1
|
Lin HH, Lin KH, Tsai YL, Chen RJ, Lin YC, Chen YC. Influences of Ipomoea batatas Anti-Cancer Peptide on Tomato Defense Genes. Curr Protein Pept Sci 2024; 25:651-665. [PMID: 38698748 DOI: 10.2174/0113892037299818240408053000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 05/05/2024]
Abstract
AIMS This study investigates the impact of IbACP (Ipomoea batatas anti-cancer peptide) on defense-related gene expression in tomato leaves, focusing on its role in plant defense mechanisms. BACKGROUND Previously, IbACP was isolated from sweet potato leaves, and it was identified as a peptide capable of inducing an alkalinization response in tomato suspension culture media. Additionally, IbACP was found to regulate the proliferation of human pancreatic adenocarcinoma cells. OBJECTIVE Elucidate IbACP's molecular influence on defense-related gene expression in tomato leaves using next-generation sequencing analysis. METHODS To assess the impact of IbACP on defense-related gene expression, transcriptome data were analyzed, encompassing various functional categories such as photosynthesis, metabolic processes, and plant defense. Semi-quantitative reverse-transcription polymerase chain reaction analysis was employed to verify transcription levels of defense-related genes in tomato leaves treated with IbACP for durations ranging from 0 h (control) to 24 h. RESULTS IbACP induced jasmonic acid-related genes (LoxD and AOS) at 2 h, with a significant up-regulation of salicylic acid-dependent gene NPR1 at 24 h. This suggested a temporal antagonistic effect between jasmonic acid and salicylic acid during the early hours of IbACP treatment. Downstream ethylene-responsive regulator genes (ACO1, ETR4, and ERF1) were consistently down-regulated by IbACP at all times. Additionally, IbACP significantly up-regulated the gene expressions of suberization-associated anionic peroxidases (TMP1 and TAP2) at all time points, indicating enhanced suberization of the plant cell wall to prevent pathogen invasion. CONCLUSION IbACP enhances the synthesis of defense hormones and up-regulates downstream defense genes, improving the plant's resistance to biotic stresses.
Collapse
Affiliation(s)
- Hsin-Hung Lin
- Department of Agronomy, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Kuan-Hung Lin
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei 11114, Taiwan
| | - Yung-Lin Tsai
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung 82444, Taiwan
| | - Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yen-Chang Lin
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei 11114, Taiwan
| | - Yu-Chi Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung 82444, Taiwan
| |
Collapse
|
2
|
Liu G, Liu F, Zhang D, Zhao T, Yang H, Jiang J, Li J, Zhang H, Xu X. Integrating omics reveals that miRNA-guided genetic regulation on plant hormone level and defense response pathways shape resistance to Cladosporium fulvum in the tomato Cf-10-gene-carrying line. Front Genet 2023; 14:1158631. [PMID: 37303956 PMCID: PMC10248068 DOI: 10.3389/fgene.2023.1158631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
Invasion of C. fulvum causes the most serious diseases affecting the reproduction of tomatoes. Cf-10-gene-carrying line showed remarkable resistance to Cladosporium fulvum. To exploit its defense response mechanism, we performed a multiple-omics profiling of Cf-10-gene-carrying line and a susceptible line without carrying any resistance genes at non-inoculation and 3 days post-inoculation (dpi) of C. fulvum. We detected 54 differentially expressed miRNAs (DE-miRNAs) between the non-inoculation and 3 dpi in the Cf-10-gene-carrying line, which potentially regulated plant-pathogen interaction pathways and hormone signaling pathways. We also revealed 3,016 differentially expressed genes (DEGs) between the non-inoculated and 3 dpi in the Cf-10-gene-carrying line whose functions enriched in pathways that were potentially regulated by the DE-miRNAs. Integrating DE-miRNAs, gene expression and plant-hormone metabolites indicated a regulation network where the downregulation of miRNAs at 3 dpi activated crucial resistance genes to trigger host hypersensitive cell death, improved hormone levels and upregulated the receptors/critical responsive transcription factors (TFs) of plant hormones, to shape immunity to the pathogen. Notably, our transcriptome, miRNA and hormone metabolites profiling and qPCR analysis suggested that that the downregulation of miR9472 potentially upregulated the expression of SAR Deficient 1 (SARD1), a key regulator for ICS1 (Isochorismate Synthase 1) induction and salicylic acid (SA) synthesis, to improve the level of SA in the Cf-10-gene-carrying line. Our results exploited potential regulatory network and new pathways underlying the resistance to C. fulvum in Cf-10-gene-carrying line, providing a more comprehensive genetic circuit and valuable gene targets for modulating resistance to the virus.
