effective method to elucidate intron evolution patterns. Previously, we have
reported that introns are more likely to evolve through mutation-and-deletion
(MD) rather than through mutation-and-insertion (MI). In the present study, we
further studied evolution models by allowing insertion in the MD model and by
allowing deletion in the MI model at various frequencies. It was found that all
deletion-biased models with proper parameter settings could generate sequences
with attributes matchable to 16 invertebrate introns from the microphthalmia
transcription factor gene, whereas all insertion-biased models with any
parameter settings failed to generate such sequences. We conclude that the
examined invertebrate introns may have evolved from a longer ancestral sequence
in a deletion-biased pattern. The constructed models are useful for studying the
evolution of introns from other genes and/or from other taxonomic groups. (C++
scripts of all deletion- and insertion-biased models are available upon
request.)
Collapse
Affiliation(s)
- Jun-Ming Mao
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yong Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Liu Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Qin Yao
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ke-Ping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
27
|
He T, Ding X, Zhang H, Li Y, Chen L, Wang T, Yang L, Nie Z, Song Q, Gai J, Yang S. Comparative analysis of mitochondrial genomes of soybean cytoplasmic male-sterile lines and their maintainer lines. Funct Integr Genomics 2021; 21:43-57. [PMID: 33404916 DOI: 10.1007/s10142-020-00760-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/22/2020] [Accepted: 11/11/2020] [Indexed: 11/25/2022]
Abstract
In soybean, only one mitochondrial genome of cultispecies has been completely obtained. To explore the effect of mitochondrial genome on soybean cytoplasmic male sterility (CMS), two CMS lines and three maintainer lines were used for sequencing. Comparative analysis showed that mitochondrial genome of the CMS line was more compact than that of its maintainer line, but genes were highly conserved. Conserved and unique sequence coexisted in the genomes. Mitochondrial genomes contained different sequence lengths and copy numbers of repeats between CMS line and maintainer line. Large and short repeats mediated intramolecular and intermolecular recombination in mitochondria. Unique sequences and genes were also involved in recombination process and constituted a complex network. orf178 and orf261 were identified as CMS-associated candidate genes. They had sequence characteristics of reported CMS genes in other crops and could be transcribed in CMS lines but not in maintainer lines. This report reveals mitochondrial genome of soybean CMS lines and compares complete mitochondrial sequence between CMS lines and their maintainer lines. The information will be helpful in further understanding the characteristics of soybean mitochondrial genome and the mechanism underlying CMS.
Collapse
Affiliation(s)
- Tingting He
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xianlong Ding
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Zhang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanwei Li
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Linfeng Chen
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tanliu Wang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Longshu Yang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhixing Nie
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, USDA-ARS, Beltsville, MD, 20705, USA
| | - Junyi Gai
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shouping Yang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
28
|
Abstract
Size, structure, and sequence content lability of plant mitochondrial genome (mtDNA) across species has sharply limited its use in taxonomic studies. Historically, mtDNA variation has been first investigated with RFLPs, while the development of universal primers then allowed studying sequence polymorphisms within short genomic regions (<3 kb). The recent advent of NGS technologies now offers new opportunities by greatly facilitating the assembly of longer mtDNA regions, and even full mitogenomes. Phylogenetic works aiming at comparing signals from different genomic compartments (i.e., nucleus, chloroplast, and mitochondria) have been developed on a few plant lineages, and have been shown especially relevant in groups with contrasted inheritance of organelle genomes. This chapter first reviews the main characteristics of mtDNA and the application offered in taxonomic studies. It then presents tips for best sequencing protocol based on NGS data to be routinely used in mtDNA-based phylogenetic studies.
Collapse
Affiliation(s)
- Jérôme Duminil
- DIADE, University of Montpellier, IRD, Montpellier, France.
