1
|
Sultan H, Mazhar Abbas HM, Faizan M, Emamverdian A, Shah A, Bahadur S, Li Y, Khan MN, Nie L. Residual effects of biochar and nano-modified biochar on growth and physiology under saline environment in two different genotype of Oryza sativa L. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123847. [PMID: 39746259 DOI: 10.1016/j.jenvman.2024.123847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/03/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
Soil salinity is represent a significant environmental stressor that profoundly impairs crop productivity by disrupting plant physiological functions. To mitigate this issue, the combined application of biochar and nanoparticles has emerged as a promising strategy to enhance plant salt tolerance. However, the long-term residual effects of this approach on cereal crops remain unclear. In a controlled pot experiment, rice straw biochar (BC) was applied in an earlier experiment at a rate of 20 t/ha, in conjunction with ZnO and Fe2O3 nanoparticles at concentrations of 10 mg L-1 and 20 mg L-1. Two rice genotypes, Jing Liang You-534 (salt-sensitive) and Xiang Liang You-900 (salt-tolerant), were utilized under 0% NaCl (S1) and 0.6% NaCl (S2) conditions. Results showed that, application of residual ZnOBC-20 significantly enhanced rice biomass, photosynthetic assimilation, relative chlorophyll content, SPAD index, enzyme activities, K+/Na+ ratio, hydrogen peroxide (H2O2) levels, and overall plant growth. Specifically, ZnOBC-20 increased the tolerance index by 142.8% and 146.1%, reduced H2O2 levels by 27.11% and 35.8%, and decreased malondialdehyde (MDA) levels by 33% and 57.9% in V1 and V2, respectively, compared to their respective controls. Residual of ZnOBC-20 mitigated oxidative damage caused by salinity-induced over-accumulation of reactive oxygen species (ROS) by enhancing the activities of antioxidant enzymes (SOD, POD, CAT, and APX) and increasing total soluble protein (TSP) content. Xiang Liang You-900 exhibited a less severe response to salinity compared to Jing Liang You-534. Additionally, residual of ZnOBC-20 significantly enhanced the anatomical architecture of both root and leaf tissues and regulated the expression levels of salt-related genes. Residual of ZnOBC-20 also improved salt tolerance in rice plants by reducing sodium (Na+) accumulation and enhancing potassium (K+) retention, thereby increasing the K+/Na+ ratio under saline conditions. The overall results of this experiment demonstrate that, residual effects of ZnOBC-20 not only improved the growth and physiological traits of rice plants under salt stress but also provided insights into the mechanisms behind the innovative combination of biochar and nanoparticles residual impacts for enhancing plant salt tolerance.
Collapse
Affiliation(s)
- Haider Sultan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Hafiz Muhammad Mazhar Abbas
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, India
| | - Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, Nanjing, 210037, China
| | - Asad Shah
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Saraj Bahadur
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Yusheng Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Mohammad Nauman Khan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China.
| | - Lixiao Nie
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China.
| |
Collapse
|
2
|
Tian X, Liu C, Yang Z, Zhu J, Fang W, Yin Y. Crosstalk between ethylene and melatonin activates isoflavone biosynthesis and antioxidant systems to produce high-quality soybean sprouts. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112197. [PMID: 39019089 DOI: 10.1016/j.plantsci.2024.112197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/06/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Isoflavone, which are mainly found in soybeans, are a secondary metabolite with a variety of physiological functions. In recent years, increasing the isoflavone content of soybeans has received widespread attention. Although ethephon treatment significantly increased isoflavone content in soybean sprouts, it also had a certain inhibitory effect on the growth of sprouts. Melatonin (MT), as a new type of plant hormone, not only alleviated the damage caused by abiotic stress to plants, but also promoted the synthesis of secondary metabolites. In this study, we aimed to elucidate the mechanism of exogenous MT in regulating the growth and development, and the metabolism of isoflavone in soybean sprouts under ethephon treatment. The results indicated that MT alleviated the adverse effects of ethephon treatment on soybean sprouts by increasing the activities of superoxide dismutase, peroxidase, catalase, and the expression of their corresponding genes, as well as decreased the content of malondialdehyde and hydrogen peroxide. In addition, MT further increased the isoflavone content by up-regulating the expression level of isoflavone synthesis genes and increased the activities of phenylalanine ammonia-lyase and cinnamic acid 4-hydroxylase under ethephon treatment. This study provided technical support and reference value for the production of high-quality soybean sprouts to a certain extent.
Collapse
Affiliation(s)
- Xin Tian
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Chen Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Zhengfei Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Jiangyu Zhu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Weiming Fang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China.
| | - Yongqi Yin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China.
