1
|
Cabre L, Jing L, Makechemu M, Heluin K, El Khamlichi S, Leprince J, Kiefer-Meyer MC, Pluchon S, Mollet JC, Zipfel C, Nguema-Ona E. Additive and Specific Effects of Elicitor Treatments on the Metabolic Profile of Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:112-126. [PMID: 37903461 DOI: 10.1094/mpmi-04-23-0051-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Several elicitors of plant defense have been identified and numerous efforts to use them in the field have been made. Exogenous elicitor treatments mimic the in planta activation of pattern-triggered immunity (PTI), which relies on the perception of pathogen-associated molecular patterns (PAMPs) such as bacterial flg22 or fungal chitins. Early transcriptional responses to distinct PAMPs are mostly overlapping, regardless of the elicitor being used. However, it remains poorly known if the same patterns are observed for metabolites and proteins produced later during PTI. In addition, little is known about the impact of a combination of elicitors on PTI and the level of induced resistance to pathogens. Here, we monitored Arabidopsis thaliana resistance to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pto DC3000) following application of flg22 and chitosan elicitors, used individually or in combination. A slight, but not statistically significant increase in induced resistance was observed when the elicitors were applied together when compared with individual treatments. We investigated the effect of these treatments on the metabolome by using an untargeted analysis. We found that the combination of flg22 and chitosan impacted a higher number of metabolites and deregulated specific metabolic pathways compared with the elicitors individually. These results contribute to a better understanding of plant responses to elicitors, which might help better rationalize their use in the field. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Lisa Cabre
- Centre Mondial de l'Innovation-Groupe Roullier (CMI-Roullier), Laboratoire de Nutrition Végétale, Saint Malo, F-35400, France
| | - Lun Jing
- Centre Mondial de l'Innovation-Groupe Roullier (CMI-Roullier), Plateforme de Chimie et Bio-Analyse, Saint Malo, F-35400, France
| | - Moffat Makechemu
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zürich, CH-8008 Zürich, Switzerland
| | - Kylhan Heluin
- Université de Rouen Normandie, GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, RMT BESTIM, GDR Chémobiologie, IRIB, F-76000 Rouen, France
| | - Sarah El Khamlichi
- Université de Rouen Normandie, GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, RMT BESTIM, GDR Chémobiologie, IRIB, F-76000 Rouen, France
| | - Jérôme Leprince
- Université de Rouen Normandie, CNRS, INSERM, HERACLES US 51 UAR 2026, PRIMACEN, IRIB, F-76000 Rouen, France
| | - Marie Christine Kiefer-Meyer
- Université de Rouen Normandie, GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, RMT BESTIM, GDR Chémobiologie, IRIB, F-76000 Rouen, France
| | - Sylvain Pluchon
- Centre Mondial de l'Innovation-Groupe Roullier (CMI-Roullier), Laboratoire de Nutrition Végétale, Saint Malo, F-35400, France
| | - Jean-Claude Mollet
- Université de Rouen Normandie, GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, RMT BESTIM, GDR Chémobiologie, IRIB, F-76000 Rouen, France
| | - Cyril Zipfel
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zürich, CH-8008 Zürich, Switzerland
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, U.K
| | - Eric Nguema-Ona
- Centre Mondial de l'Innovation-Groupe Roullier (CMI-Roullier), Laboratoire de Nutrition Végétale, Saint Malo, F-35400, France
| |
Collapse
|
2
|
Zeiss DR, Molinaro A, Steenkamp PA, Silipo A, Piater LA, Di Lorenzo F, Dubery IA. Lipopolysaccharides from Ralstonia solanacearum induce a broad metabolomic response in Solanum lycopersicum. Front Mol Biosci 2023; 10:1232233. [PMID: 37635940 PMCID: PMC10450222 DOI: 10.3389/fmolb.2023.1232233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/06/2023] [Indexed: 08/29/2023] Open
Abstract
Ralstonia solanacearum, one of the most destructive crop pathogens worldwide, causes bacterial wilt disease in a wide range of host plants. The major component of the outer membrane of Gram-negative bacteria, lipopolysaccharides (LPS), has been shown to function as elicitors of plant defense leading to the activation of signaling and defense pathways in several plant species. LPS from a R. solanacearum strain virulent on tomato (LPSR. sol.), were purified, chemically characterized, and structurally elucidated. The lipid A moiety consisted of tetra- to hexa-acylated bis-phosphorylated disaccharide backbone, also decorated by aminoarabinose residues in minor species, while the O-polysaccharide chain consisted of either linear tetrasaccharide or branched pentasaccharide repeating units containing α-L-rhamnose, N-acetyl-β-D-glucosamine, and β-L-xylose. These properties might be associated with the evasion of host surveillance, aiding the establishment of the infection. Using untargeted metabolomics, the effect of LPSR. sol. elicitation on the metabolome of Solanum lycopersicum leaves was investigated across three incubation time intervals with the application of UHPLC-MS for metabolic profiling. The results revealed the production of oxylipins, e.g., trihydroxy octadecenoic acid and trihydroxy octadecadienoic acid, as well as several hydroxycinnamic acid amide derivatives, e.g., coumaroyl tyramine and feruloyl tyramine, as phytochemicals that exhibit a positive correlation to LPSR. sol. treatment. Although the chemical properties of these metabolite classes have been studied, the functional roles of these compounds have not been fully elucidated. Overall, the results suggest that the features of the LPSR. sol. chemotype aid in limiting or attenuating the full deployment of small molecular host defenses and contribute to the understanding of the perturbation and reprogramming of host metabolism during biotic immune responses.
