1
|
Guo X, Wang C, Zhu Q, Dongchen W, Zhang X, Li W, Zhang H, Zhang C, Nant Nyein ZNN, Li M, Chen L, Lee D. Albino lethal 13, a chloroplast-imported protein required for chloroplast development in rice. PLANT DIRECT 2024; 8:e610. [PMID: 38903415 PMCID: PMC11189691 DOI: 10.1002/pld3.610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/22/2024]
Abstract
Chloroplasts play a vital role in plant growth and development, which are the main sites of photosynthesis and the production of hormones and metabolites. Despite their significance, the regulatory mechanisms governing chloroplast development remain unclear. In our investigation, we identified a rice mutant with defective chloroplasts in rice (Oryza sativa L.), named albino lethal 13 (osal13), which displayed a distinct albino phenotype in leaves, ultimately resulting in seedling lethality. Molecular cloning revealed that OsAL13 encodes a novel rice protein with no homologous gene or known conserved domain. This gene was located in the chloroplast and exhibited constitutive expression in various tissues, particularly in green tissues and regions of active cell growth. Our study's findings reveal that RNAi-mediated knockdown of OsAL13 led to a pronounced albino phenotype, reduced chlorophyll and carotenoid contents, a vesicle chloroplast structure, and a decrease in the expression of chloroplast-associated genes. Consequently, the pollen fertility and seed setting rate were lower compared with the wild type. In contrast, the overexpression of OsAL13 resulted in an increased photosynthetic rate, a higher total grain number per panicle, and enhanced levels of indole-3-acetic acid (IAA) in the roots and gibberellin A3 (GA3) in the shoot. These outcomes provide new insights on the role of OsAL13 in regulating chloroplast development in rice.
Collapse
Affiliation(s)
- Xiaoqiong Guo
- Rice Research InstituteYunnan Agricultural UniversityKunmingChina
- College of Biological Resource and Food EngineeringQujing Normal UniversityQujingChina
| | - Chunli Wang
- Rice Research InstituteYunnan Agricultural UniversityKunmingChina
| | - Qian Zhu
- Rice Research InstituteYunnan Agricultural UniversityKunmingChina
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingChina
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan ProvinceYunnan Agricultural UniversityKunmingChina
| | - Wenhua Dongchen
- College of Agronomy and BiotechnologyYunnan Agricultural UniversityKunmingChina
| | | | - Wei Li
- College of Biological Resource and Food EngineeringQujing Normal UniversityQujingChina
| | - Hui Zhang
- College of Agronomy and BiotechnologyYunnan Agricultural UniversityKunmingChina
| | - Cui Zhang
- Rice Research InstituteYunnan Agricultural UniversityKunmingChina
| | | | - Mengting Li
- Rice Research InstituteYunnan Agricultural UniversityKunmingChina
| | - Lijuan Chen
- Rice Research InstituteYunnan Agricultural UniversityKunmingChina
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingChina
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan ProvinceYunnan Agricultural UniversityKunmingChina
| | - Dongsun Lee
- Rice Research InstituteYunnan Agricultural UniversityKunmingChina
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingChina
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan ProvinceYunnan Agricultural UniversityKunmingChina
| |
Collapse
|
2
|
Mahto A, Yadav A, P V A, Parida SK, Tyagi AK, Agarwal P. Cytological, transcriptome and miRNome temporal landscapes decode enhancement of rice grain size. BMC Biol 2023; 21:91. [PMID: 37076907 PMCID: PMC10116700 DOI: 10.1186/s12915-023-01577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/27/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Rice grain size (GS) is an essential agronomic trait. Though several genes and miRNA modules influencing GS are known and seed development transcriptomes analyzed, a comprehensive compendium connecting all possible players is lacking. This study utilizes two contrasting GS indica rice genotypes (small-grained SN and large-grained LGR). Rice seed development involves five stages (S1-S5). Comparative transcriptome and miRNome atlases, substantiated with morphological and cytological studies, from S1-S5 stages and flag leaf have been analyzed to identify GS proponents. RESULTS Histology shows prolonged endosperm