| |
Collapse
|
3
|
Huang X, Leng J, Liu C, Huang K. Exogenous melatonin enhances the continuous cropping tolerance of Tartary buckwheat (Fagopyrum tataricum) by regulating the antioxidant defense system. PHYSIOLOGIA PLANTARUM 2024; 176:e14524. [PMID: 39266459 DOI: 10.1111/ppl.14524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/14/2024]
Abstract
The yield of Tartary buckwheat is significantly affected by continuous cropping. Melatonin plays a crucial role in plant defense mechanisms against abiotic stresses. However, the relationship between melatonin and continuous cropping tolerance remains unclear. This study aimed to analyze the physiological mechanism of melatonin in enhancing the continuous cropping tolerance (abiotic stress) of Tartary buckwheat. A field experiment was conducted on Tartary buckwheat cultivar Jinqiao 2 under continuous cropping with five melatonin application rates, 0 (Control), 10, 50, 100, and 200 μmol L-1, applied during the early budding stage. The chlorophyll content, antioxidant enzyme activity, osmolyte and auxin (IAA) contents, root activity, rhizosphere soil nutrient content, and agronomic traits of Tartary buckwheat initially increased and then decreased with an increase in the concentration of exogenous melatonin application, with the best effects observed at 100 μmol L-1. Compared with the Control treatment, the 100 μmol L-1 treatment decreased the contents of malondialdehyde, superoxide anion free radical, and abscisic acid (ABA) by an average of 28.79%, 27.08%, and 31.64%, respectively. Exogenous melatonin treatment significantly increased the yield of Tartary buckwheat under continuous cropping. Plants treated with 10, 50, 100, and 200 μM respectively had 1.88, 2.01, 2.20, and 1.78 times higher yield than those of the Control treatment. In summary, melatonin treatment, particularly 100 μmol L-1, enhanced the continuous cropping tolerance of Tartary buckwheat by increasing antioxidant capacity and osmotica content, coordinating endogenous ABA and IAA content levels, and delaying senescence, ultimately increasing yield.
Collapse
Affiliation(s)
- Xiaoyan Huang
- School of Life Science, Guizhou Normal University, Guiyang, P.R. China
| | - Jiali Leng
- School of Life Science, Guizhou Normal University, Guiyang, P.R. China
| | - Changmin Liu
- School of Life Science, Guizhou Normal University, Guiyang, P.R. China
| | - Kaifeng Huang
- School of Life Science, Guizhou Normal University, Guiyang, P.R. China
| |
Collapse
|
4
|
Chen C, Yu W, Xu X, Wang Y, Wang B, Xu S, Lan Q, Wang Y. Research Advancements in Salt Tolerance of Cucurbitaceae: From Salt Response to Molecular Mechanisms. Int J Mol Sci 2024; 25:9051. [PMID: 39201741 PMCID: PMC11354715 DOI: 10.3390/ijms25169051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Soil salinization severely limits the quality and productivity of economic crops, threatening global food security. Recent advancements have improved our understanding of how plants perceive, signal, and respond to salt stress. The discovery of the Salt Overly Sensitive (SOS) pathway has been crucial in revealing the molecular mechanisms behind plant salinity tolerance. Additionally, extensive research into various plant hormones, transcription factors, and signaling molecules has greatly enhanced our knowledge of plants' salinity tolerance mechanisms. Cucurbitaceae plants, cherished for their economic value as fruits and vegetables, display sensitivity to salt stress. Despite garnering some attention, research on the salinity tolerance of these plants remains somewhat scattered and disorganized. Consequently, this article offers a review centered on three aspects: the salt response of Cucurbitaceae under stress; physiological and biochemical responses to salt stress; and the current research status of their molecular mechanisms in economically significant crops, like cucumbers, watermelons, melon, and loofahs. Additionally, some measures to improve the salt tolerance of Cucurbitaceae crops are summarized. It aims to provide insights for the in-depth exploration of Cucurbitaceae's salt response mechanisms, uncovering the roles of salt-resistant genes and fostering the cultivation of novel varieties through molecular biology in the future.
Collapse
Affiliation(s)
- Cuiyun Chen
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wancong Yu
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Xinrui Xu
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yiheng Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Bo Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Shiyong Xu
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Qingkuo Lan
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Yong Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| |
Collapse
|
5
|
Khan S, Alvi AF, Fatma M, Al-Hashimi A, Sofo A, Khan NA. Relative effects of melatonin and hydrogen sulfide treatments in mitigating salt damage in wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1406092. [PMID: 39119490 PMCID: PMC11306083 DOI: 10.3389/fpls.2024.1406092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
Soil salinity poses a significant threat to agricultural productivity, impacting the growth and yield of wheat (Triticum aestivum L.) plants. This study investigates the potential of melatonin (MT; 100 µM) and hydrogen sulfide (H2S; 200 µM sodium hydrosulfide, NaHS) to confer the tolerance of wheat plants to 100 mM NaCl. Salinity stress induced the outburst of reactive oxygen species (ROS) resulting in damage to the chloroplast structure, growth, photosynthesis, and yield. Application of either MT or NaHS augmented the activity of antioxidant enzymes, superoxide dismutase, ascorbate peroxidase, glutathione reductase, and reduced glutathione (GSH) levels, upregulated the expression of Na+ transport genes (SOS1, SOS2, SOS3, NHX1), resulting in mitigation of salinity stress. Thus, improved stomatal behavior, gas-exchange parameters, and maintenance of chloroplast structure resulted in enhanced activity of the Calvin cycle enzymes and overall enhancement of growth, photosynthetic, and yield performance of plants under salinity stress. The use of DL-propargylglycine (PAG, an inhibitor of hydrogen sulfide biosynthesis) and p-chlorophenyl alanine (p-CPA, an inhibitor of melatonin biosynthesis) to plants under salt stress showed the comparative necessity of MT and H2S in mitigation of salinity stress. In the presence of PAG, more pronounced detrimental effects were observed than in the presence of p-CPA, emphasizing that MT was involved in mitigating salinity through various potential pathways, one of which was through H2S.
