1
|
Zhou Y, Li Y, Luo L, Zhang D, Wang X, Chen Y, Zhang Y, Zhang Q, Luo H, Xie P, Du Y, Duan S, Zhou Y, Yang T, Li X, He R, Li Y, Cheng M, Li Y, Ma Z, He J, Rong T, Tang Q. Maize-Tripsacum-Teosinte allopolyploid (MTP), a novel dwarf mutant inducer tool in maize. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 39361445 DOI: 10.1111/pbi.14483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024]
Abstract
Dwarf plant architecture facilitates dense planting, and increased planting densities boost the maize yield. However, breeding applications of dwarfing materials for maize are currently limited. There is an urgent need remove the obstacles to applying dwarf resources. Here, we innovated a new method to add a novel maize dwarf germplasm through the distant hybridization of Maize-Tripsacum-Teosinte allopolyploid (MTP) with maize. We identified ten independent dwarf families with unique characteristics. Five germplasms in our library were controlled by their respective dwarf genes. However, no allele was controlled by Br2. Subsequently, d024 in the library was successfully fine mapped, revealing its linkage to indel-4 in ZmCYP90D1. The indel-4 polymorphism regulates the expression of ZmCYP90D1 and is controlled by an upstream transcription factor (ZmBES1/BZR1-5). The indel-4 of ZmCYP90D1 allele, which reduces plant height, originated from Tripsacum, a wild variety of maize. However, d024 exhibits sensitivity to brassinosteroids (BRs), with lower castasterone levels in the internodes than that in the wild type. Furthermore, ZmCYP90D1 interacted with ZmFDXs and ZmNAD(P)H to positively regulate the downstream BR synthesis pathway. Additionally, we showed that introgressing the indel-4 of the Tripsacum allele into modern hybrids ensures yield potential and improves the harvest index under high-density conditions. Overall, as we begin to manufacture highly engineered dwarf materials using the MTP, this approach will solve the problems faced by corn dwarfs.
Collapse
Affiliation(s)
- Yang Zhou
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Li
- Mianyang teachers' college, Mianyang, Sichuan, China
| | - Lin Luo
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Delong Zhang
- South China Agricultural University, Guangzhou, Guangdong, China
| | - Xingyu Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yu Chen
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yibo Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiyuan Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hanyu Luo
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Xie
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yiyang Du
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Saifei Duan
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhou
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Tao Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaofeng Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ruyu He
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yingzheng Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mingjun Cheng
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Yan Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences/Environment-friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhibin Ma
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jianmei He
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Tingzhao Rong
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qilin Tang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Liu D, Ning Q, Zhai L, Teng F, Li Y, Zhao R, Xiong Q, Zhan J, Li Z, Yang F, Zhang Z, Liu L. Coordinated control for the auricle asymmetric development by ZmIDD14 and ZmIDD15 fine-tune the high-density planting adaption in maize. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 38816933 DOI: 10.1111/pbi.14382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/18/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
Multiple distinct specialized regions shape the architecture of maize leaves. Among them, the fringe-like and wedge-shaped auricles alter the angle between the leaf and stalk, which is a key trait in crop plant architecture. As planting density increased, a small leaf angle (LA) was typically selected to promote crop light capture efficiency and yield. In the present study, we characterized two paralogous INDETERMINATE DOMAIN (IDD) genes, ZmIDD14 and ZmIDD15, which contain the Cys2-His2 zinc finger domain and function redundantly to regulate auricle development and LA in maize. Loss-of-function mutants showed decreased LA by reducing adaxial sclerenchyma thickness and increasing the colourless cell layers. In addition, the idd14;idd15 double mutant exhibited asymmetrically smaller auricles, which might cause by a failed maintenance of symmetric expression of the key auricle size controlling gene, LIGULELESS(LG1). The transcripts of ZmIDD14 and ZmIDD15 enriched in the ligular region, where LG1 was highly expressed, and both proteins physically interacted with ZmILI1 to promote LG1 transcription. Notably, the idd14;idd15 enhanced the grain yield of hybrids under high planting densities by shaping the plant architecture with a smaller LA. These findings demonstrate the functions of ZmIDD14 and ZmIDD15 in controlling the abaxial/adaxial development of sclerenchyma in the midrib and polar development along the medial-lateral axes of auricles and provide an available tool for high-density and high-yield breeding in maize.