development and cell enlargement in LGR. Stand-alone and comparative RNAseq analyses manifest S3 (5-10 days after pollination) stage as crucial for GS enhancement, coherently with cell cycle, endoreduplication, and programmed cell death participating genes. Seed storage protein and carbohydrate accumulation, cytologically and by RNAseq, is shown to be delayed in LGR. Fourteen transcription factor families influence GS. Pathway genes for four phytohormones display opposite patterns of higher expression. A total of 186 genes generated from the transcriptome analyses are located within GS trait-related QTLs deciphered by a cross between SN and LGR. Fourteen miRNA families express specifically in SN or LGR seeds. Eight miRNA-target modules display contrasting expressions amongst SN and LGR, while 26 (SN) and 43 (LGR) modules are differentially expressed in all stages. CONCLUSIONS Integration of all analyses concludes in a "Domino effect" model for GS regulation highlighting chronology and fruition of each event. This study delineates the essence of GS regulation, providing scope for future exploits. The rice grain development database (RGDD) ( www.nipgr.ac.in/RGDD/index.php ; https://doi.org/10.5281/zenodo.7762870 ) has been developed for easy access of data generated in this paper.
Collapse
Affiliation(s)
- Arunima Mahto
- National Institute of Plant Genome Research, New Delhi, India
| | - Antima Yadav
- National Institute of Plant Genome Research, New Delhi, India
| | - Aswathi P V
- National Institute of Plant Genome Research, New Delhi, India
| | - Swarup K Parida
- National Institute of Plant Genome Research, New Delhi, India
| | - Akhilesh K Tyagi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research, New Delhi, India.
| |
Collapse
|
3
|
Zhang Q, Chen C, Wang Y, He M, Li Z, Shen L, Li Q, Zhu L, Ren D, Hu J, Gao Z, Zhang G, Qian Q. OsPPR11 encoding P-type PPR protein that affects group II intron splicing and chloroplast development. PLANT CELL REPORTS 2023; 42:355-369. [PMID: 36576552 DOI: 10.1007/s00299-022-02961-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/28/2022] [Indexed: 05/20/2023]
Abstract
OsPPR11 belongs to the P-type PPR protein family and can interact with OsCAF2 to regulate Group II intron splicing and affect chloroplast development in rice. Pentatricopeptide repeat (PPR) proteins participate in chloroplasts or mitochondria group II introns splicing in plants. The PPR protein family contains 491 members in rice, but most of their functions are unknown. In this study, we identified a nuclear gene encoding the P-type PPR protein OsPPR11 in chloroplasts. The qRT-PCR analysis demonstrated that OsPPR11 was expressed in all plant tissues, but leaves had the highest expression. The osppr11 mutants had yellowing leaves and a lethal phenotype that inhibited chloroplast development and photosynthesis-related gene expression and reduced photosynthesis-related protein accumulation in seedlings. Moreover, photosynthetic complex accumulation decreased significantly in osppr11 mutants. The OsPPR11 is required for ndhA, and ycf3-1 introns splicing and interact with CRM family protein OsCAF2, suggesting that these two proteins may form splicing complexes to regulate group II introns splicing. Further analysis revealed that OsCAF2 interacts with OsPPR11 through the N-terminus. These results indicate that OsPPR11 is essential for chloroplast development and function by affecting group II intron splicing in rice.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Changzhao Chen
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Yaliang Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Mengxing He
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Zhiwen Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310006, People's Republic of China
| | - Lan Shen
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Qing Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Li Zhu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Deyong Ren
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Jiang Hu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Zhenyu Gao
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Guangheng Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Qian Qian
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China.