Collapse
Affiliation(s)
- Dylan R. Zeiss
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Naples, Italy
- Task Force on Microbiome Studies, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Naples, Italy
| | - Paul A. Steenkamp
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Alba Silipo
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Naples, Italy
- Task Force on Microbiome Studies, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Naples, Italy
| | - Lizelle A. Piater
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Naples, Italy
- Task Force on Microbiome Studies, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Naples, Italy
| | - Ian A. Dubery
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
3
|
Lewis DC, van der Zwan T, Richards A, Little H, Coaker GL, Bostock RM. The Oomycete Microbe-Associated Molecular Pattern, Arachidonic Acid, and an Ascophyllum nodosum-Derived Plant Biostimulant Induce Defense Metabolome Remodeling in Tomato. PHYTOPATHOLOGY 2023; 113:1084-1092. [PMID: 36598344 PMCID: PMC10318118 DOI: 10.1094/phyto-10-22-0368-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Arachidonic acid (AA) is an oomycete-derived microbe-associated molecular pattern (MAMP) capable of eliciting robust defense responses and inducing resistance in plants. Similarly, Ascophylum nodosum extract (ANE) from the brown seaweed A. nodosum, a plant biostimulant that contains AA, can also prime plants for defense against pathogen challenges. A previous parallel study comparing the transcriptomes of AA- and ANE-root-treated tomatoes demonstrated significant overlap in transcriptional profiles, a shared induced resistance phenotype, and changes in the accumulation of various defense-related phytohormones. In this work, untargeted metabolomic analysis via liquid chromatography-mass spectrometry was conducted to investigate the local and systemic metabolome-wide remodeling events elicited by AA and ANE root treatment in tomatoes. Our study demonstrated AA and ANE's capacity to locally and systemically alter the metabolome of tomatoes with enrichment of chemical classes and accumulation of metabolites associated with defense-related secondary metabolism. AA- and ANE-root-treated plants showed enrichment of fatty acyl-glycosides and strong modulation of hydroxycinnamic acids and derivatives. Identification of specific metabolites whose accumulation was affected by AA and ANE treatment revealed shared metabolic changes related to ligno-suberin biosynthesis and the synthesis of phenolic compounds. This study highlights the extensive local and systemic metabolic changes in tomatoes induced by treatment with a fatty acid MAMP and a seaweed-derived plant biostimulant with implications for induced resistance and crop improvement.