Collapse
Affiliation(s)
- Dan Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qiang Ning
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lihong Zhai
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Feng Teng
- Hubei Tenglong Seed Co., Ltd, Xiangyang, Hubei, China
| | - Yunfu Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ran Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qing Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jimin Zhan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhen Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- Yazhouwan National Laboratory, Sanya, Hainan, China
| | - Lei Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Chu LL, Yan Z, Sheng XX, Liu HQ, Wang QY, Zeng RF, Hu CG, Zhang JZ. Citrus ACC synthase CiACS4 regulates plant height by inhibiting gibberellin biosynthesis. PLANT PHYSIOLOGY 2023; 192:1947-1968. [PMID: 36913259 PMCID: PMC10315275 DOI: 10.1093/plphys/kiad159] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Dwarfism is an agronomic trait that has substantial effects on crop yield, lodging resistance, planting density, and a high harvest index. Ethylene plays an important role in plant growth and development, including the determination of plant height. However, the mechanism by which ethylene regulates plant height, especially in woody plants, remains unclear. In this study, a 1-aminocyclopropane-1-carboxylic acid synthase (ACC) gene (ACS), which is involved in ethylene biosynthesis, was isolated from lemon (Citrus limon L. Burm) and named CiACS4. Overexpression of CiACS4 resulted in a dwarf phenotype in Nicotiana tabacum and lemon and increased ethylene release and decreased gibberellin (GA) content in transgenic plants. Inhibition of CiACS4 expression in transgenic citrus significantly increased plant height compared with the controls. Yeast two-hybrid assays revealed that CiACS4 interacted with an ethylene response factor (ERF), CiERF3. Further experiments revealed that the CiACS4-CiERF3 complex can bind to the promoters of 2 citrus GA20-oxidase genes, CiGA20ox1 and CiGA20ox2, and suppress their expression. In addition, another ERF transcription factor, CiERF023, identified using yeast one-hybrid assays, promoted CiACS4 expression by binding to its promoter. Overexpression of CiERF023 in N. tabacum caused a dwarfing phenotype. CiACS4, CiERF3, and CiERF023 expression was inhibited and induced by GA3 and ACC treatments, respectively. These results suggest that the CiACS4-CiERF3 complex may be involved in the regulation of plant height by regulating CiGA20ox1 and CiGA20ox2 expression levels in citrus.
Collapse
Affiliation(s)
- Le Le Chu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen Yan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Xing Xing Sheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Hai Qiang Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing Ye Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Ren Fang Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Chun Gen Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin Zhi Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Li Q, Liu N, Wu C. Novel insights into maize (Zea mays) development and organogenesis for agricultural optimization. PLANTA 2023; 257:94. [PMID: 37031436 DOI: 10.1007/s00425-023-04126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
In maize, intrinsic hormone activities and sap fluxes facilitate organogenesis patterning and plant holistic development; these hormone movements should be a primary focus of developmental biology and agricultural optimization strategies. Maize (Zea mays) is an important crop plant with distinctive life history characteristics and structural features. Genetic studies have extended our knowledge of maize developmental processes, genetics, and molecular ecophysiology. In this review, the classical life cycle and life history strategies of maize are analyzed to identify spatiotemporal organogenesis properties and develop a definitive understanding of maize development. The actions of genes and hormones involved in maize organogenesis and sex determination, along with potential molecular mechanisms, are investigated, with findings suggesting central roles of auxin and cytokinins in regulating maize holistic development. Furthermore, investigation of morphological and structural characteristics of maize, particularly node ubiquity and the alternate attachment pattern of lateral organs, yields a novel regulatory model suggesting that maize organ initiation and subsequent development are derived from the stimulation and interaction of auxin and cytokinin fluxes. Propositions that hormone activities and sap flow pathways control organogenesis are thoroughly explored, and initiation and development processes of distinctive maize organs are discussed. Analysis of physiological factors driving hormone and sap movement implicates cues of whole-plant activity for hormone and sap fluxes to stimulate maize inflorescence initiation and organ identity determination. The physiological origins and biogenetic mechanisms underlying maize floral sex determination occurring at the tassel and ear spikelet are thoroughly investigated. The comprehensive outline of maize development and morphogenetic physiology developed in this review will enable farmers to optimize field management and will provide a reference for de novo crop domestication and germplasm improvement using genome editing biotechnologies, promoting agricultural optimization.