| | - Guillaume Besnard
- CNRS-UPS-IRD, UMR5174, EDB, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
29
|
Mader M, Schroeder H, Schott T, Schöning-Stierand K, Leite Montalvão AP, Liesebach H, Liesebach M, Fussi B, Kersten B. Mitochondrial Genome of Fagus sylvatica L. as a Source for Taxonomic Marker Development in the Fagales. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1274. [PMID: 32992588 PMCID: PMC7650814 DOI: 10.3390/plants9101274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022]
Abstract
European beech, Fagus sylvatica L., is one of the most important and widespread deciduous tree species in Central Europe and is widely managed for its hard wood. The complete DNA sequence of the mitochondrial genome of Fagus sylvatica L. was assembled and annotated based on Illumina MiSeq reads and validated using long reads from nanopore MinION sequencing. The genome assembled into a single DNA sequence of 504,715 bp in length containing 58 genes with predicted function, including 35 protein-coding, 20 tRNA and three rRNA genes. Additionally, 23 putative protein-coding genes were predicted supported by RNA-Seq data. Aiming at the development of taxon-specific mitochondrial genetic markers, the tool SNPtax was developed and applied to select genic SNPs potentially specific for different taxa within the Fagales. Further validation of a small SNP set resulted in the development of four CAPS markers specific for Fagus, Fagaceae, or Fagales, respectively, when considering over 100 individuals from a total of 69 species of deciduous trees and conifers from up to 15 families included in the marker validation. The CAPS marker set is suitable to identify the genus Fagus in DNA samples from tree tissues or wood products, including wood composite products.
Collapse
Affiliation(s)
- Malte Mader
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Hilke Schroeder
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Thomas Schott
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Katrin Schöning-Stierand
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
- Center for Bioinformatics, Universität Hamburg, 20146 Hamburg, Germany
| | - Ana Paula Leite Montalvão
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Heike Liesebach
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Mirko Liesebach
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Barbara Fussi
- Bavarian Office for Forest Genetics, 83317 Teisendorf, Germany;
| | - Birgit Kersten
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| |
Collapse
|
30
|
Bi C, Lu N, Xu Y, He C, Lu Z. Characterization and Analysis of the Mitochondrial Genome of Common Bean ( Phaseolus vulgaris) by Comparative Genomic Approaches. Int J Mol Sci 2020; 21:E3778. [PMID: 32471098 PMCID: PMC7312688 DOI: 10.3390/ijms21113778] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022] Open
Abstract
The common bean (Phaseolus vulgaris) is a major source of protein and essential nutrients for humans. To explore the genetic diversity and phylogenetic relationships of P. vulgaris, its complete mitochondrial genome (mitogenome) was sequenced and assembled. The mitogenome is 395,516 bp in length, including 31 unique protein-coding genes (PCGs), 15 transfer RNA (tRNA) genes, and 3 ribosomal RNA (rRNA) genes. Among the 31 PCGs, four genes (mttB, nad1, nad4L, and rps10) use ACG as initiation codons, which are altered to standard initiation codons by RNA editing. In addition, the termination codon CGA in the ccmFC gene is converted to UGA. Selective pressure analysis indicates that the ccmB, ccmFC, rps1, rps10, and rps14 genes were under evolutionary positive selection. The proportions of five amino acids (Phe, Leu, Pro, Arg, and Ser) in the whole amino acid profile of the proteins in each mitogenome can be used to distinguish angiosperms from gymnosperms. Phylogenetic analyses show that P. vulgaris is evolutionarily closer to the Glycininae than other leguminous plants. The results of the present study not only provide an important opportunity to conduct further genomic breeding studies in the common bean, they also provide valuable information for future evolutionary and molecular studies of leguminous plants.
Collapse
Affiliation(s)
- Changwei Bi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, China; (C.B.); (N.L.)
| | - Na Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, China; (C.B.); (N.L.)
| | - Yiqing Xu
- School of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, Jiangsu, China;
| | - Chunpeng He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, China; (C.B.); (N.L.)
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, China; (C.B.); (N.L.)
