1
|
Li X, Sun Q, Shen Q, Zhao C, Chen F, Liu Y, Zhou G, Liu X, Kang X. Exogenous melatonin promoted seed hypocotyl germination of Paeonia ostia 'Fengdan' characterized by regulating hormones and starches. PeerJ 2024; 12:e18038. [PMID: 39314842 PMCID: PMC11418826 DOI: 10.7717/peerj.18038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Background Seed hypocotyl germination signifies the initiation of the life cycle for plants and represents a critical stage that heavily influences subsequent plant growth and development. While previous studies have established the melatonin (MEL; N-acetyl-5-methoxytrytamine) effect to stimulate seed germination of some plants, its specific role in peony germination and underlying physiological mechanism have yet to be determined. This study aims to evaluate the MEL effect for the hypocotyl germination of peony seeds, further ascertain its physiological regulation factors. Methods In this work, seeds of Paeonia ostia 'Fengdan' were soaked into MEL solution at concentrations of 50, 100, 200, and 400 µM for 48 h and then germinated in darkness in incubators. Seeds immersed in distilled water without MEL for the same time were served as the control group. Results At concentrations of 100 and 200 µM, MEL treatments improved the rooting rate of peony seeds, while 400 µM inhibited the process. During seed germination, the 100 and 200 µM MEL treatments significantly reduced the starch concentration, and α-amylase was the primary amylase involved in the action of melatonin. Additionally, compared to the control group, 100 µM MEL treatment significantly increased the GA3 concentration and radicle thickness of seeds, but decreased ABA concentration. The promotion effect of 200 µM MEL pretreatment on GA1 and GA7 was the most pronounced, while GA4 concentration was most significantly impacted by 50 µM and 100 µM MEL. Conclusion Correlation analysis established that 100 µM MEL pretreatment most effectively improved the rooting rate characterized by increasing α-amylase activity to facilitate starch decomposition, boosting GA3 levels, inhibiting ABA production to increase the relative ratio of GA3 to ABA. Moreover, MEL increased radicle thickness of peony seeds correlating with promoting starch decomposition and enhancing the synthesis of GA1 and GA7.
Collapse
Affiliation(s)
- Xia Li
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, China
| | - Qi Sun
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, China
| | - Qiang Shen
- Heze Ruipu Peony Biotechnology Co., LTD, Heze, Shandong, China
| | - Chunlei Zhao
- Heze Cunlei Horticulture Co., LTD, Heze, Shandong, China
| | - Fengzhen Chen
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, China
| | - Yumei Liu
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, China
| | - Guangcan Zhou
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, China
| | - Xueqin Liu
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, China
| | - Xiaofei Kang
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, China
| |
Collapse
|
2
|
Tietel Z, Melamed S, Galilov I, Ben-Gal A, Dag A, Yermiyahu U. Elevated nitrogen fertilization differentially affects jojoba wax phytochemicals, fatty acids and fatty alcohols. FRONTIERS IN PLANT SCIENCE 2024; 15:1425733. [PMID: 39129760 PMCID: PMC11310937 DOI: 10.3389/fpls.2024.1425733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/24/2024] [Indexed: 08/13/2024]
Abstract
Jojoba wax is gaining popularity among cosmetics consumers for its skin wound healing and rejuvenation bioactivities, attributed to collagen and hyaluronic acid synthesis. However, information regarding wax phytochemical composition and quality parameters, as well as effect of cultivation practices, and fertilization in particular, on wax quality is limited. The aim of the current work was to study the effect of nitrogen (N) availability to jojoba plants on wax phytochemical composition and beneficial skin-related contents. For this, wax quality from a six-year fertilization experiment with five N application levels was evaluated. The chemical parameters included antioxidant activity, free fatty acid, total tocopherol, total phytosterol and oxidative stability, as well as fatty acid and fatty alcohol profile. Our results reveal that the majority of wax quality traits were affected by N fertilization level, either positively or negatively. Interestingly, while fatty acids were unaffected, fatty alcohol composition was significantly altered by N level. Additionally, fruit load also largely affected wax quality, and, due to jojoba's biennial alternate bearing cycles, harvest year significantly affected all measured parameters. Results shed light on the effects of N application on various biochemical constituents of jojoba wax, and imply that N availability should be considered part of the entire agricultural management plan to enhance wax quality. Some traits are also suggested as possible chemical quality parameters for jojoba wax.