Collapse
Affiliation(s)
- Sheen Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Ameena Fatima Alvi
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Mehar Fatma
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Abdulrahman Al-Hashimi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Adriano Sofo
- Department of European and Mediterranean Cultures, Architecture, Environment, Cultural Heritage (DiCEM), University of Basilicata, Matera, Italy
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
6
|
Mahdavi Z, Esmailpour B, Azarmi R, Panahirad S, Ntatsi G, Gohari G, Fotopoulos V. Fish Waste-A Novel Bio-Fertilizer for Stevia ( Stevia rebaudiana Bertoni) under Salinity-Induced Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1909. [PMID: 39065437 PMCID: PMC11280417 DOI: 10.3390/plants13141909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Currently, different strategies, including the application of bio-fertilizers, are used to ameliorate the adverse effects posed by salinity stress as the major global problem in plants. Fish waste is suggested as a novel bio-fertilizer to mitigate the effects of biotic and abiotic stresses. In this investigation, an experiment was conducted to investigate the effects by applying different concentrations (0, 5, 10, and 15% (v/v)) of fish waste bio-fertilizer on stevia plants grown under salt stress conditions (0, 20, 40, and 60 mM of NaCl). Results showed that salinity negatively affected growth parameters, the photosynthetic pigments, the relative water content, and the chlorophyll fluorescence parameters while increased the activity of antioxidant enzymes, total phenol, hydrogen peroxide (H2O2), malondialdehyde (MDA), proline, and total carbohydrates compared with control samples. On the other hand, the application of fish waste bio-fertilizer mitigated the effects of salinity stress by enhancing growth and mitigating stress-relative markers, especially at the highest salinity level (60 mM). Overall, fish waste bio-fertilizer could be considered a sustainable, innovative approach for the alleviation of salinity stress effects in plants and, in addition, fish waste bio-fertilizer did not cause more salinity issues, at least with the applied doses and experiment time, which is an imperative aspect.
Collapse
Affiliation(s)
- Zahra Mahdavi
- Department of Horticulture, Faculty of Agriculture and Natural Resources, Mohaghegh Ardabili University, Ardabil 5619911367, Iran; (Z.M.); (R.A.)
| | - Behrouz Esmailpour
- Department of Horticulture, Faculty of Agriculture and Natural Resources, Mohaghegh Ardabili University, Ardabil 5619911367, Iran; (Z.M.); (R.A.)
| | - Rasul Azarmi
- Department of Horticulture, Faculty of Agriculture and Natural Resources, Mohaghegh Ardabili University, Ardabil 5619911367, Iran; (Z.M.); (R.A.)
| | - Sima Panahirad
- Department of Horticultural Sciences and Landscape Engineering, Faculty of Agriculture, University of Tabriz, Tabriz 5166616471, Iran;
| | - Georgia Ntatsi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - Gholamreza Gohari
- Department of Horticultural Sciences, Faculty of Agriculture, University of Maragheh, Maragheh 551877684, Iran;
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| |
Collapse
|
7
|
Khan M, Hussain A, Yun BW, Mun BG. Melatonin: The Multifaceted Molecule in Plant Growth and Defense. Int J Mol Sci 2024; 25:6799. [PMID: 38928504 PMCID: PMC11203645 DOI: 10.3390/ijms25126799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Melatonin (MEL), a hormone primarily known for its role in regulating sleep and circadian rhythms in animals, has emerged as a multifaceted molecule in plants. Recent research has shed light on its diverse functions in plant growth and defense mechanisms. This review explores the intricate roles of MEL in plant growth and defense responses. MEL is involved in plant growth owing to its influence on hormone regulation. MEL promotes root elongation and lateral root formation and enhances photosynthesis, thereby promoting overall plant growth and productivity. Additionally, MEL is implicated in regulating the circadian rhythm of plants, affecting key physiological processes that influence plant growth patterns. MEL also exhibits antioxidant properties and scavenges reactive oxygen species, thereby mitigating oxidative stress. Furthermore, it activates defense pathways against various biotic stressors. MEL also enhances the production of secondary metabolites that contribute to plant resistance against environmental changes. MEL's ability to modulate plant response to abiotic stresses has also been extensively studied. It regulates stomatal closure, conserves water, and enhances stress tolerance by activating stress-responsive genes and modulating signaling pathways. Moreover, MEL and nitric oxide cooperate in stress responses, antioxidant defense, and plant growth. Understanding the mechanisms underlying MEL's actions in plants will provide new insights into the development of innovative strategies for enhancing crop productivity, improving stress tolerance, and combating plant diseases. Further research in this area will deepen our knowledge of MEL's intricate functions and its potential applications in sustainable agriculture.
Collapse
Affiliation(s)
- Murtaza Khan
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Adil Hussain
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bong-Gyu Mun
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
8
|
Ahammed GJ, Li Z, Chen J, Dong Y, Qu K, Guo T, Wang F, Liu A, Chen S, Li X. Reactive oxygen species signaling in melatonin-mediated plant stress response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108398. [PMID: 38359555 DOI: 10.1016/j.plaphy.2024.108398] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/17/2024]
Abstract
Reactive oxygen species (ROS) are crucial signaling molecules in plants that play multifarious roles in prompt response to environmental stimuli. Despite the classical thoughts that ROS are toxic when accumulate in excess, recent advances in plant ROS signaling biology reveal that ROS participate in biotic and abiotic stress perception, signal integration, and stress-response network activation, hence contributing to plant defense and stress tolerance. ROS production, scavenging and transport are fine-tuned by plant hormones and stress-response signaling pathways. Crucially, the emerging plant hormone melatonin attenuates excessive ROS accumulation under stress, whereas ROS signaling mediates melatonin-induced plant developmental response and stress tolerance. In particular, RESPIRATORY BURST OXIDASE HOMOLOG (RBOH) proteins responsible for apoplastic ROS generation act downstream of melatonin to mediate stress response. In this review, we discuss promising developments in plant ROS signaling and how ROS might mediate melatonin-induced plant resilience to environmental stress.