Collapse
Affiliation(s)
- Guan Liu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, China
| | - Fengjiao Liu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Dongye Zhang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Tingting Zhao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Huanhuan Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Jingbin Jiang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Jingfu Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - He Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Xiangyang Xu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
3
|
Mesarich CH, Barnes I, Bradley EL, de la Rosa S, de Wit PJGM, Guo Y, Griffiths SA, Hamelin RC, Joosten MHAJ, Lu M, McCarthy HM, Schol CR, Stergiopoulos I, Tarallo M, Zaccaron AZ, Bradshaw RE. Beyond the genomes of Fulvia fulva (syn. Cladosporium fulvum) and Dothistroma septosporum: New insights into how these fungal pathogens interact with their host plants. MOLECULAR PLANT PATHOLOGY 2023; 24:474-494. [PMID: 36790136 PMCID: PMC10098069 DOI: 10.1111/mpp.13309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 05/03/2023]
Abstract
Fulvia fulva and Dothistroma septosporum are closely related apoplastic pathogens with similar lifestyles but different hosts: F. fulva is a pathogen of tomato, whilst D. septosporum is a pathogen of pine trees. In 2012, the first genome sequences of these pathogens were published, with F. fulva and D. septosporum having highly fragmented and near-complete assemblies, respectively. Since then, significant advances have been made in unravelling their genome architectures. For instance, the genome of F. fulva has now been assembled into 14 chromosomes, 13 of which have synteny with the 14 chromosomes of D. septosporum, suggesting these pathogens are even more closely related than originally thought. Considerable advances have also been made in the identification and functional characterization of virulence factors (e.g., effector proteins and secondary metabolites) from these pathogens, thereby providing new insights into how they promote host colonization or activate plant defence responses. For example, it has now been established that effector proteins from both F. fulva and D. septosporum interact with cell-surface immune receptors and co-receptors to activate the plant immune system. Progress has also been made in understanding how F. fulva and D. septosporum have evolved with their host plants, whilst intensive research into pandemics of Dothistroma needle blight in the Northern Hemisphere has shed light on the origins, migration, and genetic diversity of the global D. septosporum population. In this review, we specifically summarize advances made in our understanding of the F. fulva-tomato and D. septosporum-pine pathosystems over the last 10 years.