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572000, People's Republic of China.
| |
Collapse
|
4
|
Zhang Q, Chen C, Wang Y, He M, Li Z, Shen L, Li Q, Zhu L, Ren D, Hu J, Gao Z, Zhang G, Qian Q. OsPPR11 encoding P-type PPR protein that affects group II intron splicing and chloroplast development. PLANT CELL REPORTS 2023; 42:421-431. [PMID: 36576552 DOI: 10.1007/s00299-022-02968-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
OsPPR11 belongs to the P-type PPR protein family and can interact with OsCAF2 to regulate Group II intron splicing and affect chloroplast development in rice. Pentatricopeptide repeat (PPR) proteins participate in chloroplasts or mitochondria group II introns splicing in plants. The PPR protein family contains 491 members in rice, but most of their functions are unknown. In this study, we identified a nuclear gene encoding the P-type PPR protein OsPPR11 in chloroplasts. The qRT-PCR analysis demonstrated that OsPPR11 was expressed in all plant tissues, but leaves had the highest expression. The osppr11 mutants had yellowing leaves and a lethal phenotype that inhibited chloroplast development and photosynthesis-related gene expression and reduced photosynthesis-related protein accumulation in seedlings. Moreover, photosynthetic complex accumulation decreased significantly in osppr11 mutants. The OsPPR11 is required for ndhA, and ycf3-1 introns splicing and interact with CRM family protein OsCAF2, suggesting that these two proteins may form splicing complexes to regulate group II introns splicing. Further analysis revealed that OsCAF2 interacts with OsPPR11 through the N-terminus. These results indicate that OsPPR11 is essential for chloroplast development and function by affecting group II intron splicing in rice.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Changzhao Chen
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Yaliang Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Mengxing He
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Zhiwen Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310006, People's Republic of China
| | - Lan Shen
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Qing Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Li Zhu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Deyong Ren
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Jiang Hu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Zhenyu Gao
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Guangheng Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Qian Qian
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China.
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572000, People's Republic of China.
| |
Collapse
|
5
|
Zeng C, Jiao Q, Jia T, Hu X. Updated Progress on Group II Intron Splicing Factors in Plant Chloroplasts. Curr Issues Mol Biol 2022; 44:4229-4239. [PMID: 36135202 PMCID: PMC9497791 DOI: 10.3390/cimb44090290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Group II introns are large catalytic RNAs (ribozymes) in the bacteria and organelle genomes of several lower eukaryotes. Many critical photosynthesis-related genes in the plant chloroplast genome also contain group II introns, and their splicing is critical for chloroplast biogenesis and photosynthesis processes. The structure of chloroplast group II introns was altered during evolution, resulting in the loss of intron self-splicing. Therefore, the assistance of protein factors was required for their splicing processes. As an increasing number of studies focus on the mechanism of chloroplast intron splicing; many new nuclear-encoded splicing factors that are involved in the chloroplast intron splicing process have been reported. This report reviewed the research progress of the updated splicing factors found to be involved in the splicing of chloroplast group II introns. We discuss the main problems that remain in this research field and suggest future research directions.
Collapse
Affiliation(s)
- Chu Zeng
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qingsong Jiao
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ting Jia
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xueyun Hu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
6
|
Jang YH, Park JR, Kim EG, Kim KM. OsbHLHq11, the Basic Helix-Loop-Helix Transcription Factor, Involved in Regulation of Chlorophyll Content in Rice. BIOLOGY 2022; 11:1000. [PMID: 36101381 PMCID: PMC9312294 DOI: 10.3390/biology11071000] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022]
Abstract
Photosynthesis is an important factor in determining the yield of rice. In particular, the size and efficiency of the photosynthetic system after the heading has a great impact on the yield. Research related to high-efficiency photosynthesis is essential to meet the growing demands of crops for the growing population. Chlorophyll is a key molecule in photosynthesis, a pigment that acts as an antenna to absorb light energy. Improvement of chlorophyll content characteristics has been emphasized in rice breeding for several decades. It is expected that an increase in chlorophyll content may increase photosynthetic efficiency, and understanding the genetic basis involved is important. In this study, we measured leaf color (CIELAB), chlorophyll content (SPAD), and chlorophyll fluorescence, and quantitative trait loci (QTL) mapping was performed using 120 Cheongcheong/Nagdong double haploid (CNDH) line after the heading date. A major QTL related to chlorophyll content was detected in the RM26981-RM287 region of chromosome 11. OsbHLHq11 was finally selected through screening of genes related to chlorophyll content in the RM26981-RM287 region. The relative expression level of the gene of OsbHLHq11 was highly expressed in cultivars with low chlorophyll content, and is expected to have a similar function to BHLH62 of the Gramineae genus. OsbHLHq11 is expected to increase photosynthetic efficiency by being involved in the chlorophyll content, and is expected to be utilized as a new genetic resource for breeding high-yield rice.