Collapse
Affiliation(s)
- Qinglin Li
- Crop Genesis and Novel Agronomy Center, Yangling, 712100, Shaanxi, China.
| | - Ning Liu
- Shandong ZhongnongTiantai Seed Co., Ltd, Pingyi, 273300, Shandong, China
| | - Chenglai Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
5
|
Zhao Y, Huang Y, Gao Y, Wang Y, Wu H, Zhu H, Lu X, Ma Q. An EMS-induced allele of the brachytic2 gene can reduce plant height in maize. PLANT CELL REPORTS 2023; 42:749-761. [PMID: 36754893 DOI: 10.1007/s00299-023-02990-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
D129 is an EMS-induced mutant with dwarf phenotype, which has important breeding potential to cultivate new varieties suitable for high-density planting in maize Plant height is one of the important agronomic traits that affecting maize planting density, identification of superior dwarf mutants can provide important genetic materials for breeding new varieties suitable for high-density planting. In this study, we identified a dwarf mutant, d129, from maize EMS-induced mutant population. Gene mapping indicated that a G-to-A transition in the second exon of the br2 gene was responsible for the dwarf phenotype of the d129 mutant using MutMap method, which was further validated through allelism testing. Compared with WT plants, the average plant height and ear height of d129 were reduced by 26.67% and 39.43%, respectively, mainly due to a decrease in internode length. Furthermore, the d129 mutant exhibited increased internode diameter, which is important for increasing planting density due to the lodging resistance may be enhanced. Endogenous hormone measurement demonstrated that the contents of IAA and GA3 in the internode of the mutant were significantly lower than that of WT plants. RNA-seq analysis indicated that at least fifteen auxin-responsive and signaling-related genes exhibited differential expression, and some genes involved in cell development and other types of hormone signaling pathways, were also identified from the differential expressed genes. These genes may be related to the reduced hormone contents and decreased elongation of internode cells of the d129 mutant. Our study provided a novel dwarf mutant which can be applied in maize breeding to cultivate new varieties suitable for high-density planting.
Collapse
Affiliation(s)
- Yang Zhao
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Breeding Engineering of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yuanxiang Huang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Breeding Engineering of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yajie Gao
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Breeding Engineering of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yixiao Wang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Breeding Engineering of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Hongying Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Breeding Engineering of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Hongjia Zhu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Breeding Engineering of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaoduo Lu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Qing Ma
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
- Key Laboratory of Breeding Engineering of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
6
|
Kuzbakova M, Khassanova G, Oshergina I, Ten E, Jatayev S, Yerzhebayeva R, Bulatova K, Khalbayeva S, Schramm C, Anderson P, Sweetman C, Jenkins CLD, Soole KL, Shavrukov Y. Height to first pod: A review of genetic and breeding approaches to improve combine harvesting in legume crops. FRONTIERS IN PLANT SCIENCE 2022; 13:948099. [PMID: 36186054 PMCID: PMC9523450 DOI: 10.3389/fpls.2022.948099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Height from soil at the base of plant to the first pod (HFP) is an important trait for mechanical harvesting of legume crops. To minimise the loss of pods, the HFP must be higher than that of the blades of most combine harvesters. Here, we review the genetic control, morphology, and variability of HFP in legumes and attempt to unravel the diverse terminology for this trait in the literature. HFP is directly related to node number and internode length but through different mechanisms. The phenotypic diversity and heritability of HFP and their correlations with plant height are very high among studied legumes. Only a few publications describe a QTL analysis where candidate genes for HFP with confirmed gene expression have been mapped. They include major QTLs with eight candidate genes for HFP, which are involved in auxin transport and signal transduction in soybean [Glycine max (L.) Merr.] as well as MADS box gene SOC1 in Medicago trancatula, and BEBT or WD40 genes located nearby in the mapped QTL in common bean (Phaseolus vulgaris L.). There is no information available about simple and efficient markers associated with HFP, which can be used for marker-assisted selection for this trait in practical breeding, which is still required in the nearest future. To our best knowledge, this is the first review to focus on this significant challenge in legume-based cropping systems.
