1
|
Wang Q, Guo Q, Shi Q, Yang H, Liu M, Niu Y, Quan S, Xu D, Chen X, Li L, Xu W, Kong F, Zhang H, Li P, Li B, Li G. Histological and single-nucleus transcriptome analyses reveal the specialized functions of ligular sclerenchyma cells and key regulators of leaf angle in maize. MOLECULAR PLANT 2024; 17:920-934. [PMID: 38720461 DOI: 10.1016/j.molp.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/17/2024] [Accepted: 05/05/2024] [Indexed: 05/31/2024]
Abstract
Leaf angle (LA) is a crucial factor that affects planting density and yield in maize. However, the regulatory mechanisms underlying LA formation remain largely unknown. In this study, we performed a comparative histological analysis of the ligular region across various maize inbred lines and revealed that LA is significantly influenced by a two-step regulatory process involving initial cell elongation followed by subsequent lignification in the ligular adaxial sclerenchyma cells (SCs). Subsequently, we performed both bulk and single-nucleus RNA sequencing, generated a comprehensive transcriptomic atlas of the ligular region, and identified numerous genes enriched in the hypodermal cells that may influence their specialization into SCs. Furthermore, we functionally characterized two genes encoding atypical basic-helix-loop-helix (bHLH) transcription factors, bHLH30 and its homolog bHLH155, which are highly expressed in the elongated adaxial cells. Genetic analyses revealed that bHLH30 and bHLH155 positively regulate LA expansion, and molecular experiments demonstrated their ability to activate the transcription of genes involved in cell elongation and lignification of SCs. These findings highlight the specialized functions of ligular adaxial SCs in LA regulation by restricting further extension of ligular cells and enhancing mechanical strength. The transcriptomic atlas of the ligular region at single-nucleus resolution not only deepens our understanding of LA regulation but also enables identification of numerous potential targets for optimizing plant architecture in modern maize breeding.
Collapse
Affiliation(s)
- Qibin Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Qiuyue Guo
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China
| | - Qingbiao Shi
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Hengjia Yang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China
| | - Meiling Liu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yani Niu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China
| | - Shuxuan Quan
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China
| | - Di Xu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Xiaofeng Chen
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China
| | - Laiyi Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China
| | - Wenchang Xu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Fanying Kong
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Haisen Zhang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Pinghua Li
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Bosheng Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China.
| | - Gang Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
2
|
Zamorski R, Baba K, Noda T, Sawada R, Miyata K, Itoh T, Kaku H, Shibuya N. Variety-dependent accumulation of glucomannan in the starchy endosperm and aleurone cell walls of rice grains and its possible genetic basis. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:321-336. [PMID: 38434111 PMCID: PMC10905567 DOI: 10.5511/plantbiotechnology.23.0809a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/09/2023] [Indexed: 03/05/2024]
Abstract
Plant cell wall plays important roles in the regulation of plant growth/development and affects the quality of plant-derived food and industrial materials. On the other hand, genetic variability of cell wall structure within a plant species has not been well understood. Here we show that the endosperm cell walls, including both starchy endosperm and aleurone layer, of rice grains with various genetic backgrounds are clearly classified into two groups depending on the presence/absence of β-1,4-linked glucomannan. All-or-none distribution of the glucomannan accumulation among rice varieties is very different from the varietal differences of arabinoxylan content in wheat and barley, which showed continuous distributions. Immunoelectron microscopic observation suggested that the glucomannan was synthesized in the early stage of endosperm development, but the synthesis was down-regulated during the secondary thickening process associated with the differentiation of aleurone layer. Significant amount of glucomannan in the cell walls of the glucomannan-positive varieties, i.e., 10% or more of the starchy endosperm cell walls, and its close association with the cellulose microfibril suggested possible effects on the physicochemical/biochemical properties of these cell walls. Comparative genomic analysis indicated the presence of striking differences between OsCslA12 genes of glucomannan-positive and negative rice varieties, Kitaake and Nipponbare, which seems to explain the all-or-none glucomannan cell wall trait in the rice varieties. Identification of the gene responsible for the glucomannan accumulation could lead the way to clarify the effect of the accumulation of glucomannan on the agronomic traits of rice by using genetic approaches.
