1
|
Wang Y, Wang D, Du J, Wang Y, Shao C, Cui C, Xiao J, Wang X. Crucial role of SWL1 in chloroplast biogenesis and development in Arabidopsis thaliana. PLANT CELL REPORTS 2024; 43:135. [PMID: 38704787 DOI: 10.1007/s00299-024-03210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024]
Abstract
KEY MESSAGE The disruption of the SWL1 gene leads to a significant down regulation of chloroplast and secondary metabolites gene expression in Arabidopsis thaliana. And finally results in a dysfunction of chloroplast and plant growth. Although the development of the chloroplast has been a consistent focus of research, the corresponding regulatory mechanisms remain unidentified. In this study, the CRISPR/Cas9 system was used to mutate the SWL1 gene, resulting in albino cotyledons and variegated true leaf phenotype. Confocal microscopy and western blot of chloroplast protein fractions revealed that SWL1 localized in the chloroplast stroma. Electron microscopy indicated chloroplasts in the cotyledons of swl1 lack well-defined grana and internal membrane structures, and similar structures have been detected in the albino region of variegated true leaves. Transcriptome analysis revealed that down regulation of chloroplast and nuclear gene expression related to chloroplast, including light harvesting complexes, porphyrin, chlorophyll metabolism and carbon metabolism in the swl1 compared to wild-type plant. In addition, proteomic analysis combined with western blot analysis, showed that a significant decrease in chloroplast proteins of swl1. Furthermore, the expression of genes associated with secondary metabolites and growth hormones was also reduced, which may be attributed to SWL1 associated with absorption and fixation of inorganic carbon during chloroplast development. Together, the above findings provide valuable information to elucidate the exact function of SWL1 in chloroplast biogenesis and development.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Dong Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jingxia Du
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yan Wang
- College of Agriculture and Forestry, Hebei North University, Zhangjiakou, 075000, China
| | - Chunxue Shao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Chuwen Cui
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jianwei Xiao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China.
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Xinwei Wang
- College of Agriculture and Forestry, Hebei North University, Zhangjiakou, 075000, China.
- SENO Biotechnology Co., Ltd., Zhangjiakou, 075000, China.
| |
Collapse
|
2
|
Guo G, Liu L, Shen T, Wang H, Zhang S, Sun Y, Xiong G, Tang X, Zhu L, Jia B. Genome-wide identification of GA2ox genes family and analysis of PbrGA2ox1-mediated enhanced chlorophyll accumulation by promoting chloroplast development in pear. BMC PLANT BIOLOGY 2024; 24:166. [PMID: 38433195 PMCID: PMC10910807 DOI: 10.1186/s12870-024-04842-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Chlorophyll (Chl) is an agronomic trait associated with photosynthesis and yield. Gibberellin 2-oxidases (GA2oxs) have previously been shown to be involved in Chl accumulation. However, whether and how the PbrGA2ox proteins (PbrGA2oxs) mediate Chl accumulation in pear (Pyrus spp.) is scarce. RESULTS Here, we aimed to elucidate the role of the pear GA2ox gene family in Chl accumulation and the related underlying mechanisms. We isolated 13 PbrGA2ox genes (PbrGA2oxs) from the pear database and identified PbrGA2ox1 as a potential regulator of Chl accumulation. We found that transiently overexpressing PbrGA2ox1 in chlorotic pear leaves led to Chl accumulation, and PbrGA2ox1 silencing in normal pear leaves led to Chl degradation, as evident by the regreening and chlorosis phenomenon, respectively. Meanwhile, PbrGA2ox1-overexpressing (OE) tobacco plants discernably exhibited Chl built-up, as evidenced by significantly higher Pn and Fv/Fm. In addition, RNA sequencing (RNA-seq), physiological and biochemical investigations revealed an increase in abscisic acid (ABA), methyl jasmonate (MeJA), and salicylic acid (SA) concentrations and signaling pathways; a marked elevation in reducing and soluble sugar contents; and a marginal decline in the starch and sucrose levels in OE plants. Interestingly, PbrGA2ox1 overexpression did not prominently affect Chl synthesis. However, it indeed facilitated chloroplast development by increasing chloroplast number per cell and compacting the thylakoid granum stacks. These findings might jointly contribute to Chl accumulation in OE plants. CONCLUSION Overall, our results suggested that GA2oxs accelerate Chl accumulation by stimulating chloroplast development and proved the potential of PbrGA2ox1 as a candidate gene for genetically breeding biofortified pear plants with a higher yield.
Collapse
Affiliation(s)
- Guoling Guo
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Lun Liu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Taijing Shen
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Haozhe Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Shuqin Zhang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Yu Sun
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Guoyu Xiong
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaomei Tang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Liwu Zhu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Bing Jia
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
3
|
Valencia-Lozano E, Herrera-Isidrón L, Flores-López JA, Recoder-Meléndez OS, Uribe-López B, Barraza A, Cabrera-Ponce JL. Exploring the Potential Role of Ribosomal Proteins to Enhance Potato Resilience in the Face of Changing Climatic Conditions. Genes (Basel) 2023; 14:1463. [PMID: 37510367 PMCID: PMC10379993 DOI: 10.3390/genes14071463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Potatoes have emerged as a key non-grain crop for food security worldwide. However, the looming threat of climate change poses significant risks to this vital food source, particularly through the projected reduction in crop yields under warmer temperatures. To mitigate potential crises, the development of potato varieties through genome editing holds great promise. In this study, we performed a comprehensive transcriptomic analysis to investigate microtuber development and identified several differentially expressed genes, with a particular focus on ribosomal proteins-RPL11, RPL29, RPL40 and RPL17. Our results reveal, by protein-protein interaction (PPI) network analyses, performed with the highest confidence in the STRING database platform (v11.5), the critical involvement of these ribosomal proteins in microtuber development, and highlighted their interaction with PEBP family members as potential microtuber activators. The elucidation of the molecular biological mechanisms governing ribosomal proteins will help improve the resilience of potato crops in the face of today's changing climatic conditions.