Collapse
Affiliation(s)
- Carl H Mesarich
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
- Bioprotection Aotearoa, Massey University, Palmerston North, New Zealand
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Ellie L Bradley
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Silvia de la Rosa
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Pierre J G M de Wit
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
| | - Yanan Guo
- Bioprotection Aotearoa, Massey University, Palmerston North, New Zealand
- Laboratory of Molecular Plant Pathology, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | | | - Richard C Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, Québec, Canada
| | | | - Mengmeng Lu
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Hannah M McCarthy
- Laboratory of Molecular Plant Pathology, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Christiaan R Schol
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Ioannis Stergiopoulos
- Department of Plant Pathology, University of California Davis, Davis, California, USA
| | - Mariana Tarallo
- Laboratory of Molecular Plant Pathology, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Alex Z Zaccaron
- Department of Plant Pathology, University of California Davis, Davis, California, USA
| | - Rosie E Bradshaw
- Bioprotection Aotearoa, Massey University, Palmerston North, New Zealand
- Laboratory of Molecular Plant Pathology, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
4
|
Sun Y, Jia X, Chen D, Fu Q, Chen J, Yang W, Yang H, Xu X. Genome-Wide Identification and Expression Analysis of Cysteine-Rich Polycomb-like Protein (CPP) Gene Family in Tomato. Int J Mol Sci 2023; 24:ijms24065762. [PMID: 36982833 PMCID: PMC10058331 DOI: 10.3390/ijms24065762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The cysteine-rich polycomb-like protein (CPP) gene family is a class of transcription factors containing conserved cysteine-rich CRC structural domains that is involved in the regulation of plant growth and stress tolerance to adversity. Relative to other gene families, the CPP gene family has not received sufficient attention. In this study, six SlCPPs were identified for the first time using the most recent genome-wide identification data of tomato. Subsequently, a phylogenetic analysis classified SlCPPs into four subfamilies. The analysis of cis-acting elements in the promoter indicates that SlCPPs are involved in plant growth and development and also stress response. We present for the first time the prediction of the tertiary structure of these SlCPPs proteins using the AlphaFold2 artificial intelligence system developed by the DeepMind team. Transcriptome data analysis showed that SlCPPs were differentially expressed in different tissues. Gene expression profiling showed that all SlCPPs except SlCPP5 were up-regulated under drought stress; SlCPP2, SlCPP3 and SlCPP4 were up-regulated under cold stress; SlCPP2 and SlCPP5 were up-regulated under salt stress; all SlCPPs were up-regulated under inoculation with Cladosporium fulvum; and SlCPP1, SlCPP3, and SlCPP4 were up-regulated under inoculation with Stemphylium lycopersici. We performed a virus-induced gene silencing experiment on SlCPP3, and the results indicated that SlCPP3 was involved in the response to drought stress. Finally, we predicted the interaction network of the key gene SlCPP3, and there was an interaction relationship between SlCPP3 and 10 genes, such as RBR1 and MSI1. The positive outcome showed that SlCPPs responded to environmental stress. This study provides a theoretical and empirical basis for the response mechanisms of tomato in abiotic stresses.
Collapse
Affiliation(s)
- Yaoguang Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xinyi Jia
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Dexia Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Qingjun Fu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Jinxiu Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Wenhui Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Huanhuan Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xiangyang Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
5
|
Feng Z, Wei F, Feng H, Zhang Y, Zhao L, Zhou J, Xie J, Jiang D, Zhu H. Transcriptome Analysis Reveals the Defense Mechanism of Cotton against Verticillium dahliae Induced by Hypovirulent Fungus Gibellulopsis nigrescens CEF08111. Int J Mol Sci 2023; 24:ijms24021480. [PMID: 36674996 PMCID: PMC9863408 DOI: 10.3390/ijms24021480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Verticillium wilt is a kind of plant vascular disease caused by the soilborne fungus Verticillium dahliae, which severely limits cotton production. Our previous studies showed that the endophytic fungus Gibellulopsis nigrescens CEF08111 can effectively control Verticillium wilt and induce a defense response in cotton plants. However, the comprehensive molecular mechanism governing this response is not yet clear. To study the signaling mechanism induced by strain CEF08111, the transcriptome of cotton seedlings pretreated with CEF08111 was sequenced. The results revealed 249, 3559 and 33 differentially expressed genes (DEGs) at 3, 12 and 48 h post inoculation with CEF08111, respectively. At 12 h post inoculation with CEF08111, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the DEGs were enriched mainly in the plant−pathogen interaction, mitogen-activated protein kinase (MAPK) signaling pathway-plant, and plant hormone signal transduction pathways. Gene ontology (GO) analysis revealed that these DEGs were enriched mainly in the following terms: response to external stimulus, systemic acquired resistance, kinase activity, phosphotransferase activity, xyloglucan: xyloglucosyl transferase activity, xyloglucan metabolic process, cell wall polysaccharide metabolic process and hemicellulose metabolic process. Moreover, many genes, such as calcium-dependent protein kinase (CDPK), flagellin-sensing 2 (FLS2), resistance to Pseudomonas syringae pv. maculicola 1(RPM1) and myelocytomatosis protein 2 (MYC2), that regulate crucial points in defense-related pathways were identified and may contribute to V. dahliae resistance in cotton. Seven DEGs of the pathway phenylpropanoid biosynthesis were identified by weighted gene co-expression network analysis (WGCNA), and these genes are related to lignin synthesis. The above genes were compared and analyzed, a total of 710 candidate genes that may be related to the resistance of cotton to Verticillium wilt were identified. These results provide a basis for understanding the molecular mechanism by which the biocontrol fungus CEF08111 increases the resistance of cotton to Verticillium wilt.