Collapse
Affiliation(s)
- Ryszard Zamorski
- National Institute of Agrobiological Resources, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8634, Japan
- National Food Research Institute, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8642, Japan
- Faculty of Agriculture and Biotechnology, University of Science and Technology, Bydgoszcz 85-796, Poland
| | - Kei’ichi Baba
- Wood Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Takahiro Noda
- National Institute of Agrobiological Resources, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8634, Japan
- Hokkaido Agricultural Research Center, NARO, Memuro, Hokkaido 082-0081, Japan
| | - Rimpei Sawada
- National Institute of Agrobiological Resources, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8634, Japan
- Plant Biotechnology Laboratory, Life Science Institute, Mitsui Toatsu Chemicals Inc., Mobara, Chiba 297-0017, Japan
| | - Kana Miyata
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Takao Itoh
- Wood Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hanae Kaku
- National Institute of Agrobiological Resources, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8634, Japan
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Naoto Shibuya
- National Institute of Agrobiological Resources, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8634, Japan
- National Food Research Institute, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8642, Japan
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
3
|
Shen Y, Adnan M, Ma F, Kong L, Wang M, Jiang F, Hu Q, Yao W, Zhou Y, Zhang M, Huang J. A high-throughput phenotyping method for sugarcane rind penetrometer resistance and breaking force characterization by near-infrared spectroscopy. PLANT METHODS 2023; 19:101. [PMID: 37770966 PMCID: PMC10540387 DOI: 10.1186/s13007-023-01076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 09/04/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND Sugarcane (Saccharum spp.) is the core crop for sugar and bioethanol production over the world. A major problem in sugarcane production is stalk lodging due to weak mechanical strength. Rind penetrometer resistance (RPR) and breaking force are two kinds of regular parameters for mechanical strength characterization. However, due to the lack of efficient methods for determining RPR and breaking force in sugarcane, genetic approaches for improving these traits are generally limited. This study was designed to use near-infrared spectroscopy (NIRS) calibration assay to accurately assess mechanical strength on a high-throughput basis for the first time. RESULTS Based on well-established laboratory measurements of sugarcane stalk internodes collected in the years 2019 and 2020, considerable variations in RPR and breaking force were observed in the stalk internodes. Following a standard NIRS calibration process, two online models were obtained with a high coefficient of determination (R2) and the ratio of prediction to deviation (RPD) values during calibration, internal cross-validation, and external validation. Remarkably, the equation for RPR exhibited R2 and RPD values as high as 0.997 and 17.70, as well as showing relatively low root mean square error values at 0.44 N mm-2 during global modeling, demonstrating excellent predictive performance. CONCLUSIONS This study delivered a successful attempt for rapid and precise prediction of rind penetrometer resistance and breaking force in sugarcane stalk by NIRS assay. These established models can be used to improve phenotyping jobs for sugarcane germplasm on a large scale.
Collapse
Affiliation(s)
- Yinjuan Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
- Guangxi China-ASEAN Youth Industrial Park (Chongzuo Agricultural Hi-Tech Industry Demo Zone), Chongzuo, 532200, Guangxi, China
| | - Muhammad Adnan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Fumin Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Liyuan Kong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Maoyao Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Fuhong Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Qian Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Wei Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yongfang Zhou
- Nanning Sugar Industry Co., LTD, Nanning, 530028, Guangxi, China
| | - Muqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Jiangfeng Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
4
|
Le L, Guo W, Du D, Zhang X, Wang W, Yu J, Wang H, Qiao H, Zhang C, Pu L. A spatiotemporal transcriptomic network dynamically modulates stalk development in maize. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2313-2331. [PMID: 36070002 PMCID: PMC9674325 DOI: 10.1111/pbi.13909] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/19/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Maize (Zea mays) is an important cereal crop with suitable stalk formation which is beneficial for acquiring an ideal agronomic trait to resist lodging and higher planting density. The elongation pattern of stalks arises from the variable growth of individual internodes driven by cell division and cell expansion comprising the maize stalk. However, the spatiotemporal dynamics and regulatory network of the maize stalk development and differentiation process remain unclear. Here, we report spatiotemporally resolved transcriptomes using all internodes of the whole stalks from developing maize at the elongation and maturation stages. We identified four distinct groups corresponding to four developmental zones and nine specific clusters with diverse spatiotemporal expression patterns among individual internodes of the stalk. Through weighted gene coexpression network analysis, we constructed transcriptional regulatory networks at a fine spatiotemporal resolution and uncovered key modules and candidate genes involved in internode maintenance, elongation, and division that determine stalk length and thickness in maize. Further CRISPR/Cas9-mediated knockout validated the function of a cytochrome P450 gene, ZmD1, in the regulation of stalk length and thickness as predicted by the WGCN. Collectively, these results provide insights into the high genetic complexity of stalk development and the potentially valuable resources with ideal stalk lengths and widths for genetic improvements in maize.