Collapse
Affiliation(s)
- Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Zhe Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Jingying Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Yifan Dong
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Kehao Qu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Tianmeng Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Fenghua Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Airong Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Shuangchen Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China.
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China.
| |
Collapse
|
9
|
Kumar S, Liu Y, Wang M, Khan MN, Wang S, Li Y, Chen Y, Zhu G. Alleviating sweetpotato salt tolerance through exogenous glutathione and melatonin: A profound mechanism for active oxygen detoxification and preservation of photosynthetic organs. CHEMOSPHERE 2024; 350:141120. [PMID: 38199502 DOI: 10.1016/j.chemosphere.2024.141120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Salt stress profoundly impacts sweetpotato production. Exogenous glutathione (GSH) and melatonin (MT) promoted plant growth under stress, but their specific roles and mechanisms in sweetpotato salt tolerance need exploration. This study investigated GSH and MT's regulatory mechanisms in sweetpotato under salt stress. Salt stress significantly reduces both growth and biomass by hindering photosynthesis, root traits, K+ content, and K+/Na+ balance, leading to oxidative stress and excessive hydrogen peroxide (H2O2), superoxide ion (O2•-), and malondialdehyde (MDA) production and Na+ accumulation. Nevertheless, GSH (2 mM) and MT (25 μM) pre-treatments effectively mitigated salt-induced oxidative damage and protected the plasma membrane. They reduced osmotic pressure by enhancing K+ uptake, K+/Na+ regulation, osmolyte accumulation, and reducing Na+ accumulation. Improved stomatal traits, chloroplast and grana lamella preservation, and maintenance of mesophyll cells, cell wall, and mitochondrial structure were observed with GSH and MT pre-treatments under salt stress, therefore boosting the photosynthetic system and enhancing plant growth and biomass. Moreover, the findings also indicate that the positive outcomes of GSH and MT pre-treatments result from elevated antioxidant levels, enhanced enzymatic activity, and upregulated expression of sodium hydrogen exchanger 2 (NHX2), K+transporter 1 (AKT1), and cation/H+exchanger (CHX), CBL-interacting protein kinase 1 (CIPK1), and antioxidant enzyme genes. These mechanisms enhance structural stability in photosynthesis and reduce salt stress. Evidently, MT pre-treatment exhibited superior effects compared to GSH. These findings provide a firm theoretical basis for employing GSH and MT to enhance salt tolerance in sweetpotato cultivation.
Collapse
Affiliation(s)
- Sunjeet Kumar
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China
| | - Yang Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China
| | - Mengzhao Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China
| | - Mohammad Nauman Khan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Shihai Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China
| | - Yongping Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China
| | - Yanli Chen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China.
| | - Guopeng Zhu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China.
| |
Collapse
|
10
|
Sheikhalipour M, Gohari G, Esmaielpour B, Behnamian M, Giglou MT, Milani MH, Bahrami MK, Kulak M, Ioannou A, Fotopoulos V, Vita F. Effect of melatonin foliar sprays on morphophysiological attributes, fruit yield and quality of Momordica charantia L. under salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108194. [PMID: 37992418 DOI: 10.1016/j.plaphy.2023.108194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/20/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023]
Abstract
Soil salinity is one of the increasing problems in agricultural fields in many parts of the world, adversely affecting the performance and health of the plants. As a pleiotropic signal and antioxidant molecule in both animals and plants, melatonin has been reported to possess significant roles in combating with stress factors, in general and salt stress, in particular. In this study, the interactive effects of melatonin (0, 75, and 150 μM) and salt stress (0, 50 and 100 mM NaCl) were investigated by assaying the some agronomic, physlogical and biochemical attributes and essential oil compounds of bitter melon (Momordica charantia). The results showed that exogenous melatonin could promote net photosynthetic rate (Pn) and PSII efficiency (Fv/Fm), increase K+ content and activity of antioxidant enzymes and decrease reactive oxygen species, malondialdehyde and Na+ content in stress-submitted seedlings, in comparison to the non-stressed seedlings (p < 0.05). Melatonin increased content of essential oils. Concerning the major compounds of fruits of bitter melon, charantin, momordicin and cucurbitacin were increased with the melatonin treatments, whereas they were critically decreased with the salt stress. In addition, melatonin increased the antioxidant capacity in fruits under non-saline and salinity conditions. Amid the concentrations of melatonin, plants treated with 150 μM of melatonin under either non-saline or saline conditions showed better performance and productivity. Therefore, application of 150 μM melatonin resulted in a significant improvement of salinity tolerance and essential oil compounds in bitter melon plant, suggesting this as an efficient 'green' strategy for sustainable crop production under salt stress conditions.
Collapse
Affiliation(s)
- Morteza Sheikhalipour
- Department of Horticulture, Faculty of Horticulture, University of Mohaghegh Ardabili, Ardabil, Iran; Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Gholamreza Gohari
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran; Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology Limassol, Cyprus.