Collapse
Affiliation(s)
- Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Feng Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Hongjie Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jinglong Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jiatao Xie
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Daohong Jiang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (D.J.); (H.Z.)
| | - Heqin Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Correspondence: (D.J.); (H.Z.)
| |
Collapse
|
6
|
James N, Umesh M, Sarojini S, Shanmugam S, Nasif O, Alharbi SA, Lan Chi NT, Brindhadevi K. Unravelling the potential plant growth activity of halotolerant Bacillus licheniformis NJ04 isolated from soil and its possible use as a green bioinoculant on Solanum lycopersicum L. ENVIRONMENTAL RESEARCH 2023; 216:114620. [PMID: 36273595 DOI: 10.1016/j.envres.2022.114620] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Immensely expanding world population and narrowing arable land for agriculture is a mighty concern faced by the planet at present. One of the major reasons for decline in arable lands is the increased soil salinity, making it unfavourable for crop cultivation. Utilisation of these saline land for agriculture is possible with suitable invention for improving the soil quality. Biofertizers manufactured out of Plant Growth Promoting Rhizobacteria is one such innovation. In the present study, Bacillus licheniformis NJ04 strain was isolated and studied for its halotolerance and other effective plant growth promoting traits. The NJ04 strain was able to tolerate salt up to 10% and highlighted remarkable antifungal activity against common fungal phytopathogens. The preliminary seed germination test in Solanum lycopersicum seeds revealed a significant increase in root length (16.29 ± 0.91 cm) and shoot length (9.66 ± 0.11 cm) of treated plants as compared with the control plants and thereby shows its possible use as a green bioinoculant in agriculture and an ideal candidate to compete with salt stress.
Collapse
Affiliation(s)
- Nilina James
- Department of Life Sciences, CHRIST (Deemed to Be University), Bangalore, Karnataka, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to Be University), Bangalore, Karnataka, India.
| | - Suma Sarojini
- Department of Life Sciences, CHRIST (Deemed to Be University), Bangalore, Karnataka, India
| | - Sabarathinam Shanmugam
- Chair of Biosystems Engineering, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 56, 51014, Tartu, Estonia.
| | - Omaima Nasif
- Department of Physiology, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh, 11461, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Kathirvel Brindhadevi
- Computational Engineering and Design Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
7
|
Peng R, Sun S, Li N, Kong L, Chen Z, Wang P, Xu L, Wang H, Geng X. Physiological and transcriptome profiling revealed defense networks during Cladosporium fulvum and tomato interaction at the early stage. FRONTIERS IN PLANT SCIENCE 2022; 13:1085395. [PMID: 36561446 PMCID: PMC9763619 DOI: 10.3389/fpls.2022.1085395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Tomato leaf mold caused by Cladosporium fulvum (C. fulvum) is a serious fungal disease which results in huge yield losses in tomato cultivation worldwide. In our study, we discovered that ROS (reactive oxygen species) burst was triggered by C. fulvum treatment in tomato leaves. RNA-sequencing was used to identify differentially expressed genes (DEGs) induced by C. fulvum inoculation at the early stage of invasion in susceptible tomato plants. Gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were used to annotate functions of DEGs in tomato plants. Based on our comparative analysis, DEGs related to plant-pathogen interaction pathway, plant hormone signal transduction pathway and the plant phenylpropanoid pathway were further analyzed. Our results discovered that a number of core defense genes against fungal invasion were induced and plant hormone signal transduction pathways were impacted by C. fulvum inoculation. Further, our results showed that SA (salicylic acid) and ABA (abscisic acid) contents were accumulated while JA (jasmonic acid) content decreased after C. fulvum inoculation in comparison with control, and quantitative real-time PCR to detect the relative expression of genes involved in SA, ABA and JA signaling pathway further confirmed our results. Together, results will contribute to understanding the mechanisms of C. fulvum and tomato interaction in future.