Collapse
Affiliation(s)
- Liang Le
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Nanfan Research Institute (Sanya)Chinese Academy of Agricultural SciencesSanyaChina
| | - Weijun Guo
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Danyao Du
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Xiaoyuan Zhang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Weixuan Wang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Jia Yu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Huan Wang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Hong Qiao
- Institute for Cellular and Molecular Biology, The University of Texas at AustinAustinTXUSA
- Department of Molecular BiosciencesThe University of Texas at AustinAustinTXUSA
| | - Chunyi Zhang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- Sanya InstituteHainan Academy of Agricultural SciencesSanyaChina
| | - Li Pu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Nanfan Research Institute (Sanya)Chinese Academy of Agricultural SciencesSanyaChina
| |
Collapse
|
5
|
Lopez-Marnet PL, Guillaume S, Méchin V, Reymond M. A robust and efficient automatic method to segment maize FASGA stained stem cross section images to accurately quantify histological profile. PLANT METHODS 2022; 18:125. [PMID: 36424625 PMCID: PMC9694518 DOI: 10.1186/s13007-022-00957-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Grasses internodes are made of distinct tissues such as vascular bundles, epidermis, rind and pith. The histology of grasses stem was largely revisited recently taking advantage of the development of microscopy combined with the development of computer-automated image analysis workflows. However, the diversity and complexity of the histological profile complicates quantification. Accurate and automated analysis of histological images thus remains challenging. RESULTS Herein, we present a workflow that automatically segments maize internode cross section images into 40 distinct tissues: two tissues in the epidermis, 19 tissues in the rind, 14 tissues in the pith and 5 tissues in the bundles. This level of segmentation is achieved by combining the Hue, Saturation and Value properties of each pixel and the location of each pixel in FASGA stained cross sectiona. This workflow is likewise able to highlight significant and subtle histological genotypic variations between maize internodes. The grain of precision provided by the workflow also makes it possible to demonstrate different levels of sensitivity to digestion by enzymatic cocktails of the tissues in the pith. The precision and strength of the workflow is all the more impressive because it is preserved on cross section images of other grasses such as miscanthus or sorghum. CONCLUSIONS The fidelity of this tool and its capacity to automatically identify variations of a large number of histological profiles among different genotypes pave the way for its use to identify genotypes of interest and to study the underlying genetic bases of variations in histological profiles in maize or other species.
Collapse
Affiliation(s)
- P.-L. Lopez-Marnet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
- Ecole Doctorale Numéro 581 : ABIES, AgroParisTech, Université Paris-Saclay, 19 Av du Maine, 75732 Paris Cedex 15, France
| | - S. Guillaume
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - V. Méchin
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - M. Reymond
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| |
Collapse
|
6
|
Geng W, Sun Z, Ren B, Ren H, Zhao B, Liu P, Zhang J. Spraying Ethephon Effectively Increased Canopy Light Transmittance of Densely Planted Summer Maize, Thus Achieving Synergistic Improvement in Stalk Lodging Resistance and Grain Yield. PLANTS 2022; 11:plants11172219. [PMID: 36079601 PMCID: PMC9460851 DOI: 10.3390/plants11172219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022]
Abstract
Increasing planting density is an effective way to improve maize yield, but high plant populations often cause a lodging problem. This experiment was conducted to investigate the effect of increasing planting density on stalk lodging resistance and grain yield, and to explore the effects on stalk and yield properties of spraying ethephon in densely planted summer maize. The summer maize hybrid, Xundan20 (XD20), was used as experimental material. It was grown by spraying water (CK) or ethephon (E) at BBCH (BASF, Bayer, Ciba-Geigy and Hoechst) 17 under three different planting densities of 60,000 plants ha−1 (L), 75,000 plants ha−1 (M) and 90,000 plants ha−1 (H) in order to explore the possibility of synergistic improvement in stalk lodging resistance and grain yield. The results from this experiment suggested that the gravity center height of densely planted summer maize was significantly increased, the stem diameter, area and number of vascular bundles were significantly decreased and the dry weight per unit internode was significantly decreased, thereby weakening the stalk rind penetration strength and bending performance, resulting in a significant increase in lodging percentage. The ear height was significantly decreased and the SPAD (soil and plant analysis development) and canopy light transmittance were increased after spraying ethephon; then, the internode dry weight per unit length was increased and the stalk rind penetration strength and bending performance were enhanced so as to significantly reduce the lodging percentage and increase the grain yield. The correlation analysis further showed that lodging percentage was significantly negatively correlated with stem diameter, area and number of vascular bundles and stalk bending performance, but there were no strong relationships with grain yield. This suggested that the synergistic improvement in stalk lodging resistance and grain yield was not contradictory. Under the experiment conditions, the effect of spraying ethephon was most significant when the planting density was 90,000 plants ha−1. At the time, the lodging percentage and grain yield were 12.2% and 11,137.5 kg ha−1, which were decreased by 44.6% and increased by 8.0% compared with the control treatment. Scientific chemical regulation could significantly improve the stalk lodging resistance and grain yield of densely planted summer maize.