| | - Behrooz Esmaielpour
- Department of Horticulture, Faculty of Horticulture, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Mehdi Behnamian
- Department of Horticulture, Faculty of Horticulture, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mousa Torabi Giglou
- Department of Horticulture, Faculty of Horticulture, University of Mohaghegh Ardabili, Ardabil, Iran
| | | | | | - Muhittin Kulak
- Department of Herbal and Animal Production, Vocational School of Technical Sciences, Igdir University, Igdir, Turkey
| | - Andreas Ioannou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology Limassol, Cyprus
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology Limassol, Cyprus
| | - Federico Vita
- Department of Biology, University of Bari Aldo Moro, 70126, Bari, Italy
| |
Collapse
|
11
|
Nie M, Ning N, Chen J, Zhang Y, Li S, Zheng L, Zhang H. Melatonin enhances salt tolerance in sorghum by modulating photosynthetic performance, osmoregulation, antioxidant defense, and ion homeostasis. Open Life Sci 2023; 18:20220734. [PMID: 37872968 PMCID: PMC10590611 DOI: 10.1515/biol-2022-0734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 10/25/2023] Open
Abstract
Melatonin is a potent antioxidant that can prevent plant damage caused by adverse stresses. It remains unclear whether exogenous melatonin can mitigate the effects of salt stress on seed germination and seedling growth of sorghum (Sorghum bicolor (L.) Moench). The aim of this study was to decipher the protective mechanisms of exogenous melatonin (100 μmol/L) on sorghum seedlings under NaCl-induced salt stress (120 mmol/L). Plant morphological, photosynthetic, and physiological characteristics were analyzed at different timepoints after sowing. Results showed that salt stress inhibited seed germination, seedling growth, and plant biomass accumulation by reducing photosynthetic pigment contents, photosynthetic efficiency, root vigor, and mineral uptake. In contrast, seed priming with melatonin enhanced photosynthetic pigment biosynthesis, photosynthetic efficiency, root vigor, and K+ content under salt stress. Melatonin application additionally enhanced the activities of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase) and increased the levels of non-enzymatic antioxidants (reduced glutathione, ascorbic acid) in the leaves. These changes were accompanied by increase in the leaf contents of soluble sugars, soluble proteins, and proline, as well as decrease in hydrogen peroxide accumulation, malondialdehyde content, and electrolyte leakage. Our findings indicate that exogenous melatonin can alleviate salt stress-induced damage in sorghum seedlings through multifaceted mechanisms, such as improving photosynthetic performance and root vigor, facilitating ion homeostasis and osmoregulation, and promoting antioxidant defense and reactive oxygen species scavenging.
Collapse
Affiliation(s)
- Mengen Nie
- College of Agronomy, Shanxi Agricultural University, 81 Longcheng Street, Taiyuan, Shanxi, 030000, China
| | - Na Ning
- College of Resources Environment and Chemistry, Chuxiong Normal University, 546 Lucheng South Road, Chuxiong, Yunnan, 675000, China
| | - Jing Chen
- College of Agronomy, Shanxi Agricultural University, 81 Longcheng Street, Taiyuan, Shanxi, 030000, China
| | - Yizhong Zhang
- Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Sorghum Research Institute, Shanxi Agricultural University,238 Yunhua West Street, Jinzhong, Shanxi, 030600, China
| | - Shuangshuang Li
- College of Resources Environment and Chemistry, Chuxiong Normal University, 546 Lucheng South Road, Chuxiong, Yunnan, 675000, China
| | - Lue Zheng
- College of Resources Environment and Chemistry, Chuxiong Normal University, 546 Lucheng South Road, Chuxiong, Yunnan, 675000, China
| | - Haiping Zhang
- Center for Agricultural Gene Resources Research, Shanxi Agricultural University, 81 Longcheng Street, Taiyuan, Shanxi, 030000, China
| |
Collapse
|
12
|
Kuppusamy A, Alagarswamy S, Karuppusami KM, Maduraimuthu D, Natesan S, Ramalingam K, Muniyappan U, Subramanian M, Kanagarajan S. Melatonin Enhances the Photosynthesis and Antioxidant Enzyme Activities of Mung Bean under Drought and High-Temperature Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:2535. [PMID: 37447095 DOI: 10.3390/plants12132535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
Mung bean, a legume, is sensitive to abiotic stresses at different growth stages, and its yield potential is affected by drought and high-temperature stress at the sensitive stage. Melatonin is a multifunctional hormone that plays a vital role in plant stress defense mechanisms. This study aimed to evaluate the efficiency of melatonin under individual and combined drought and high-temperature stress in mung bean. An experiment was laid out with five treatments, including an exogenous application of 100 µM melatonin as a seed treatment, foliar spray, and a combination of both seed treatment and foliar spray, as well as absolute control (ambient condition) and control (stress without melatonin treatment). Stresses were imposed during the mung bean's reproductive stage (31-40 DAS) for ten days. Results revealed that drought and high-temperature stress significantly decreased chlorophyll index, Fv/Fm ratio, photosynthetic rate, stomatal conductance, and transpiration rate through increased reactive oxygen species (ROS) production. Foliar application of melatonin at 100 µM concentration enhanced the activity of antioxidant enzymes such as superoxide dismutase, catalase, and ascorbate peroxidase and the concentration of metabolites involved in osmoregulation and ion homeostasis; thereby, it improves physiological and yield-related traits in mung bean under individual and combined stress at the reproductive stage.