Collapse
Affiliation(s)
- Marzhan Kuzbakova
- Faculty of Agronomy, S. Seifullin Kazakh Agro Technical University, Nur-Sultan, Kazakhstan
| | - Gulmira Khassanova
- Faculty of Agronomy, S. Seifullin Kazakh Agro Technical University, Nur-Sultan, Kazakhstan
| | - Irina Oshergina
- A.I. Barayev Research and Production Centre of Grain Farming, Shortandy, Kazakhstan
| | - Evgeniy Ten
- A.I. Barayev Research and Production Centre of Grain Farming, Shortandy, Kazakhstan
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S. Seifullin Kazakh Agro Technical University, Nur-Sultan, Kazakhstan
| | - Raushan Yerzhebayeva
- Kazakh Research Institute of Agriculture and Plant Growing, Almalybak, Kazakhstan
| | - Kulpash Bulatova
- Kazakh Research Institute of Agriculture and Plant Growing, Almalybak, Kazakhstan
| | - Sholpan Khalbayeva
- Kazakh Research Institute of Agriculture and Plant Growing, Almalybak, Kazakhstan
| | - Carly Schramm
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Peter Anderson
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Crystal Sweetman
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Colin L. D. Jenkins
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Kathleen L. Soole
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Yuri Shavrukov
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
7
|
Zhang M, Song M, Davoudi M, Cheng F, Yin J, Zha G, Yang Z, Chen J, Lou Q. The mutation of C-24 reductase, a key enzyme involved in brassinolide biosynthesis, confers a novel compact plant architecture phenotype to cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2711-2723. [PMID: 35788747 DOI: 10.1007/s00122-022-04144-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
A novel compact plant architecture mutant, cpa-2, was identified from EMS-induced mutagenesis. Bulked segregant analysis sequencing and map-based cloning revealed CsDWF1 encoding C-24 reductase enzyme as the candidate gene. The compact architecture is a vital and valuable agronomic trait that helps to reduce the labor of plant management, and improve the fruit yield by increasing planting density in cucumbers. However, the molecular basis underlying the regulation of plant architecture in cucumber is complex and largely unknown. In this study, a novel recessive compact allele, designated as cpa-2 (compact plant architecture-2) was fine mapped in a 109 kb region on chromosome 7 by the strategy of bulked segregant analysis sequencing combined with map-based cloning. Gene annotation of the corresponding region revealed that the CsaV3_7G030530 (CsDWF1) gene encoding C-24 reductase, which acts as the key enzyme in brassinosteroids biosynthesis, functions as the candidate gene for cpa-2. Sequence analysis showed that a single-nucleotide mutation (G to A) in the second exon of CsaV3_7G030530 caused an amino acid substitution from E502 to K502. Compared with wild-type CCMC, CsDWF1 had lower expression levels in the stem, leaf and ovary of cpa-2. In addition, the compact phenotype in cpa-2 could be partially restored by exogenous BR application. Transcriptome analysis revealed that many genes related to plant growth hormones were differentially expressed in cpa-2 plants. This is the first report about the characterization and cloning of the CsDWF1 gene. This work revealed the importance of CsDWF1 in plant development regulation and extended our understanding of the interaction between BRs and other hormones for plant architecture development.