Collapse
Affiliation(s)
- Eliana Valencia-Lozano
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico
| | - Lisset Herrera-Isidrón
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - Jorge Abraham Flores-López
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - Osiel Salvador Recoder-Meléndez
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - Braulio Uribe-López
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - Aarón Barraza
- CONACYT-Centro de Investigaciones Biológicas del Noreste, SC., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz CP 23096, Baja California Sur, Mexico
| | - José Luis Cabrera-Ponce
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico
| |
Collapse
|
4
|
Dupouy G, McDermott E, Cashell R, Scian A, McHale M, Ryder P, de Groot J, Lucca N, Brychkova G, McKeown PC, Spillane C. Plastid ribosome protein L5 is essential for post-globular embryo development in Arabidopsis thaliana. PLANT REPRODUCTION 2022; 35:189-204. [PMID: 35247095 PMCID: PMC9352626 DOI: 10.1007/s00497-022-00440-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Plastid ribosomal proteins (PRPs) can play essential roles in plastid ribosome functioning that affect plant function and development. However, the roles of many PRPs remain unknown, including elucidation of which PRPs are essential or display redundancy. Here, we report that the nuclear-encoded PLASTID RIBOSOMAL PROTEIN L5 (PRPL5) is essential for early embryo development in A. thaliana, as homozygous loss-of-function mutations in the PRPL5 gene impairs chloroplast development and leads to embryo failure to develop past the globular stage. We confirmed the prpl5 embryo-lethal phenotype by generating a mutant CRISPR/Cas9 line and by genetic complementation. As PRPL5 underwent transfer to the nuclear genome early in the evolution of Embryophyta, PRPL5 can be expected to have acquired a chloroplast transit peptide. We identify and validate the presence of an N-terminal chloroplast transit peptide, but unexpectedly also confirm the presence of a conserved and functional Nuclear Localization Signal on the protein C-terminal end. This study highlights the fundamental role of the plastid translation machinery during the early stages of embryo development in plants and raises the possibility of additional roles of plastid ribosomal proteins in the nucleus.
Collapse
Affiliation(s)
- Gilles Dupouy
- Genetics and Biotechnology Lab, Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, Aras de Brun, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Emma McDermott
- Genetics and Biotechnology Lab, Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, Aras de Brun, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Ronan Cashell
- Genetics and Biotechnology Lab, Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, Aras de Brun, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Anna Scian
- Genetics and Biotechnology Lab, Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, Aras de Brun, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Marcus McHale
- Genetics and Biotechnology Lab, Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, Aras de Brun, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Peter Ryder
- Genetics and Biotechnology Lab, Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, Aras de Brun, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Joelle de Groot
- Genetics and Biotechnology Lab, Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, Aras de Brun, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Noel Lucca
- Genetics and Biotechnology Lab, Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, Aras de Brun, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Galina Brychkova
- Genetics and Biotechnology Lab, Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, Aras de Brun, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Peter C McKeown
- Genetics and Biotechnology Lab, Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, Aras de Brun, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Charles Spillane
- Genetics and Biotechnology Lab, Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, Aras de Brun, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland.
| |
Collapse
|
5
|
The complete chloroplast genome of critically endangered Chimonobambusa hirtinoda (Poaceae: Chimonobambusa) and phylogenetic analysis. Sci Rep 2022; 12:9649. [PMID: 35688841 PMCID: PMC9187695 DOI: 10.1038/s41598-022-13204-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Chimonobambusa hirtinoda, a threatened species, is only naturally distributed in Doupeng Mountain, Duyun, Guizhou, China. Next-generation sequencing (NGS) is used to obtain the complete chloroplast (cp) genome sequence of C. hirtinoda. The sequence was assembled and analyzed for phylogenetic and evolutionary studies. Additionally, we compared the cp genome of C. hirtinoda with previously published Chimonobambusa species. The cp genome of C. hirtinoda has a total length of 139, 561 bp and 38.90% GC content. This genome included a large single -copy (LSC) region of 83, 166 bp, a small single-copy (SSC) region of 20, 811 bp and a pair of inverted repeats of 21,792 bp each. We discovered 130 genes in the cp genome, including 85 protein-coding genes, 37 tRNA, and 8 rRNA genes. A total of 48 simple sequence repeats (SSRs) were detected. The A/U preference of the third nucleotide in the cp genome of C. hirtinoda was obtained by measuring the codon usage frequency of amino acids. Furthermore, phylogenetic analysis using complete cp sequences and matK gene revealed a genetic relationship within the Chimonobambusa genus. This study reported the chloroplast genome of the C. hirtinoda.
Collapse
|