Collapse
Affiliation(s)
- Anitha Kuppusamy
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Senthil Alagarswamy
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Kalarani M Karuppusami
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | | | - Senthil Natesan
- Centre for Plant Molecular Biology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Kuttimani Ramalingam
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Umapathi Muniyappan
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Marimuthu Subramanian
- Department of Agronomy, Agricultural College & Research Institute, Eachangkottai, Thanjavur 614904, India
| | - Selvaraju Kanagarajan
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, 23422 Lomma, Sweden
| |
Collapse
|
13
|
Dehvari-Nagan P, Abbaspour H, Asare MH, Saadatmand S. Melatonin Confers NaCl Tolerance in Withaniacoagulans L. by Maintaining Na +/K + Homeostasis, Strengthening the Antioxidant Defense System and Modulating Withanolides Synthesis-Related Genes. RUSSIAN JOURNAL OF PLANT PHYSIOLOGY: A COMPREHENSIVE RUSSIAN JOURNAL ON MODERN PHYTOPHYSIOLOGY 2023; 70:52. [PMID: 37250622 PMCID: PMC10204015 DOI: 10.1134/s1021443723600125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 05/31/2023]
Abstract
As a multifunctional signaling molecule, melatonin (ML) is widely considered to induce the defense mechanism and increase the accumulation of secondary metabolites under abiotic stresses. Here, the effects of different concentrations of ML (100 and 200 µM) on the biochemical and molecular responses of Withania coagulans L. in hydroponic conditions under 200 mM NaCl treatment were evaluated. The results showed that NaCl treatment impaired photosynthetic function and reduced plant growth by decreasing photosynthetic pigments and gas exchange parameters. NaCl stress also induced oxidative stress and membrane lipid damage, disrupting Na+/K+ homeostasis and increasing hydrogen peroxide levels. NaCl toxicity decreased nitrogen (N) assimilation activity in leaves by reducing the activity of enzymes associated with N metabolism. However, adding ML to NaCl-stressed plants improved gas exchange parameters and increased photosynthesis efficiency, resulting in improved plant growth. By enhancing the activity of antioxidant enzymes and reducing hydrogen peroxide levels, ML ameliorated NaCl-induced oxidative stress. By improving N metabolism and restoring Na+/K+ homeostasis in NaCl-stressed plants, ML improved N uptake and plant adaptation to salinity. ML increased the expression of genes responsible for the biosynthesis of withanolides (FPPS, SQS, HMGR, DXS, DXR, and CYP51G1) and, as a result, increased the accumulation of withanolides A and withaferin A in leaves under NaCl stress. Overall, our results indicate the potential of ML to improve plant adaptation under NaCl stress through fundamental changes in plant metabolism. Supplementary Information The online version contains supplementary material available at 10.1134/S1021443723600125.
Collapse
Affiliation(s)
- P. Dehvari-Nagan
- Department of Biology, Faculty of Biological Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - H. Abbaspour
- Department of Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - M. H. Asare
- Research Institute of Forests and Rangelands, Tehran, Iran
| | - S. Saadatmand
- Department of Biology, Faculty of Biological Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
14
|
Sheikhalipour M, Mohammadi SA, Esmaielpour B, Spanos A, Mahmoudi R, Mahdavinia GR, Milani MH, Kahnamoei A, Nouraein M, Antoniou C, Kulak M, Gohari G, Fotopoulos V. Seedling nanopriming with selenium-chitosan nanoparticles mitigates the adverse effects of salt stress by inducing multiple defence pathways in bitter melon plants. Int J Biol Macromol 2023; 242:124923. [PMID: 37211072 DOI: 10.1016/j.ijbiomac.2023.124923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/23/2023]
Abstract
Advances in the nanotechnology fields provided crucial applications in plant sciences, contributing to the plant performance and health under stress and stress-free conditions. Amid the applications, selenium (Se), chitosan and their conjugated forms as nanoparticles (Se-CS NPs) have been revealed to have potential of alleviating the harmful effects of the stress on several crops and subsequently enhancing the growth and productivity. The present study was addressed to assay the potential effects of Se-CS NPs in reversing or buffering the harmful effects of salt stress on growth, photosynthesis, nutrient concentration, antioxidant system and defence transcript levels in bitter melon )Momordica charantia(. In addition, some secondary metabolite-related genes were explicitly examined. In this regard, the transcriptional levels of WRKY1, SOS1, PM H+-ATPase, SKOR, Mc5PTase7, SOAR1, MAP30, α-MMC, polypeptide-P and PAL were quantified. Our results demonstrated that Se-CS NPs increased growth parameters, photosynthesis parameters (SPAD, Fv/Fm, Y(II)), antioxidant enzymatic activity (POD, SOD, CAT) and nutrient homeostasis (Na+/K+, Ca2+, and Cl-) and induced the expression of genes in bitter melon plants under salt stress (p ≤ 0.05). Therefore, applying Se-CS NPs might be a simple and effective way of improving crop plants' overall health and yield under salt stress conditions.
Collapse
Affiliation(s)
- Morteza Sheikhalipour
- Department of Horticulture, Faculty of Horticulture, University of Mohagheh Ardabili, Ardabil, Iran; Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Seyed Abolghasem Mohammadi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran; Center for Cell Pathology, Department of Life Sciences, Khazar University, Baku, Azerbaijan
| | - Behrooz Esmaielpour
- Department of Horticulture, Faculty of Horticulture, University of Mohagheh Ardabili, Ardabil, Iran
| | - Alexandros Spanos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology Limassol, Cyprus
| | - Roghayeh Mahmoudi
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Gholam Reza Mahdavinia
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | | | - Amir Kahnamoei
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Mojtaba Nouraein
- Department of Plant Genetics and Production, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Chrystalla Antoniou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology Limassol, Cyprus
| | - Muhittin Kulak
- Department of Herbal and Animal Production, Vocational School of Technical Sciences, Igdir University, Türkiye
| | - Gholamreza Gohari
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology Limassol, Cyprus; Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, Iran.