Collapse
Affiliation(s)
- Rong Peng
- College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Sheng Sun
- College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Na Li
- College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lingjuan Kong
- Vegetable Department, Shanghai Agricultural Technology Extension and Service Center, Shanghai, China
| | - Zhifeng Chen
- College of Biology and Agricultural Technology, Zunyi Normal University, Zunyi, China
| | - Peng Wang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lurong Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hehe Wang
- Clemson University, Edisto Research and Education Center, Blackville, SC, United States
| | - Xueqing Geng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Geng X, Gao Z, Zhao L, Zhang S, Wu J, Yang Q, Liu S, Chen X. Comparative transcriptome analysis of resistant and susceptible wheat in response to Rhizoctonia cerealis. BMC PLANT BIOLOGY 2022; 22:235. [PMID: 35534832 PMCID: PMC9087934 DOI: 10.1186/s12870-022-03584-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Sheath blight is an important disease caused by Rhizoctonia cerealis that affects wheat yields worldwide. No wheat varieties have been identified with high resistance or immunity to sheath blight. Understanding the sheath blight resistance mechanism is essential for controlling this disease. In this study, we investigated the response of wheat to Rhizoctonia cerealis infection by analyzing the cytological changes and transcriptomes of common wheat 7182 with moderate sensitivity to sheath blight and H83 with moderate resistance. RESULTS The cytological observation showed that the growth of Rhizoctonia cerealis on the surface and its expansion inside the leaf sheath tissue were more rapid in the susceptible material. According to the transcriptome sequencing results, a total of 88685 genes were identified in both materials, including 20156 differentially expressed genes (DEGs) of which 12087 was upregulated genes and 8069 was downregulated genes. At 36 h post-inoculation, compared with the uninfected control, 11498 DEGs were identified in resistant materials, with 5064 downregulated genes and 6434 upregulated genes, and 13058 genes were detected in susceptible materials, with 6759 downregulated genes and 6299 upregulated genes. At 72 h post-inoculation, compared with the uninfected control, 6578 DEGs were detected in resistant materials, with 2991 downregulated genes and 3587 upregulated genes, and 7324 genes were detected in susceptible materials, with 4119 downregulated genes and 3205 upregulated genes. Functional annotation and enrichment analysis showed that the main pathways enriched for the DEGs included biosynthesis of secondary metabolites, carbon metabolism, plant hormone signal transduction, and plant-pathogen interaction. In particular, phenylpropane biosynthesis pathway is specifically activated in resistant variety H83 after infection. Many DEGs also belonged to the MYB, AP2, NAC, and WRKY transcription factor families. CONCLUSIONS Thus, we suggest that the normal functioning of plant signaling pathways and differences in the expression of key genes and transcription factors in some important metabolic pathways may be important for defending wheat against sheath blight. These findings may facilitate further exploration of the sheath blight resistance mechanism in wheat and the cloning of related genes.
