1
|
Xiao D, Liu J, Wang J, Yang X, Yang Y, Yu R, Wang C, Gao H, Wang Y, Liu Y, Fan D, Lin F. Chromosome-level de novo genome unveils the evolution of Gleditsia sinensis and thorns development. Genomics 2025; 117:111004. [PMID: 39863186 DOI: 10.1016/j.ygeno.2025.111004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/19/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Gleditsia sinensis Lam. (G. sinensis) as an important species within the Leguminosae family, has been utilized in Chinese medicine for centuries, and its thorns serve as a chief medicinal ingredient. The absence of a comprehensive genome database has hindered its in-depth research. In this investigation, a chromosome-level de novo genome assembly of G. sinensis 'Yulin No.1' was achieved, which harbors a 786.13 Mb sized genome with 36,408 protein-coding genes and experiences two WGD events. The comparative and evolutionary analysis unveiled the close phylogenetic relationship between G. sinensis and eight other Leguminosae species. The WGCNA and gene family analysis further indicated that GsinMYB was involved in the development of thorns. This investigation offered a high-level genome of G. sinensis, facilitating comparisons in Leguminosae species evolution and functional elucidation. It also provided key insights for further research on the molecular regulation mechanisms of thorn development in plants and the molecular breeding of G. sinensis.
Collapse
Affiliation(s)
- Dandan Xiao
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jiahao Liu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jing Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaoqian Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yuzhang Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Ruen Yu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Chun Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hongbo Gao
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yanwei Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Yanping Liu
- Henan Academy of Forestry, Henan, Zhengzhou 450008, China.
| | - Dingchen Fan
- Henan Academy of Forestry, Henan, Zhengzhou 450008, China.
| | - Furong Lin
- State Key Laboratory of Tree Genetics and Breeding, Laboratory of Forest Silviculture and Tree Cultivation, Research Institute of Forestry, Chinese Academy of Forestry, China.
| |
Collapse
|
2
|
Wang C, Fu P, Sun T, Wang Y, Li X, Lan S, Liu H, Gou Y, Shang Q, Li W. Identifying Candidate Genes Related to Soybean ( Glycine max) Seed Coat Color via RNA-Seq and Coexpression Network Analysis. Genes (Basel) 2025; 16:44. [PMID: 39858589 PMCID: PMC11764550 DOI: 10.3390/genes16010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND The quality of soybeans is reflected in the seed coat color, which indicates soybean quality and commercial value. Researchers have identified genes related to seed coat color in various plants. However, research on the regulation of genes related to seed coat color in soybeans is rare. METHODS In this study, four lines of seed coats with different colors (medium yellow 14, black, green, and brown) were selected from the F2:5 population, with Beinong 108 as the female parent and green bean as the male parent, and the dynamic changes in the anthocyanins in the seed coat were stained with 4-dimethylaminocinnamaldehyde (DMACA) during the grain maturation process (20 days from grain drum to seed harvest). Through RNA-seq of soybean lines with four different colored seed coats at 30 and 50 days after seeding, we can further understand the key pathways and gene regulation modules between soybean seed coats of different colors. RESULTS DMACA revealed that black seed coat soybeans produce anthocyanins first and have the deepest staining. Clustering and principal component analysis (PCA) of the RNA-seq data divided the eight samples into two groups, resulting in 16,456 DEGs, including 5359 TFs. GO and KEGG enrichment analyses revealed that the flavonoid biosynthesis, starch and sucrose metabolism, carotenoid biosynthesis, and circadian rhythm pathways were significantly enriched. We also conducted statistical and expression pattern analyses on the differentially expressed transcription factors. Based on weighted gene coexpression network analysis (WGCNA), we identified seven specific modules that were significantly related to the four soybean lines with different seed coat colors. The connectivity and functional annotation of genes within the modules were calculated, and 21 candidate genes related to soybean seed coat color were identified, including six transcription factor (TF) genes and three flavonoid pathway genes. CONCLUSIONS These findings provide a theoretical basis for an in-depth understanding of the molecular mechanisms underlying differences in soybean seed coat color and provide new genetic resources.