Collapse
Affiliation(s)
- Domonique C. Lewis
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Timo van der Zwan
- Acadian Plant Health, Acadian Seaplants, Ltd., Dartmouth, Nova Scotia, Canada, B3B 1X8
| | - Andrew Richards
- Acadian Plant Health, Acadian Seaplants, Ltd., Dartmouth, Nova Scotia, Canada, B3B 1X8
| | - Holly Little
- Acadian Plant Health, Acadian Seaplants, Ltd., Dartmouth, Nova Scotia, Canada, B3B 1X8
| | - Gitta L. Coaker
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Richard M. Bostock
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| |
Collapse
|
4
|
Pierre E, Marcelo P, Croutte A, Dauvé M, Bouton S, Rippa S, Pageau K. Impact of Rhamnolipids (RLs), Natural Defense Elicitors, on Shoot and Root Proteomes of Brassica napus by a Tandem Mass Tags (TMTs) Labeling Approach. Int J Mol Sci 2023; 24:ijms24032390. [PMID: 36768708 PMCID: PMC9916879 DOI: 10.3390/ijms24032390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
The rapeseed crop is susceptible to many pathogens such as parasitic plants or fungi attacking aerial or root parts. Conventional plant protection products, used intensively in agriculture, have a negative impact on the environment as well as on human health. There is therefore a growing demand for the development of more planet-friendly alternative protection methods such as biocontrol compounds. Natural rhamnolipids (RLs) can be used as elicitors of plant defense mechanisms. These glycolipids, from bacteria secretome, are biodegradable, non-toxic and are known for their stimulating and protective effects, in particular on rapeseed against filamentous fungi. Characterizing the organ responsiveness to defense-stimulating compounds such as RLs is missing. This analysis is crucial in the frame of optimizing the effectiveness of RLs against various diseases. A Tandem Mass Tags (TMT) labeling of the proteins extracted from the shoots and roots of rapeseed has been performed and showed a differential pattern of protein abundance between them. Quantitative proteomic analysis highlighted the differential accumulation of parietal and cytoplasmic defense or stress proteins in response to RL treatments with a clear effect of the type of application (foliar spraying or root absorption). These results must be considered for further use of RLs to fight specific rapeseed pathogens.
Collapse
Affiliation(s)
- Elise Pierre
- Unité Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), UMRt 1158, Université de Picardie Jules Verne, 80039 Amiens, France
- Plateforme d’Ingénierie Cellulaire & Analyses des Protéines ICAP, FR CNRS 3085 ICP, Université de Picardie Jules Verne, 80039 Amiens, France
- Unité de Génie Enzymatique et Cellulaire, UMR CNRS 7025, Alliance Sorbonne Universités, Université de Technologie de Compiègne, 60203 Compiègne, France
| | - Paulo Marcelo
- Plateforme d’Ingénierie Cellulaire & Analyses des Protéines ICAP, FR CNRS 3085 ICP, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Antoine Croutte
- Plateforme d’Ingénierie Cellulaire & Analyses des Protéines ICAP, FR CNRS 3085 ICP, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Morgane Dauvé
- Unité de Génie Enzymatique et Cellulaire, UMR CNRS 7025, Alliance Sorbonne Universités, Université de Technologie de Compiègne, 60203 Compiègne, France
| | - Sophie Bouton
- Unité Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), UMRt 1158, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Sonia Rippa
- Unité de Génie Enzymatique et Cellulaire, UMR CNRS 7025, Alliance Sorbonne Universités, Université de Technologie de Compiègne, 60203 Compiègne, France
- Correspondence: (S.R.); (K.P.)
| | - Karine Pageau
- Unité Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), UMRt 1158, Université de Picardie Jules Verne, 80039 Amiens, France
- Correspondence: (S.R.); (K.P.)
| |
Collapse
|
5
|
Sobol G, Chakraborty J, Martin GB, Sessa G. The Emerging Role of PP2C Phosphatases in Tomato Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:737-747. [PMID: 35696659 DOI: 10.1094/mpmi-02-22-0037-cr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The antagonistic effect of plant immunity on growth likely drove evolution of molecular mechanisms that prevent accidental initiation and prolonged activation of plant immune responses. Signaling networks of pattern-triggered and effector-triggered immunity, the two main layers of plant immunity, are tightly regulated by the activity of protein phosphatases that dephosphorylate their protein substrates and reverse the action of protein kinases. Members of the PP2C class of protein phosphatases have emerged as key negative regulators of plant immunity, primarily from research in the model plant Arabidopsis thaliana, revealing the potential to employ PP2C proteins to enhance plant disease resistance. As a first step towards focusing on the PP2C family for both basic and translational research, we analyzed the tomato genome sequence to ascertain the complement of the tomato PP2C family, identify conserved protein domains and signals in PP2C amino acid sequences, and examine domain combinations in individual proteins. We then identified tomato PP2Cs that are candidate regulators of single or multiple layers of the immune signaling network by in-depth analysis of publicly available RNA-seq datasets. These included expression profiles of plants treated with fungal or bacterial pathogen-associated molecular patterns, with pathogenic, nonpathogenic, and disarmed bacteria, as well as pathogenic fungi and oomycetes. Finally, we discuss the possible use of immunity-associated PP2Cs to better understand the signaling networks of plant immunity and to engineer durable and broad disease resistance in crop plants. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Guy Sobol
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Joydeep Chakraborty
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Guido Sessa
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, 69978 Tel-Aviv, Israel
| |
Collapse
|