Collapse
Affiliation(s)
- Xingxia Geng
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhen Gao
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Li Zhao
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shufa Zhang
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jun Wu
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qunhui Yang
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuhui Liu
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinhong Chen
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
9
|
Transcriptome Analysis of the Cf-13-Mediated Hypersensitive Response of Tomato to Cladosporium fulvum Infection. Int J Mol Sci 2022; 23:ijms23094844. [PMID: 35563232 PMCID: PMC9102077 DOI: 10.3390/ijms23094844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Tomato leaf mold disease caused by Cladosporium fulvum (C. fulvum) is one of the most common diseases affecting greenhouse tomato production. Cf proteins can recognize corresponding AVR proteins produced by C. fulvum, and Cf genes are associated with leaf mold resistance. Given that there are many physiological races of C. fulvum and that these races rapidly mutate, resistance to common Cf genes (such as Cf-2, Cf-4, Cf-5, and Cf-9) has decreased. In the field, Ont7813 plants (carrying the Cf-13 gene) show effective resistance to C. fulvum; thus, these plants could be used as new, disease-resistant materials. To explore the mechanism of the Cf-13-mediated resistance response, transcriptome sequencing was performed on three replicates each of Ont7813 (Cf-13) and Moneymaker (MM; carrying the Cf-0 gene) at 0, 9, and 15 days after inoculation (dai) for a total of 18 samples. In total, 943 genes were differentially expressed, specifically in the Ont7813 response process as compared to the Moneymaker response process. Gene ontology (GO) classification of these 943 differentially expressed genes (DEGs) showed that GO terms, including "hydrogen peroxide metabolic process (GO_Process)", "secondary active transmembrane transporter activity (GO_Function)", and "mismatch repair complex (GO_Component)", which were the same as 11 other GO terms, were significantly enriched. An analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that many key regulatory genes of the Cf-13-mediated resistance response processes were involved in the "plant hormone signal transduction" pathway, the "plant-pathogen interaction" pathway, and the "MAPK signaling pathway-plant" pathway. Moreover, during C. fulvum infection, jasmonic acid (JA) and salicylic acid (SA) contents significantly increased in Ont7813 at the early stage. These results lay a vital foundation for further understanding the molecular mechanism of the Cf-13 gene in response to C. fulvum infection.
Collapse
|
10
|
Luo F, Fang X, Liu H, Zhu T, Han S, Peng Q, Li S. Differential transcriptome analysis and identification of genes related to resistance to blight in three varieties of Bambusa pervariabilis × Dendrocalamopsis grandis. PeerJ 2021; 9:e12301. [PMID: 34721984 PMCID: PMC8530093 DOI: 10.7717/peerj.12301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/22/2021] [Indexed: 11/20/2022] Open
Abstract
Background Bambusa pervariabilis × Dendrocalamopsis grandis is a fast-growing bamboo that is widely introduced in southern China and has great economic and ecological benefits. In recent years, a blight of B. pervariabilis × D. grandis caused by Arthrinium phaeospermum has led to much branch damage and even death of entire bamboo forests. Methods To screen for resistance genes in B. pervariabilis × D. grandis, transcriptome sequencing technology was used to compare the gene expression profiles of different varieties of B. pervariabilis × D. grandis with variable resistance and the same varieties under different treatments. The Clusters of Orthologous Groups of Proteins (COG) database; the Gene Ontology (GO) database; and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database were used to annotate and analyse the differentially expressed genes. Results A total of 26,157 and 11,648 differentially expressed genes were obtained in the different varieties after inoculation with A. phaeospermum and the same varieties after inoculation A. phaeospermum or sterile water, respectively. There were 23 co-upregulated DGEs and 143 co-downregulated DEGs in #3 and #8, #6 and #8, #6 and #3. There were 50 co-upregulated DGEs and 24 co-downregulated DEGs in the same varieties after inoculation A. phaeospermum or sterile water. The results showed that many genes involved in cell wall composition synthesis, redox reactions and signal transduction were significantly different after pathogen infection. Twenty-one candidate genes for blight resistance, such as pme53, cad5, pod, gdsl-ll and Myb4l, were found. The qRT-PCR results were consistent with the sequencing results, verifying their authenticity. These results provide a foundation for the further exploration of resistance genes and their functions.