Collapse
Affiliation(s)
- Cheng Wang
- College of Plant Science and Technology, Beijing Key Laboratory of New Agricultural Technology in Agriculture Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China; (C.W.); (T.S.); (X.L.); (S.L.); (H.L.)
| | - Pingchun Fu
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs Beijing University of Agriculture, Beijing 102206, China; (P.F.); (Y.W.); (Y.G.)
| | - Tingting Sun
- College of Plant Science and Technology, Beijing Key Laboratory of New Agricultural Technology in Agriculture Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China; (C.W.); (T.S.); (X.L.); (S.L.); (H.L.)
| | - Yan Wang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs Beijing University of Agriculture, Beijing 102206, China; (P.F.); (Y.W.); (Y.G.)
| | - Xueting Li
- College of Plant Science and Technology, Beijing Key Laboratory of New Agricultural Technology in Agriculture Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China; (C.W.); (T.S.); (X.L.); (S.L.); (H.L.)
| | - Shulin Lan
- College of Plant Science and Technology, Beijing Key Laboratory of New Agricultural Technology in Agriculture Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China; (C.W.); (T.S.); (X.L.); (S.L.); (H.L.)
| | - Hui Liu
- College of Plant Science and Technology, Beijing Key Laboratory of New Agricultural Technology in Agriculture Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China; (C.W.); (T.S.); (X.L.); (S.L.); (H.L.)
| | - Yongji Gou
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs Beijing University of Agriculture, Beijing 102206, China; (P.F.); (Y.W.); (Y.G.)
| | - Qiaoxia Shang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs Beijing University of Agriculture, Beijing 102206, China; (P.F.); (Y.W.); (Y.G.)
| | - Weiyu Li
- College of Plant Science and Technology, Beijing Key Laboratory of New Agricultural Technology in Agriculture Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China; (C.W.); (T.S.); (X.L.); (S.L.); (H.L.)
| |
Collapse
|
3
|
Xu X, Zhu Y, Yuan Y, Sohail H, He S, Ye Y, Wang M, Lv M, Qi X, Yang X, Chen X. R2R3-MYB transcription factor CsMYB60 controls mature fruit skin color by regulating flavonoid accumulation in cucumber. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:796-813. [PMID: 38733630 DOI: 10.1111/tpj.16797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Skin color is an important trait that determines the cosmetic appearance and quality of fruits. In cucumber, the skin color ranges from white to brown in mature fruits. However, the genetic basis for this important trait remains unclear. We conducted a genome-wide association study of natural cucumber populations, along with map-based cloning techniques, on an F2 population resulting from a cross between Pepino (with yellow-brown fruit skin) and Zaoer-N (with creamy fruit skin). We identified CsMYB60 as a candidate gene responsible for skin coloration in mature cucumber fruits. In cucumber accessions with white to pale yellow skin color, a premature stop mutation (C to T) was found in the second exon region of CsMYB60, whereas light yellow cucumber accessions exhibited splicing premature termination caused by an intronic mutator-like element insertion in CsMYB60. Transgenic CsMYB60c cucumber plants displayed a yellow-brown skin color by promoting accumulation of flavonoids, especially hyperoside, a yellow-colored flavonol. CsMYB60c encodes a nuclear protein that primarily acts as a transcriptional activator through its C-terminal activation motif. RNA sequencing and DNA affinity purification sequencing assays revealed that CsMYB60c promotes skin coloration by directly binding to the YYTACCTAMYT motif in the promoter regions of flavonoid biosynthetic genes, including CsF3'H, which encodes flavonoid 3'-hydroxylase. The findings of our study not only offer insight into the function of CsMYB60 as dominantly controlling fruit coloration, but also highlight that intronic DNA mutations can have a similar phenotypic impact as exonic mutations, which may be valuable in future cucumber breeding programs.