Collapse
Affiliation(s)
- Zipora Tietel
- Department of Food Science, Gilat research Center, Agricultural Research Organization, Volcani Institute, Gilat, Israel
| | - Sarit Melamed
- Department of Food Science, Gilat research Center, Agricultural Research Organization, Volcani Institute, Gilat, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Izabella Galilov
- Department of Food Science, Gilat research Center, Agricultural Research Organization, Volcani Institute, Gilat, Israel
| | - Alon Ben-Gal
- Gilat Research Center, Agricultural Research Organization, Volcani Institute, Rishon LeTsiyon, Israel
| | - Arnon Dag
- Gilat Research Center, Agricultural Research Organization, Volcani Institute, Rishon LeTsiyon, Israel
| | - Uri Yermiyahu
- Gilat Research Center, Agricultural Research Organization, Volcani Institute, Rishon LeTsiyon, Israel
| |
Collapse
|
3
|
Zhang X, Zhang Y, Sun P, Su W, Qu Z, Dong Y, Du S, Yu X. Effect of germination pretreatment on the physicochemical properties and lipid concomitants of flaxseed oil. RSC Adv 2023; 13:3306-3316. [PMID: 36756417 PMCID: PMC9869659 DOI: 10.1039/d2ra07458c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
This study investigated the effects of germination pretreatment on the physicochemical properties, lipid concomitants, and antioxidant activity of flaxseed oil in three varieties. The results indicated that the oil content of flaxseed decreased by 2.29-7.40% during the 5 days germination period. Germinated flaxseed oil showed a significantly higher acid value and lower peroxide value. The unsaturated fatty acid content was slightly increased by germination. Germination pretreatment resulted in significant increases in the α-tocopherol, stigmasterol, pigments, total phenols, and antioxidant activity. As germination time progressed to 5 days, α-tocopherol which was traditionally recognized as having the highest antioxidant activity form of vitamin E in humans increased from 3.07-6.82 mg kg-1 to 258.11-389.78 mg kg-1. Germinated oil had 1.63 to 2.05 times higher stigmasterol content than non-germinated oil. The chlorophyll and carotenoid also increased exponentially. The total phenol content of flaxseed oil increased from 64.29-75.85 mg kg-1 to 236.30-297.78 mg kg-1. Germinated flaxseed oil showed important antioxidant activity. Compared with other varieties during germination, the oil from Gansu showed a higher level of α-linolenic acid, tocopherols, and carotenoid, and a maximum increase level of tocopherols and phytosterols. The comprehensive evaluation of germination time by correlation and principal component analysis showed that when germination time exceeded 2 days, the lipid concomitants and antioxidant capacity of flaxseed oil were significantly improved.