Collapse
Affiliation(s)
- Fengying Luo
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Xinmei Fang
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Han Liu
- Ganzi Institute of Forestry Research, Kangding, Sichuan Province, China
| | - Tianhui Zhu
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Shan Han
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Qi Peng
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Shujiang Li
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan Province, China.,National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Chengdu, Sichuan Province, China
| |
Collapse
|
11
|
Yue H, Huang LP, Lu DYH, Zhang ZH, Zhang Z, Zhang DY, Zheng LM, Gao Y, Tan XQ, Zhou XG, Shi XB, Liu Y. Integrated Analysis of microRNA and mRNA Transcriptome Reveals the Molecular Mechanism of Solanum lycopersicum Response to Bemisia tabaci and Tomato chlorosis virus. Front Microbiol 2021; 12:693574. [PMID: 34239512 PMCID: PMC8258350 DOI: 10.3389/fmicb.2021.693574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Tomato chlorosis virus (ToCV), is one of the most devastating cultivated tomato viruses, seriously threatened the growth of crops worldwide. As the vector of ToCV, the whitefly Bemisia tabaci Mediterranean (MED) is mainly responsible for the rapid spread of ToCV. The current understanding of tomato plant responses to this virus and B. tabaci is very limited. To understand the molecular mechanism of the interaction between tomato, ToCV and B. tabaci, we adopted a next-generation sequencing approach to decipher miRNAs and mRNAs that are differentially expressed under the infection of B. tabaci and ToCV in tomato plants. Our data revealed that 6199 mRNAs were significantly regulated, and the differentially expressed genes were most significantly associated with the plant-pathogen interaction, the MAPK signaling pathway, the glyoxylate, and the carbon fixation in photosynthetic organisms and photosynthesis related proteins. Concomitantly, 242 differentially expressed miRNAs were detected, including novel putative miRNAs. Sly-miR159, sly-miR9471b-3p, and sly-miR162 were the most expressed miRNAs in each sample compare to control group. Moreover, we compared the similarities and differences of gene expression in tomato plant caused by infection or co-infection of B. tabaci and ToCV. Taken together, the analysis reported in this article lays a solid foundation for further research on the interaction between tomato, ToCV and B. tabaci, and provide evidence for the identification of potential key genes that influences virus transmission in tomato plants.
Collapse
Affiliation(s)
- Hao Yue
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Li-Ping Huang
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Ding-Yi-Hui Lu
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Zhan-Hong Zhang
- Institute of Vegetable, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhuo Zhang
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - De-Yong Zhang
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Li-Min Zheng
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Yang Gao
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Xin-Qiu Tan
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Xu-Guo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Xiao-Bin Shi
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Yong Liu
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| |
Collapse
|
12
|
Yang F, Debatosh D, Song T, Zhang JH. Light Harvesting-like Protein 3 Interacts with Phytoene Synthase and Is Necessary for Carotenoid and Chlorophyll Biosynthesis in Rice. RICE (NEW YORK, N.Y.) 2021; 14:32. [PMID: 33745012 PMCID: PMC7981378 DOI: 10.1186/s12284-021-00474-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Carotenoid biosynthesis is essential for the generation of photosynthetic pigments, phytohormone production, and flower color development. The light harvesting like 3 (LIL3) protein, which belongs to the light-harvesting complex protein family in photosystems, interacts with geranylgeranyl reductase (GGR) and protochlorophyllide oxidoreductase (POR) both of which are known to regulate terpenoid and chlorophyll biosynthesis, respectively, in both rice and Arabidopsis. RESULTS In our study, a CRISPR-Cas9 generated 4-bp deletion mutant oslil3 showed aberrant chloroplast development, growth defects, low fertility rates and reduced pigment contents. A comparative transcriptomic analysis of oslil3 suggested that differentially expressed genes (DEGs) involved in photosynthesis, cell wall modification, primary and secondary metabolism are differentially regulated in the mutant. Protein-protein interaction assays indicated that LIL3 interacts with phytoene synthase (PSY) and in addition the gene expression of PSY genes are regulated by LIL3. Subcellular localization of LIL3 and PSY suggested that both are thylakoid membrane anchored proteins in the chloroplast. We suggest that LIL3 directly interacts with PSY to regulate carotenoid biosynthesis. CONCLUSION This study reveals a new role of LIL3 in regulating pigment biosynthesis through interaction with the rate limiting enzyme PSY in carotenoid biosynthesis in rice presenting it as a putative target for genetic manipulation of pigment biosynthesis pathways in crop plants.