Collapse
Affiliation(s)
- Xuewen Xu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yu Zhu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Ying Yuan
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Hamza Sohail
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Shuying He
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yi Ye
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Meixin Wang
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Mai Lv
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiaohua Qi
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiaodong Yang
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xuehao Chen
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| |
Collapse
|
4
|
Li J, Wu K, Li L, Ma G, Fang L, Zeng S. Identification of HpMYB1 inducing anthocyanin accumulation in Hippeastrum Hybridum tepals by RNA-seq. BMC PLANT BIOLOGY 2023; 23:594. [PMID: 38012575 PMCID: PMC10683291 DOI: 10.1186/s12870-023-04582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Cultivated Hippeastrum × hybridum is a popular ornamental plant with large and colorful flowers, long flowering duration, and high commercial value. As its main ornamental feature, its flower color is related to the anthocyanin content in the tepals. However, the molecular regulatory mechanisms of anthocyanin biosynthesis in H. × hybridum have not yet been elucidated. RESULTS In the present study, 12 cDNA libraries of four stages of H.× hybridum 'Royal Velvet' tepal development were used for RNA-seq, obtaining 79.83 gigabases (GB) of clean data. The data were assembled into 148,453 unigenes, and 11,262 differentially expressed genes were identified. Forty key enzymes participating in anthocyanin biosynthesis were investigated, and the results showed that most of the anthocyanin structural genes were expressed at low levels in S1 and were markedly upregulated in S2 and S3. The expression profiles of 12 selected genes were verified by qRT-PCR. Furthermore, the R2R3-MYB transcription factor (TF), HpMYB1, involved in the regulation of anthocyanin biosynthesis was identified by sequence, expression pattern, and subcellular localization analyses. Its overexpression in tobacco significantly increased the anthocyanin levels in various tissues and activated anthocyanin-related genes. CONCLUSIONS Using RNA-seq technology, we successfully identified a potential R2R3-MYB gene, HpMYB1, that regulates anthocyanin biosynthesis in H.× hybridum 'Royal Velvet'. Our findings provide basic transcript information and valuable transcriptome data for further identification of key genes involved in anthocyanin biosynthesis and can be applied in the artificial breeding of new H. × hybridum cultivars with enhanced ornamental value.
Collapse
Affiliation(s)
- Ji Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Kunlin Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Lin Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Guohua Ma
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Lin Fang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China.
| | - Songjun Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, 510650, Guangzhou, China.
| |
Collapse
|
5
|
Wang F, Chen J, Tang R, Wang R, Ahmad S, Liu Z, Peng D. Research Progress on Anthocyanin-Mediated Regulation of 'Black' Phenotypes of Plant Organs. Curr Issues Mol Biol 2023; 45:7242-7256. [PMID: 37754242 PMCID: PMC10527681 DOI: 10.3390/cimb45090458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
The color pattern is one of the most important characteristics of plants. Black stands out among the vibrant colors due to its rare and distinctive nature. While some plant organs appear black, they are, in fact, dark purple. Anthocyanins are the key compounds responsible for the diverse hues in plant organs. Cyanidin plays an important role in the deposition of black pigments in various plant organs, such as flower, leaf, and fruit. A number of structural genes and transcription factors are involved in the metabolism of anthocyanins in black organs. It has been shown that the high expression of R2R3-MYB transcription factors, such as PeMYB7, PeMYB11, and CsMYB90, regulates black pigmentation in plants. This review provides a comprehensive overview of the anthocyanin pathways that are involved in the regulation of black pigments in plant organs, including flower, leaf, and fruit. It is a great starting point for further investigation into the molecular regulation mechanism of plant color and the development of novel cultivars with black plant organs.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhongjian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.W.); (J.C.); (R.T.); (R.W.); (S.A.)
| | - Donghui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.W.); (J.C.); (R.T.); (R.W.); (S.A.)
| |
Collapse
|
6
|
Hu J, Zou S, Huang J, Huan X, Jin X, Zhou L, Zhao K, Han Y, Wang S. PagMYB151 facilitates proline accumulation to enhance salt tolerance of poplar. BMC Genomics 2023; 24:345. [PMID: 37349699 DOI: 10.1186/s12864-023-09459-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023] Open
Abstract
Poplar is one of the main urban and rural greening and shade tree species in the northern hemisphere, but its growth and development is always restricted by salt stress. R2R3-MYB transcription factor family is commonly involved in many biological processes during plant growth and stress endurance. In this study, PagMYB151 (Potri.014G035100) one of R2R3-MYB members related to salt stress and expressed in both nucleus and cell membrane was cloned from Populus alba × P. glandulosa to perfect the salt tolerance mechanism. Morphological and physiological indexes regulated by PagMYB151 were detected using the PagMYB151 overexpression (OX) and RNA interference (RNAi) transgenic poplar lines. Under salt stress conditions, compared with RNAi and the non-transgenic wild-type (WT) plants, the plant height, both aboveground and underground part fresh weight of OX was significantly increased. In addition, OX has a longer and finer root structure and a larger root surface area. The root activity of OX was also enhanced, which was significantly different from RNAi but not from WT under salt treatment. Under normal conditions, the stomatal aperture of OX was larger than WT, whereas this phenotype was not obvious after salt stress treatment. In terms of physiological indices, OX enhanced the accumulation of proline but reduced the toxicity of malondialdehyde to plants under salt stress. Combing with the transcriptome sequencing data, 6 transcription factors induced by salt stress and co-expressed with PagMYB151 were identified that may cooperate with PagMYB151 to function in salt stress responding process. This study provides a basis for further exploring the molecular mechanism of poplar PagMYB151 transcription factor under abiotic stress.