Collapse
Affiliation(s)
- Xuping Zhang
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University Yangling 712100 Shaanxi P. R. China +86-29-87092486 +86-29-87092308
| | - Yan Zhang
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University Yangling 712100 Shaanxi P. R. China +86-29-87092486 +86-29-87092308
| | - Pengda Sun
- Ningxia Xingling Grain and Oil Co., LtdYinchuan 751400NingxiaP. R. China
| | - Weidong Su
- Ningxia Xingling Grain and Oil Co., LtdYinchuan 751400NingxiaP. R. China
| | - Zhihao Qu
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University Yangling 712100 Shaanxi P. R. China +86-29-87092486 +86-29-87092308
| | - Yaoyao Dong
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University Yangling 712100 Shaanxi P. R. China +86-29-87092486 +86-29-87092308
| | - Shuangkui Du
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University Yangling 712100 Shaanxi P. R. China +86-29-87092486 +86-29-87092308
| | - Xiuzhu Yu
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University Yangling 712100 Shaanxi P. R. China +86-29-87092486 +86-29-87092308
| |
Collapse
|
4
|
Demski K, Ding BJ, Wang HL, Tran TNT, Durrett TP, Lager I, Löfstedt C, Hofvander P. Manufacturing specialized wax esters in plants. Metab Eng 2022; 72:391-402. [PMID: 35598886 DOI: 10.1016/j.ymben.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/07/2022] [Accepted: 05/15/2022] [Indexed: 01/11/2023]
Abstract
Biologically produced wax esters can fulfil different industrial purposes. These functionalities almost drove the sperm whale to extinction from hunting. After the ban on hunting, there is a niche in the global market for biolubricants with properties similar to spermaceti. Wax esters can also serve as a mechanism for producing insect sex pheromone fatty alcohols. Pheromone-based mating disruption strategies are in high demand to replace the toxic pesticides in agriculture and manage insect plagues threatening our food and fiber reserves. In this study we set out to investigate the possibilities of in planta assembly of wax esters, for specific applications, through transient expression of various mix-and-match combinations of genes in Nicotiana benthamiana leaves. Our synthetic biology designs were outlined in order to pivot plant lipid metabolism into producing wax esters with targeted fatty acyl and fatty alcohols moieties. Through this approach we managed to obtain industrially important spermaceti-like wax esters enriched in medium-chain fatty acyl and/or fatty alcohol moieties of wax esters. Via employment of plant codon-optimized moth acyl-CoA desaturases we also managed to capture unusual, unsaturated fatty alcohol and fatty acyl moieties, structurally similar to moth pheromone compounds, in plant-accumulated wax esters. Comparison between outcomes of different experimental designs identified targets for stable transformation to accumulate specialized wax esters and helped us to recognize possible bottlenecks of such accumulation.
Collapse
Affiliation(s)
- Kamil Demski
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 190, 23422, Lomma, Sweden.
| | - Bao-Jian Ding
- Department of Biology, Lund University, 22362, Lund, Sweden
| | - Hong-Lei Wang
- Department of Biology, Lund University, 22362, Lund, Sweden
| | - Tam N T Tran
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Timothy P Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Ida Lager
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 190, 23422, Lomma, Sweden
| | | | - Per Hofvander
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 190, 23422, Lomma, Sweden.
| |
Collapse
|
5
|
Domergue F, Miklaszewska M. The production of wax esters in transgenic plants:
towards a sustainable source of bio-lubricants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2817-2834. [PMID: 35560197 PMCID: PMC9113324 DOI: 10.1093/jxb/erac046] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/03/2022] [Indexed: 05/08/2023]
Abstract
Wax esters are high-value compounds used as feedstocks for the production of lubricants, pharmaceuticals, and cosmetics. Currently, they are produced mostly from fossil reserves using chemical synthesis, but this cannot meet increasing demand and has a negative environmental impact. Natural wax esters are also obtained from Simmondsia chinensis (jojoba) but comparably in very low amounts and expensively. Therefore, metabolic engineering of plants, especially of the seed storage lipid metabolism of oil crops, represents an attractive strategy for renewable, sustainable, and environmentally friendly production of wax esters tailored to industrial applications. Utilization of wax ester-synthesizing enzymes with defined specificities and modulation of the acyl-CoA pools by various genetic engineering approaches can lead to obtaining wax esters with desired compositions and properties. However, obtaining high amounts of wax esters is still challenging due to their negative impact on seed germination and yield. In this review, we describe recent progress in establishing non-food-plant platforms for wax ester production and discuss their advantages and limitations as well as future prospects.
Collapse
Affiliation(s)
- Frédéric Domergue
- Univ. Bordeaux, CNRS, LBM, UMR 5200, F-33140 Villenave d’Ornon, France
| | - Magdalena Miklaszewska
- Department of Functional and Evolutionary Ecology, Division of Molecular Systems Biology (MOSYS), Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Department of Plant Physiology and Biotechnology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|