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology Limassol, Cyprus.
| |
Collapse
|
15
|
Vafadar F, Ehsanzadeh P. Synergistic effects of calcium and melatonin on physiological and phytochemical attributes of Dracocephalum kotschyi genotypes under salinity stress. PHYSIOLOGIA PLANTARUM 2023; 175:e13912. [PMID: 37041729 DOI: 10.1111/ppl.13912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Since regulatory roles of calcium (Ca) and melatonin (MT) in physiological responses of plants to salinity stress are lacking, various Dracocephalum kotschyi genotypes (Bojnord, Urmia, Fereydunshahr, and Semirom) were pretreated with exogenous Ca (5 mM), MT (100 μM), and Ca + MT in the presence of salt (75 mM NaCl). In addition measuring the concentration of phenolic compounds by high performance liquid chromatography (HPLC), histochemical evaluations of essential oils and phenolic compounds in glandular trichomes of leaf samples were performed by light microscope. Salt stress reduced shoot fresh (SFW) and dry weight (SDW), leaf area (LA), relative water content (RWC), and maximum efficiency of photosystem II (Fv /Fm ), but enhanced total phenolic content (TPC) and total flavonoids content (TFC), phenolic compounds concentrations, DPPH radical scavenging capacity, electrolyte leakage (EL), proline and hydrogen peroxide (H2 O2 ) concentrations, and Na+ /K+ and essential oils and TPC of the glandular trichomes of leaves in all D. kotschyi genotypes. Foliar spraying of Ca, MT, and particularly Ca + MT on D. kotschyi seedlings improved SFW, SDW, RWC, TPC, TFC, proline and phenolic compounds concentrations, Fv /Fm , and DPPH radical scavenging capacity, but reduced H2 O2 , EL, and Na+ /K+ in the leaves and essential oils and TPC in the glandular trichomes of all genotypes under both non-stress and salt stress conditions. These findings indicate that the crosstalk between MT and Ca synergistically improves salt tolerance, TPC and TFC, phenolic compounds concentration, and essential oils accumulation in glandular trichomes of different D. kotschyi genotypes.
Collapse
Affiliation(s)
- Farinaz Vafadar
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Parviz Ehsanzadeh
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
16
|
Sher A, Hassan MU, Sattar A, Ul-Allah S, Ijaz M, Hayyat Z, Bibi Y, Hussain M, Qayyum A. Exogenous application of melatonin alleviates the drought stress by regulating the antioxidant systems and sugar contents in sorghum seedlings. BIOCHEM SYST ECOL 2023. [DOI: 10.1016/j.bse.2023.104620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
17
|
Efimova MV, Danilova ED, Zlobin IE, Kolomeichuk LV, Murgan OK, Boyko EV, Kuznetsov VV. Priming Potato Plants with Melatonin Protects Stolon Formation under Delayed Salt Stress by Maintaining the Photochemical Function of Photosystem II, Ionic Homeostasis and Activating the Antioxidant System. Int J Mol Sci 2023; 24:ijms24076134. [PMID: 37047107 PMCID: PMC10094597 DOI: 10.3390/ijms24076134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
Melatonin is among one of the promising agents able to protect agricultural plants from the adverse action of different stressors, including salinity. We aimed to investigate the effects of melatonin priming (0.1, 1.0 and 10 µM) on salt-stressed potato plants (125 mM NaCl), by studying the growth parameters, photochemical activity of photosystem II, water status, ion content and antioxidant system activity. Melatonin as a pleiotropic signaling molecule was found to decrease the negative effect of salt stress on stolon formation, tissue water content and ion status without a significant effect on the expression of Na+/H+-antiporter genes localized on the vacuolar (NHX1 to NHX3) and plasma membrane (SOS1). Melatonin effectively decreases the accumulation of lipid peroxidation products in potato leaves in the whole range of concentrations studied. A melatonin-induced dose-dependent increase in Fv/Fm together with a decrease in uncontrolled non-photochemical dissipation Y(NO) also indicates decreased oxidative damage. The observed protective ability of melatonin was unlikely due to its influence on antioxidant enzymes, since neither SOD nor peroxidase were activated by melatonin. Melatonin exerted positive effects on the accumulation of water-soluble low-molecular-weight antioxidants, proline and flavonoids, which could aid in decreasing oxidative stress. The most consistent positive effect was observed on the accumulation of carotenoids, which are well-known lipophilic antioxidants playing an important role in the protection of photosynthesis from oxidative damage. Finally, it is possible that melatonin accumulated during pretreatment could exert direct antioxidative effects due to the ROS scavenging activity of melatonin molecules.