Collapse
Affiliation(s)
- Yoon-Hee Jang
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Korea; (Y.-H.J.); (E.-G.K.)
| | - Jae-Ryoung Park
- Crop Breeding Division, Rural Development Administration, National Institute of Crop Science, Wanju 55365, Korea;
| | - Eun-Gyeong Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Korea; (Y.-H.J.); (E.-G.K.)
| | - Kyung-Min Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Korea; (Y.-H.J.); (E.-G.K.)
| |
Collapse
|
7
|
Wang X, Wang J, Li S, Lu C, Sui N. An overview of RNA splicing and functioning of splicing factors in land plant chloroplasts. RNA Biol 2022; 19:897-907. [PMID: 35811474 PMCID: PMC9275481 DOI: 10.1080/15476286.2022.2096801] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RNA splicing refers to a process by which introns of a pre-mRNA are excised and the exons at both ends are joined together. Chloroplast introns are inherently self-splicing ribozymes, but over time, they have lost self-splicing ability due to the degeneration of intronic elements. Thus, the splicing of chloroplast introns relies heavily on nuclear-encoded splicing factors, which belong to diverse protein families. Different splicing factors and their shared intron targets are supposed to form ribonucleoprotein particles (RNPs) to facilitate intron splicing. As characterized in a previous review, around 14 chloroplast intron splicing factors were identified until 2010. However, only a few genetic and biochemical evidence has shown that these splicing factors are required for the splicing of one or several introns. The roles of splicing factors are generally believed to facilitate intron folding; however, the precise role of each protein in RNA splicing remains ambiguous. This may be because the precise binding site of most of these splicing factors remains unexplored. In the last decade, several new splicing factors have been identified. Also, several splicing factors were found to bind to specific sequences within introns, which enhanced the understanding of splicing factors. Here, we summarize recent progress on the splicing factors in land plant chloroplasts and discuss their possible roles in chloroplast RNA splicing based on previous studies.