Collapse
Affiliation(s)
- Mengru Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Mengfei Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Marzieh Davoudi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Feng Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Juan Yin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Gaohui Zha
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Zhengan Yang
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650500, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China.
| |
Collapse
|
8
|
Wang F, Yu Z, Zhang M, Wang M, Lu X, Liu X, Li Y, Zhang X, Tan B, Li C, Ding Z. ZmTE1 promotes plant height by regulating intercalary meristem formation and internode cell elongation in maize. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:526-537. [PMID: 34687251 PMCID: PMC8882779 DOI: 10.1111/pbi.13734] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 05/12/2023]
Abstract
Maize height is determined by the number of nodes and the length of internodes. Node number is driven by intercalary meristem formation and internode length by intercalary cell elongation, respectively. However, mechanisms regulating establishment of nodes and internode growth are unclear. We screened EMS-induced maize mutants and identified a dwarf mutant zm66, linked to a single base change in TERMINAL EAR 1 (ZmTE1). Detailed phenotypic analysis revealed that zm66 (zmte1-2) has shorter internodes and increased node numbers, caused by decreased cell elongation and disordered intercalary meristem formation, respectively. Transcriptome analysis showed that auxin signalling genes are also dysregulated in zmte1-2, as are cell elongation and cell cycle-related genes. This argues that ZmTE1 regulates auxin signalling, cell division, and cell elongation. We found that the ZmWEE1 kinase phosphorylates ZmTE1, thus confining it to the nucleus and probably reducing cell division. In contrast, the ZmPP2Ac-2 phosphatase promotes dephosphorylation and cytoplasmic localization of ZmTE1, as well as cell division. Taken together, ZmTE1, a key regulator of plant height, is responsible for maintaining organized formation of internode meristems and rapid cell elongation. ZmWEE1 and ZmPP2Ac-2 might balance ZmTE1 activity, controlling cell division and elongation to maintain normal maize growth.
Collapse
Affiliation(s)
- Fengxia Wang
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationCollege of Life SciencesShandong UniversityQingdaoShandongChina
| | - Zipeng Yu
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationCollege of Life SciencesShandong UniversityQingdaoShandongChina
| | - Maolin Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationCollege of Life SciencesShandong UniversityQingdaoShandongChina
| | - Mengli Wang
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationCollege of Life SciencesShandong UniversityQingdaoShandongChina
| | - Xiaoduo Lu
- School of Life ScienceAnhui Agricultural UniversityHefeiAnhuiChina
| | - Xia Liu
- Maize Research InstituteShandong Academy of Agricultural Sciences/National Engineering Laboratory of Wheat and Maize/Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow‐huai River PlainMinistry of AgricultureJinanChina
| | - Yubin Li
- College of AgronomyQingdao Agricultural UniversityQingdaoChina
| | - Xiansheng Zhang
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTai'anChina
| | - Bao‐cai Tan
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationCollege of Life SciencesShandong UniversityQingdaoShandongChina
| | - Cuiling Li
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationCollege of Life SciencesShandong UniversityQingdaoShandongChina
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationCollege of Life SciencesShandong UniversityQingdaoShandongChina
| |
Collapse
|
9
|
Banasiak J, Jasiński M. ATP-binding cassette transporters in nonmodel plants. THE NEW PHYTOLOGIST 2022; 233:1597-1612. [PMID: 34614235 DOI: 10.1111/nph.17779] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Knowledge about plant ATP-binding cassette (ABC) proteins is of great value for sustainable agriculture, economic yield, and the generation of high-quality products, especially under unfavorable growth conditions. We have learned much about ABC proteins in model organisms, notably Arabidopsis thaliana; however, the importance of research dedicated to these transporters extends far beyond Arabidopsis biology. Recent progress in genomic and transcriptomic approaches for nonmodel and noncanonical model plants allows us to look at ABC transporters from a wider perspective and consider chemodiversity and functionally driven adaptation as distinctive mechanisms during their evolution. Here, by considering several representatives from agriculturally important families and recent progress in functional characterization of nonArabidopsis ABC proteins, we aim to bring attention to understanding the evolutionary background, distribution among lineages and possible mechanisms underlying the adaptation of this versatile transport system for plant needs. Increasing the knowledge of ABC proteins in nonmodel plants will facilitate breeding and development of new varieties based on, for example, genetic variations of endogenous genes and/or genome editing, representing an alternative to transgenic approaches.