Collapse
Affiliation(s)
- Feng Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, Guangdong, China
| | - Das Debatosh
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, Guangdong, China
| | - Tao Song
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, Guangdong, China.
| | - Jian-Hua Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, Guangdong, China.
- Department of Biology, Hong Kong Baptist University and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
13
|
Feng S, Fang H, Liu X, Dong Y, Wang Q, Yang KQ. Genome-wide identification and characterization of long non-coding RNAs conferring resistance to Colletotrichum gloeosporioides in walnut (Juglans regia). BMC Genomics 2021; 22:15. [PMID: 33407106 PMCID: PMC7789297 DOI: 10.1186/s12864-020-07310-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/07/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Walnut anthracnose caused by Colletotrichum gloeosporioides (Penz.) Penz. and Sacc. is an important walnut production problem in China. Although the long non-coding RNAs (lncRNAs) are important for plant disease resistance, the molecular mechanisms underlying resistance to C. gloeosporioides in walnut remain poorly understood. RESULTS The anthracnose-resistant F26 fruits from the B26 clone and the anthracnose-susceptible F423 fruits from the 4-23 clone of walnut were used as the test materials. Specifically, we performed a comparative transcriptome analysis of F26 and F423 fruit bracts to identify differentially expressed LncRNAs (DELs) at five time-points (tissues at 0 hpi, pathological tissues at 24 hpi, 48 hpi, 72 hpi, and distal uninoculated tissues at 120 hpi). Compared with F423, a total of 14,525 DELs were identified, including 10,645 upregulated lncRNAs and 3846 downregulated lncRNAs in F26. The number of upregulated lncRNAs in F26 compared to in F423 was significantly higher at the early stages of C. gloeosporioides infection. A total of 5 modules related to disease resistance were screened by WGCNA and the target genes of lncRNAs were obtained. Bioinformatic analysis showed that the target genes of upregulated lncRNAs were enriched in immune-related processes during the infection of C. gloeosporioides, such as activation of innate immune response, defense response to bacterium, incompatible interaction and immune system process, and enriched in plant hormone signal transduction, phenylpropanoid biosynthesis and other pathways. And 124 known target genes for 96 hub lncRNAs were predicted, including 10 known resistance genes. The expression of 5 lncRNAs and 5 target genes was confirmed by qPCR, which was consistent with the RNA-seq data. CONCLUSIONS The results of this study provide the basis for future functional characterizations of lncRNAs regarding the C. gloeosporioides resistance of walnut fruit bracts.
Collapse
Affiliation(s)
- Shan Feng
- College of Forestry, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China
| | - Hongcheng Fang
- College of Forestry, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Tai'an, 271018, Shandong Province, China
- Shandong Taishan Forest Ecosystem Research Station, Tai'an, 271018, Shandong Province, China
| | - Xia Liu
- College of Forestry, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China
- Department of Science and Technology, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China
| | - Yuhui Dong
- College of Forestry, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China
| | - Qingpeng Wang
- College of Forestry, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China
| | - Ke Qiang Yang
- College of Forestry, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China.
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Tai'an, 271018, Shandong Province, China.
- Shandong Taishan Forest Ecosystem Research Station, Tai'an, 271018, Shandong Province, China.
| |
Collapse
|