Collapse
|
7
|
Wang X, Chen Y, Sun X, Li J, Zhang R, Jiao Y, Wang R, Song W, Zhao J. Characteristics and candidate genes associated with excellent stalk strength in maize ( Zea mays L.). FRONTIERS IN PLANT SCIENCE 2022; 13:957566. [PMID: 35968121 PMCID: PMC9367994 DOI: 10.3389/fpls.2022.957566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Lodging is a major problem in maize production, which seriously affects yield and hinders mechanized harvesting. Improving stalk strength is an effective way to improve lodging. The maize inbred line Jing2416 (J2416) was an elite germplasm in maize breeding which had strong stalk mechanical strength. To explore the characteristics its stalk strength, we conducted physiological, metabolic and transcriptomic analyses of J2416 and its parents Jing24 (J24) and 5237. At the kernel dent stage, the stalk rind penetrometer strength of J2416 was significantly higher than those of its two parents in multiple environments. The rind thickness, sclerenchyma tissue thickness, and cellulose, hemicellulose, and lignin contents of J2416 were significantly higher than those of its parents. Based on the significant differences between J2416 and 5237, we detected metabolites and gene transcripts showing differences in abundance between these two materials. A total of 212 (68.60%) metabolites and 2287 (43.34%) genes were up-regulated in J2416 compared with 5237. The phenylpropanoid and glycan synthesis/metabolism pathways were enriched in metabolites and genes that were up-regulated in J2416. Twenty-eight of the up-regulated genes in J2416 were involved in lignin, cellulose, and hemicellulose synthesis pathways. These analyses have revealed important physiological characteristics and candidate genes that will be useful for research and breeding of inbred lines with excellent stalk strength.
Collapse
|
8
|
Dreccer MF, Macdonald B, Farnsworth CA, Paccapelo MV, Awasi MA, Condon AG, Forrest K, Lee Long I, McIntyre CL. Multi-donor × elite-based populations reveal QTL for low-lodging wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1685-1703. [PMID: 35312799 PMCID: PMC9110543 DOI: 10.1007/s00122-022-04063-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 02/12/2022] [Indexed: 05/15/2023]
Abstract
Low-lodging high-yielding wheat germplasm and SNP-tagged novel alleles for lodging were identified in a process that involved selecting donors through functional phenotyping for underlying traits with a designed phenotypic screen, and a crossing strategy involving multiple-donor × elite populations. Lodging is a barrier to achieving high yield in wheat. As part of a study investigating the potential to breed low-lodging high-yielding wheat, populations were developed crossing four low-lodging high-yielding donors selected based on lodging related traits, with three cultivars. Lodging was evaluated in single rows in an early generation and subsequently in plots in 2 years with contrasting lodging environment. A large number of lines lodged less than their recurrent parents, and some were also higher yielding. Heritability for lodging was high, but the genetic correlation between contrasting environments was intermediate-low. Lodging genotypic rankings in single rows did not correlate well with plots. Populations from the highest lodging background were genotyped (90 K iSelect BeadChip array). Fourteen markers on nine chromosomes were associated with lodging, differing under high- versus low-lodging conditions. Of the fourteen markers, ten were found to co-locate with previously identified QTL for lodging-related traits or at homoeologous locations for previously identified lodging-related QTL, while the remaining four markers (in chromosomes 2D, 4D, 7B and 7D) appear to map to novel QTL for lodging. Lines with more favourable markers lodged less, suggesting value in these markers as a selection tool. This study demonstrates that the combination of donor functional phenotyping, screen design and crossing strategy can help identify novel alleles in germplasm without requiring extensive bi-parental populations.