Collapse
Affiliation(s)
- Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Western Shandong, China
| | - Jingyi Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Western Shandong, China
| | - Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Western Shandong, China
| | - Congming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Western Shandong, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Western Shandong, China
| |
Collapse
|
8
|
Zhang Q, Wang Y, Xie W, Chen C, Ren D, Hu J, Zhu L, Zhang G, Gao Z, Guo L, Zeng D, Shen L, Qian Q. OsMORF9 is necessary for chloroplast development and seedling survival in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 307:110907. [PMID: 33902846 DOI: 10.1016/j.plantsci.2021.110907] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 05/24/2023]
Abstract
Chloroplasts are closely associated with the growth and development of higher plants. Accumulating evidence has revealed that the multiple organellar RNA editing factors (MORF) family of proteins influences plastidic and mitochondrial development through post-transcriptional regulation. However, the role of MORFs in regulating the development of chloroplasts in rice is still unclear. The OsMORF9 gene belongs to a small family of 7 genes in rice and is highly expressed in young leaves. We used the CRISPR/Cas9 system to mutate OsMORF9. The resulting knockout lines osmorf9-1 and osmorf9-2 exhibited an albino seedling lethal phenotype. Besides, the expression of many plastid-encoded genes involved in photosynthesis, the biogenesis of plastidic ribosomes and the editing and splicing of specific plastidic RNA molecules were severely affected in these two OsMORF9 mutants. Furthermore, yeast two-hybrid analysis revealed that OsMORF9 could interact with OsSLA4 and DUA1 which are members of the pentatricopeptide repeat (PPR) family of proteins. Analysis of subcellular localization of OsMORF9 also suggested that it might function in chloroplasts. The findings from the present study demonstrated the critical role of OsMORF9 in the biogenesis of chloroplast ribosomes, chloroplast development and seedling survival. This therefore provides new insights on the function of MORF proteins in rice.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yaliang Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Wei Xie
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Changzhao Chen
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Deyong Ren
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jiang Hu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Li Zhu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Guangheng Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Zhenyu Gao
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Longbiao Guo
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Dali Zeng
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Lan Shen
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| | - Qian Qian
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
9
|
Feiz L, Asakura Y, Mao L, Strickler SR, Fei Z, Rojas M, Barkan A, Stern DB. CFM1, a member of the CRM-domain protein family, functions in chloroplast group II intron splicing in Setaria viridis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:639-648. [PMID: 33140462 DOI: 10.1111/tpj.15060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/27/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
The chloroplast RNA splicing and ribosome maturation (CRM) domain is a RNA-binding domain found in a plant-specific protein family whose characterized members play essential roles in splicing group I and group II introns in mitochondria and chloroplasts. Together, these proteins are required for splicing of the majority of the approximately 20 chloroplast introns in land plants. Here, we provide evidence from Setaria viridis and maize that an uncharacterized member of this family, CRM Family Member1 (CFM1), promotes the splicing of most of the introns that had not previously been shown to require a CRM domain protein. A Setaria mutant expressing mutated CFM1 was strongly disrupted in the splicing of three chloroplast tRNAs: trnI, trnV and trnA. Analyses by RNA gel blot and polysome association suggest that the tRNA deficiencies lead to compromised chloroplast protein synthesis and the observed whole-plant chlorotic phenotypes. Co-immunoprecipitation data demonstrate that the maize CFM1 ortholog is bound to introns whose splicing is disrupted in the cfm1 mutant. With these results, CRM domain proteins have been shown to promote the splicing of all but two of the introns found in angiosperm chloroplast genomes.
Collapse
Affiliation(s)
- Leila Feiz
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | - Yukari Asakura
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Linyong Mao
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | | | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | - Margarita Rojas
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - David B Stern
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| |
Collapse
|
10
|
Dai D, Ma Z, Song R. Maize kernel development. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:2. [PMID: 37309525 PMCID: PMC10231577 DOI: 10.1007/s11032-020-01195-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/03/2020] [Indexed: 06/14/2023]
Abstract
Maize (Zea mays) is a leading cereal crop in the world. The maize kernel is the storage organ and the harvest portion of this crop and is closely related to its yield and quality. The development of maize kernel is initiated by the double fertilization event, leading to the formation of a diploid embryo and a triploid endosperm. The embryo and endosperm are then undergone independent developmental programs, resulting in a mature maize kernel which is comprised of a persistent endosperm, a large embryo, and a maternal pericarp. Due to the well-characterized morphogenesis and powerful genetics, maize kernel has long been an excellent model for the study of cereal kernel development. In recent years, with the release of the maize reference genome and the development of new genomic technologies, there has been an explosive expansion of new knowledge for maize kernel development. In this review, we overviewed recent progress in the study of maize kernel development, with an emphasis on genetic mapping of kernel traits, transcriptome analysis during kernel development, functional gene cloning of kernel mutants, and genetic engineering of kernel traits.
Collapse
Affiliation(s)
- Dawei Dai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444 China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|