Collapse
Affiliation(s)
- Marina V Efimova
- Department of Plant Physiology, Biotechnology and Bioinformatics, Biological Institute, National Research Tomsk State University, Lenin Avenue 36, Tomsk 634050, Russia
| | - Elena D Danilova
- Department of Plant Physiology, Biotechnology and Bioinformatics, Biological Institute, National Research Tomsk State University, Lenin Avenue 36, Tomsk 634050, Russia
| | - Ilya E Zlobin
- Department of Plant Physiology, Biotechnology and Bioinformatics, Biological Institute, National Research Tomsk State University, Lenin Avenue 36, Tomsk 634050, Russia
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Lilia V Kolomeichuk
- Department of Plant Physiology, Biotechnology and Bioinformatics, Biological Institute, National Research Tomsk State University, Lenin Avenue 36, Tomsk 634050, Russia
| | - Olga K Murgan
- Department of Plant Physiology, Biotechnology and Bioinformatics, Biological Institute, National Research Tomsk State University, Lenin Avenue 36, Tomsk 634050, Russia
| | - Ekaterina V Boyko
- Department of Plant Physiology, Biotechnology and Bioinformatics, Biological Institute, National Research Tomsk State University, Lenin Avenue 36, Tomsk 634050, Russia
| | - Vladimir V Kuznetsov
- Department of Plant Physiology, Biotechnology and Bioinformatics, Biological Institute, National Research Tomsk State University, Lenin Avenue 36, Tomsk 634050, Russia
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| |
Collapse
|
18
|
Chang Q, Zhang L, Chen S, Gong M, Liu L, Hou X, Mi Y, Wang X, Wang J, Zhang Y, Sun Y. Exogenous Melatonin Enhances the Yield and Secondary Metabolite Contents of Prunella vulgaris by Modulating Antioxidant System, Root Architecture and Photosynthetic Capacity. PLANTS (BASEL, SWITZERLAND) 2023; 12:1129. [PMID: 36903989 PMCID: PMC10005377 DOI: 10.3390/plants12051129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Melatonin (MT) plays a number of key roles in regulating plant growth and secondary metabolite accumulation. Prunella vulgaris is an important traditional Chinese herbal medicinal plant which is used for the treatment of lymph, goiter, and mastitis. However, the effect of MT on the yield and medicinal component content of P. vulgaris remains still unclear. In this research, we have examined the influence of different concentrations of MT (0, 50, 100, 200, 400 μM) on the physiological characteristics, secondary metabolite contents, and yield of P. vulgaris biomass. The results showed that 50-200 μM MT treatment had a positive effect on P. vulgaris. MT treatment at 100 μM greatly increased the activities of superoxide dismutase and peroxidase, the contents of soluble sugar and proline, and obviously decreased the relative electrical conductivity, the contents of malondialdehyde and hydrogen peroxide of leaves. Furthermore, it markedly promoted the growth and development of the root system, increased the content of photosynthetic pigments, improved the performance of photosystems I and II and the coordination of both photosystems, and enhanced the photosynthetic capacity of P. vulgaris. In addition, it significantly increased the dry mass of whole plant and spica and promoted the accumulation of total flavonoids, total phenolics, caffeic acid, ferulic acid, rosmarinic acid, and hyperoside in the spica of P. vulgaris. These findings demonstrated that the application of MT could effectively activate the antioxidant defense system of P. vulgaris, protect the photosynthetic apparatus from photooxidation damage, and improve the photosynthetic capacity and the root absorption capacity, thereby promoting the yield and accumulation of secondary metabolites in P. vulgaris.
Collapse
Affiliation(s)
- Qingshan Chang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Lixia Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Shuangchen Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Minggui Gong
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Longchang Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Xiaogai Hou
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Yinfa Mi
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Xiaohui Wang
- Peony Research Institute, Luoyang Academy of Agriculture and Forestry Sciences, Luoyang 471023, China
| | - Jianzhang Wang
- Luoyang Greening Management Center, Luoyang 471023, China
| | - Yue Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Yiming Sun
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| |
Collapse
|
19
|
Khalid M, Rehman HM, Ahmed N, Nawaz S, Saleem F, Ahmad S, Uzair M, Rana IA, Atif RM, Zaman QU, Lam HM. Using Exogenous Melatonin, Glutathione, Proline, and Glycine Betaine Treatments to Combat Abiotic Stresses in Crops. Int J Mol Sci 2022; 23:12913. [PMID: 36361700 PMCID: PMC9657122 DOI: 10.3390/ijms232112913] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 08/06/2023] Open
Abstract
Abiotic stresses, such as drought, salinity, heat, cold, and heavy metals, are associated with global climate change and hamper plant growth and development, affecting crop yields and quality. However, the negative effects of abiotic stresses can be mitigated through exogenous treatments using small biomolecules. For example, the foliar application of melatonin provides the following: it protects the photosynthetic apparatus; it increases the antioxidant defenses, osmoprotectant, and soluble sugar levels; it prevents tissue damage and reduces electrolyte leakage; it improves reactive oxygen species (ROS) scavenging; and it increases biomass, maintains the redox and ion homeostasis, and improves gaseous exchange. Glutathione spray upregulates the glyoxalase system, reduces methylglyoxal (MG) toxicity and oxidative stress, decreases hydrogen peroxide and malondialdehyde accumulation, improves the defense mechanisms, tissue repairs, and nitrogen fixation, and upregulates the phytochelatins. The exogenous application of proline enhances growth and other physiological characteristics, upregulates osmoprotection, protects the integrity of the plasma lemma, reduces lipid peroxidation, increases photosynthetic pigments, phenolic acids, flavonoids, and amino acids, and enhances stress tolerance, carbon fixation, and leaf nitrogen content. The foliar application of glycine betaine improves growth, upregulates osmoprotection and osmoregulation, increases relative water content, net photosynthetic rate, and catalase activity, decreases photorespiration, ion leakage, and lipid peroxidation, protects the oxygen-evolving complex, and prevents chlorosis. Chemical priming has various important advantages over transgenic technology as it is typically more affordable for farmers and safe for plants, people, and animals, while being considered environmentally acceptable. Chemical priming helps to improve the quality and quantity of the yield. This review summarizes and discusses how exogenous melatonin, glutathione, proline, and glycine betaine can help crops combat abiotic stresses.
Collapse
Affiliation(s)
- Memoona Khalid
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Hafiz Mamoon Rehman
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
- Center for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Nisar Ahmed
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Sehar Nawaz
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Fozia Saleem
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Shakeel Ahmad
- Seed Center, Ministry of Environment, Water & Agriculture, Riyadh 14712, Saudi Arabia
| | - Muhammad Uzair
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Iqrar Ahmad Rana
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
- Center for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad Pakistan, Punjab 38000, Pakistan
| | - Rana Muhammad Atif
- Center for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad Pakistan, Punjab 38000, Pakistan
| | - Qamar U. Zaman
- Center for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad Pakistan, Punjab 38000, Pakistan
| | - Hon-Ming Lam
- Center for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|