| |
Collapse
|
31
|
Petersen G, Anderson B, Braun HP, Meyer EH, Møller IM. Mitochondria in parasitic plants. Mitochondrion 2020; 52:173-182. [DOI: 10.1016/j.mito.2020.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/05/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
|
32
|
Comprehensive genomic analyses with 115 plastomes from algae to seed plants: structure, gene contents, GC contents, and introns. Genes Genomics 2020; 42:553-570. [PMID: 32200544 DOI: 10.1007/s13258-020-00923-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Chloroplasts are a common character in plants. The chloroplasts in each plant lineage have shaped their own genomes, plastomes, by structural changes and transferring many genes to nuclear genomes during plant evolution. Some plastid genes have introns that are mostly group II introns. OBJECTIVE This study aimed to get genomic and evolutionary insights on the plastomes from green algae to flowering plants. METHODS Plastomes of 115 species from green algae, bryophytes, pteridophytes (spore bearing vascular plants), gymnosperms, and angiosperms were mined from NCBI organelle genome database. Plastome structure, gene contents and GC contents were analyzed by the in-house developed Phyton code. Intronic features including presence/absence, length, intron phases were analyzed by manually in the annotated information in NCBI. RESULTS The canonical quadripartite structures were retained in most plastomes except of a few plastomes that had lost an invert repeat (IR). Expansion or reduction or deletion of IRs resulted in the length variation of the plastomes. The number of protein coding genes ranged from 40 to 92 with an average 79.43 ± 5.84 per plastome and gene losses were apparent in specific lineages. The number of trn genes ranged from 13 to 33 with an average 21.19 ± 2.42 per plastome. Ribosomal RNA genes, rrn, were located in the IRs so that they were present in a duplicate except of the species that had lost one of the IR. GC contents were variable from 24.9 to 51.0% with an average 38.21 ± 3.27%, indicating bias to high AT contents. Plastid introns were present in 18 protein coding genes, six trn genes, and one rrn gene. Intron losses occurred among the orthologous genes in different plant lineages. The plastid introns were long compared with the nuclear introns, which might be related with the spliceosome nuclear introns and self-splicing group II plastid introns. The trnK-UUU intron contained the maturase encoding matK gene except in the chlorophyte algae and monilophyte ferns in which the trnK-UUU was lost, but matK retained. There were many annotation artefacts in the intron positions in the NCBI database. In the analysis of intron phases, phase 0 introns were more frequent than those of phase 2 and 3 introns. Phase polymorphism was observed in the introns of clpP which was derived from nucleotide insertion. Plastid trn introns were long compared to the archaeal or eukaryotic nuclear tRNA introns. Of the six plastid trn introns, one was at the D loop and other five were at the anticodon loop. The insertion sites were conserved among the trn genes in archaea, eukaryotic nuclear and plastid tRNA genes. CONCLUSIONS Current study refurbrished the previous findings of structural variations, gene contents, and GC contents of the chloroplast genomes from green algae to flowering plants. The study also included some noble findings and discussions on the plastome introns including their length variations and phase variation. We also presented and corrected some false annotations on the introns in protein coding and tRNA genes in the genome database, which might be confirmed by the chloroplast transcriptome analysis in the future.
Collapse
|
33
|
Choi IS, Ruhlman TA, Jansen RK. Comparative Mitogenome Analysis of the Genus Trifolium Reveals Independent Gene Fission of ccmFn and Intracellular Gene Transfers in Fabaceae. Int J Mol Sci 2020; 21:E1959. [PMID: 32183014 PMCID: PMC7139807 DOI: 10.3390/ijms21061959] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 01/30/2023] Open
Abstract
The genus Trifolium is the largest of the tribe Trifolieae in the subfamily Papilionoideae (Fabaceae). The paucity of mitochondrial genome (mitogenome) sequences has hindered comparative analyses among the three genomic compartments of the plant cell (nucleus, mitochondrion and plastid). We assembled four mitogenomes from the two subgenera (Chronosemium and Trifolium) of the genus. The four Trifolium mitogenomes were compact (294,911-348,724 bp in length) and contained limited repetitive (6.6-8.6%) DNA. Comparison of organelle repeat content highlighted the distinct evolutionary trajectory of plastid genomes in a subset of Trifolium species. Intracellular gene transfer (IGT) was analyzed among the three genomic compartments revealing functional transfer of mitochondrial rps1 to nuclear genome along with other IGT events. Phylogenetic analysis based on mitochondrial and nuclear rps1 sequences revealed that the functional transfer in Trifolieae was independent from the event that occurred in robinioid clade that includes genus Lotus. A novel, independent fission event of ccmFn in Trifolium was identified, caused by a 59 bp deletion. Fissions of this gene reported previously in land plants were reassessed and compared with Trifolium.
Collapse
Affiliation(s)
- In-Su Choi
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA; (T.A.R.); (R.K.J.)
| | - Tracey A. Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA; (T.A.R.); (R.K.J.)
| | - Robert K. Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA; (T.A.R.); (R.K.J.)
- Centre of Excellence in Bionanoscience Research, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|