Collapse
Affiliation(s)
- Joanna Banasiak
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Michał Jasiński
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, Poland
| |
Collapse
|
10
|
Yue K, Lingling L, Xie J, Coulter JA, Luo Z. Synthesis and regulation of auxin and abscisic acid in maize. PLANT SIGNALING & BEHAVIOR 2021; 16:1891756. [PMID: 34057034 PMCID: PMC8205056 DOI: 10.1080/15592324.2021.1891756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Indole-3-acetic acid (IAA), the primary auxin in higher plants, and abscisic acid (ABA) play crucial roles in the ability of maize (Zea mays L.) to acclimatize to various environments by mediating growth, development, defense and nutrient allocation. Although understanding the biochemical reactions for IAA and ABA biosynthesis and signal transduction has progressed, the mechanisms by which auxin and ABA are synthesized and transduced in maize have not been fully elucidated to date. The synthesis and signal transduction pathway of IAA and ABA in maize can be analyzed using an existing model. This article focuses on the research progress toward understanding the synthesis and signaling pathways of IAA and ABA, as well as IAA and ABA regulation of maize growth, providing insight for future development and the significance of IAA and ABA for maize improvement.
Collapse
Affiliation(s)
- Kai Yue
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Li Lingling
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- CONTACT Lingling Li College of Agronomy/Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Junhong Xie
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Jeffrey A. Coulter
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | - Zhuzhu Luo
- College of Resource and Environment, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
11
|
Kumar R, Sharma V, Suresh S, Ramrao DP, Veershetty A, Kumar S, Priscilla K, Hangargi B, Narasanna R, Pandey MK, Naik GR, Thomas S, Kumar A. Understanding Omics Driven Plant Improvement and de novo Crop Domestication: Some Examples. Front Genet 2021; 12:637141. [PMID: 33889179 PMCID: PMC8055929 DOI: 10.3389/fgene.2021.637141] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/02/2021] [Indexed: 01/07/2023] Open
Abstract
In the current era, one of biggest challenges is to shorten the breeding cycle for rapid generation of a new crop variety having high yield capacity, disease resistance, high nutrient content, etc. Advances in the "-omics" technology have revolutionized the discovery of genes and bio-molecules with remarkable precision, resulting in significant development of plant-focused metabolic databases and resources. Metabolomics has been widely used in several model plants and crop species to examine metabolic drift and changes in metabolic composition during various developmental stages and in response to stimuli. Over the last few decades, these efforts have resulted in a significantly improved understanding of the metabolic pathways of plants through identification of several unknown intermediates. This has assisted in developing several new metabolically engineered important crops with desirable agronomic traits, and has facilitated the de novo domestication of new crops for sustainable agriculture and food security. In this review, we discuss how "omics" technologies, particularly metabolomics, has enhanced our understanding of important traits and allowed speedy domestication of novel crop plants.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Srinivas Suresh
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | | | - Akash Veershetty
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Sharan Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Kagolla Priscilla
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | | | - Rahul Narasanna
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Manish Kumar Pandey
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - Sherinmol Thomas
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Anirudh Kumar
- Department of Botany, Indira Gandhi National Tribal University, Amarkantak, India
| |
Collapse
|