Collapse
Affiliation(s)
- M Fernanda Dreccer
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, 306 Carmody Road, Saint Lucia, QLD, 4067, Australia.
| | - Bethany Macdonald
- Department of Agriculture and Fisheries, Leslie Research Facility, Toowoomba, QLD, 4350, Australia
| | - Claire A Farnsworth
- CSIRO Cooper Laboratory, University of Queensland Gatton Campus, Gatton, QLD, 4343, Australia
| | - M Valeria Paccapelo
- Department of Agriculture and Fisheries, Leslie Research Facility, Toowoomba, QLD, 4350, Australia
| | - Mary Anne Awasi
- CSIRO Cooper Laboratory, University of Queensland Gatton Campus, Gatton, QLD, 4343, Australia
| | - Anthony G Condon
- CSIRO Agriculture and Food, Building 101, Clunies Ross Street, Black Mountain, ACT, 2600, Australia
| | - Kerrie Forrest
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Agribio, 5 Ring Rd., Bundoora, VIC, 3083, Australia
| | - Ian Lee Long
- CSIRO Cooper Laboratory, University of Queensland Gatton Campus, Gatton, QLD, 4343, Australia
| | - C Lynne McIntyre
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, 306 Carmody Road, Saint Lucia, QLD, 4067, Australia
| |
Collapse
|
9
|
Liu J, Sun C, Guo S, Yin X, Yuan Y, Fan B, Lv Q, Cai X, Zhong Y, Xia Y, Dong X, Guo Z, Song G, Huang W. Genomic and Transcriptomic Analyses Reveal Pathways and Genes Associated With Brittle Stalk Phenotype in Maize. FRONTIERS IN PLANT SCIENCE 2022; 13:849421. [PMID: 35548303 PMCID: PMC9083323 DOI: 10.3389/fpls.2022.849421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
The mechanical strength of the stalk affects the lodging resistance and digestibility of the stalk in maize. The molecular mechanisms regulating the brittleness of stalks in maize remain undefined. In this study, we constructed the maize brittle stalk mutant (bk5) by crossing the W22:Mu line with the Zheng 58 line. The brittle phenotype of the mutant bk5 existed in all of the plant organs after the five-leaf stage. Compared to wild-type (WT) plants, the sclerenchyma cells of bk5 stalks had a looser cell arrangement and thinner cell wall. Determination of cell wall composition showed that obvious differences in cellulose content, lignin content, starch content, and total soluble sugar were found between bk5 and WT stalks. Furthermore, we identified 226 differentially expressed genes (DEGs), with 164 genes significantly upregulated and 62 genes significantly downregulated in RNA-seq analysis. Some pathways related to cellulose and lignin synthesis, such as endocytosis and glycosylphosphatidylinositol (GPI)-anchored biosynthesis, were identified by the Kyoto Encyclopedia of Gene and Genomes (KEGG) and gene ontology (GO) analysis. In bulked-segregant sequence analysis (BSA-seq), we detected 2,931,692 high-quality Single Nucleotide Polymorphisms (SNPs) and identified five overlapped regions (11.2 Mb) containing 17 candidate genes with missense mutations or premature termination codons using the SNP-index methods. Some genes were involved in the cellulose synthesis-related genes such as ENTH/ANTH/VHS superfamily protein gene (endocytosis-related gene) and the lignin synthesis-related genes such as the cytochrome p450 gene. Some of these candidate genes identified from BSA-seq also existed with differential expression in RNA-seq analysis. These findings increase our understanding of the molecular mechanisms regulating the brittle stalk phenotype in maize.
Collapse
Affiliation(s)
- Jun Liu
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Chuanbo Sun
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Siqi Guo
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xiaohong Yin
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Yuling Yuan
- Hulun Buir Agricultural Reclamation Technology Development Co., Ltd., Hailar, China
| | - Bing Fan
- Hulun Buir Agricultural Reclamation Technology Development Co., Ltd., Hailar, China
| | - Qingxue Lv
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Xinru Cai
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Yi Zhong
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Yuanfeng Xia
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Xiaomei Dong
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Zhifu Guo
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Guangshu Song
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Wei Huang
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| |
Collapse
|