Collapse
Affiliation(s)
- Jia Hu
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Shengqiang Zou
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | | | - Xuhui Huan
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xia Jin
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Lieding Zhou
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Kai Zhao
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Youzhi Han
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Shengji Wang
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
7
|
Anthocyanin Biosynthesis Induced by MYB Transcription Factors in Plants. Int J Mol Sci 2022; 23:ijms231911701. [PMID: 36233003 PMCID: PMC9570290 DOI: 10.3390/ijms231911701] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Anthocyanins act as polyphenolic pigment that is ubiquitously found in plants. Anthocyanins play a role not only in health-promoting as an antioxidant, but also in protection against all kinds of abiotic and biotic stresses. Most recent studies have found that MYB transcription factors (MYB TFs) could positively or negatively regulate anthocyanin biosynthesis. Understanding the roles of MYB TFs is essential in elucidating how MYB TFs regulate the accumulation of anthocyanin. In the review, we summarized the signaling pathways medicated by MYB TFs during anthocyanin biosynthesis including jasmonic acid (JA) signaling pathway, cytokinins (CKs) signaling pathway, temperature-induced, light signal, 26S proteasome pathway, NAC TFs, and bHLH TFs. Moreover, structural and regulator genes induced by MYB TFs, target genes bound and activated or suppressed by MYB TFs, and crosstalk between MYB TFs and other proteins, were found to be vitally important in the regulation of anthocyanin biosynthesis. In this study, we focus on the recent knowledge concerning the regulator signaling and mechanism of MYB TFs on anthocyanin biosynthesis, covering the signaling pathway, genes expression, and target genes and protein expression.
Collapse
|
8
|
IbMYB308, a Sweet Potato R2R3-MYB Gene, Improves Salt Stress Tolerance in Transgenic Tobacco. Genes (Basel) 2022; 13:genes13081476. [PMID: 36011387 PMCID: PMC9408268 DOI: 10.3390/genes13081476] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 12/05/2022] Open
Abstract
The MYB (v-myb avian myeloblastosis viral oncogene homolog) transcription factor family plays an important role in plant growth, development, and response to biotic and abiotic stresses. However, the gene functions of MYB transcription factors in sweet potato (Ipomoea batatas (L.) Lam) have not been elucidated. In this study, an MYB transcription factor gene, IbMYB308, was identified and isolated from sweet potato. Multiple sequence alignment showed that IbMYB308 is a typical R2R3-MYB transcription factor. Further, quantitative real-time PCR (qRT-PCR) analysis revealed that IbMYB308 was expressed in root, stem, and, especially, leaf tissues. Moreover, it showed that IbMYB308 had a tissue-specific profile. The experiment also showed that the expression of IbMYB308 was induced by different abiotic stresses (20% PEG-6000, 200 mM NaCl, and 20% H2O2). After a 200 mM NaCl treatment, the expression of several stress-related genes (SOD, POD, APX, and P5CS) was upregulation in transgenic plants, and the CAT activity, POD activity, proline content, and protein content in transgenic tobacco had increased, while MDA content had decreased. In conclusion, this study demonstrated that IbMYB308 could improve salt stress tolerance in transgenic tobacco. These findings lay a foundation for future studies on the R2R3-MYB gene family of sweet potato and suggest that IbMYB308 could potentially be used as an important positive factor in transgenic plant breeding to improve salt stress tolerance in sweet potato plants.
Collapse
|