1
|
Rehman S, Bahadur S, Xia W, Runan C, Ali M, Maqbool Z. From genes to traits: Trends in RNA-binding proteins and their role in plant trait development: A review. Int J Biol Macromol 2024:136753. [PMID: 39488325 DOI: 10.1016/j.ijbiomac.2024.136753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
RNA-binding proteins (RBPs) are essential for cellular functions by attaching to RNAs, creating dynamic ribonucleoprotein complexes (RNPs) essential for managing RNA throughout its life cycle. These proteins are critical to all post-transcriptional processes, impacting vital cellular functions during development and adaptation to environmental changes. Notably, in plants, RBPs are critical for adjusting to inconsistent environmental conditions, with recent studies revealing that plants possess, more prominent, and both novel and conserved RBP families compared to other eukaryotes. This comprehensive review delves into the varied RBPs covering their structural attributes, domain base function, and their interactions with RNA in metabolism, spotlighting their role in regulating post-transcription and splicing and their reaction to internal and external stimuli. It highlights the complex regulatory roles of RBPs, focusing on plant trait regulation and the unique functions they facilitate, establishing a foundation for appreciating RBPs' significance in plant growth and environmental response strategies.
Collapse
Affiliation(s)
- Shazia Rehman
- Sanya Nanfan Research Institution/College of Tropical Crops, Hainan University, Sanya, 572025, China
| | - Saraj Bahadur
- College of Forestry, Hainan University, Haikou 570228, China; College of Life and Health Science, Hainan University, Haikou 570228, China.
| | - Wei Xia
- Sanya Nanfan Research Institution Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China.
| | - Chen Runan
- Sanya Nanfan Research Institution/College of Tropical Crops, Hainan University, Sanya, 572025, China
| | - Maroof Ali
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, China
| | - Zainab Maqbool
- Botany Department, Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|
2
|
Zhao X, He F, Qi G, Sun S, Shi Z, Niu Y, Wu Z. Transcriptomic and Physiological Studies Unveil that Brassinolide Maintains the Balance of Maize's Multiple Metabolisms under Low-Temperature Stress. Int J Mol Sci 2024; 25:9396. [PMID: 39273343 PMCID: PMC11395154 DOI: 10.3390/ijms25179396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Low-temperature (LT) is one of the major abiotic stresses that restrict the growth and development of maize seedlings. Brassinolides (BRs) have been shown to enhance LT tolerance in several plant species; the physiological and molecular mechanisms by which BRs enhance maize tolerance are still unclear. Here, we characterized changes in the physiology and transcriptome of N192 and Ji853 seedlings at the three-leaf stage with or without 2 μM 2,4-epibrassinolide (EBR) application at 25 and 15 °C environments via high-performance liquid chromatography and RNA-Sequencing. Physiological analyses revealed that EBR increased the antioxidant enzyme activities, enhanced the cell membrane stability, decreased the malondialdehyde formation, and inhibited the reactive oxygen species (ROS) accumulation in maize seedlings under 15 °C stress; meanwhile, EBR also maintained hormone balance by increasing indole-3-acetic acid and gibberellin 3 contents and decreasing the abscisic acid level under stress. Transcriptome analysis revealed 332 differentially expressed genes (DEGs) enriched in ROS homeostasis, plant hormone signal transduction, and the mitogen-activated protein kinase (MAPK) cascade. These DEGs exhibited synergistic and antagonistic interactions, forming a complex LT tolerance network in maize. Additionally, weighted gene co-expression network analysis (WGCNA) revealed that 109 hub genes involved in LT stress regulation pathways were discovered from the four modules with the highest correlation with target traits. In conclusion, our findings provide new insights into the molecular mechanisms of exogenous BRs in enhancing LT tolerance of maize at the seedling stage, thus opening up possibilities for a breeding program of maize tolerance to LT stress.
Collapse
Affiliation(s)
- Xiaoqiang Zhao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Fuqiang He
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Guoxiang Qi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Siqi Sun
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhenzhen Shi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yining Niu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Zefeng Wu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
3
|
Ma L, Tao X, Wang W, Jiao J, Pu Y, Yang G, Liu L, Fang Y, Wu J, Sun W. Genome-wide identification of RNA recognition motif (RRM1) in Brassica rapa and functional analysis of RNA-binding protein (BrRBP) under low-temperature stress. BMC PLANT BIOLOGY 2023; 23:621. [PMID: 38057714 DOI: 10.1186/s12870-023-04639-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND The RNA recognition motif (RRM) is primarily engaged in the processing of mRNA and rRNA following gene transcription as well as the regulation of RNA transport; it is critical in preserving RNA stability. RESULTS In this study, we identified 102 members of the RRM1 gene family in Brassica rapa, which were dispersed across 10 chromosomes with the ninth chromosome being the most extensively distributed. The RRM1 gene family members of Brassica rapa and Arabidopsis thaliana were grouped into 14 subclades (I-XIV) using phylogenetic analysis. Moreover, the results of transcriptome analysis and RT-qPCR indicated that the expression of Brapa05T000840 was upregulated in the cultivars 'Longyou 7' and 'Longyou 99' following exposure to cold stress at a temperature of 4 °C for 24 h. The levels of expression in the leaves and growth cones of the 'Longyou 7' variety were found to be significantly higher than those observed in the 'Longyou 99' variety under conditions of low temperature and NaCl stress. It illustrates the involvement of the RRM1 gene in the physiological response to both low temperature and salt stress. In addition, it was observed that the survival rate of transgenic BrRBP (Brapa05T000840) Arabidopsis thaliana plants was notably higher compared to that of wild-type plants when subjected to varying durations of low temperature treatment. Furthermore, the expression of the BrRBP gene in transgenic plants exhibited an upward trend as the duration of low temperature treatment increased, reaching its peak at 24 h. The in-vivo enzymatic activity of reactive oxygen species-scavenging enzymes were found to be significantly elevated in comparison to wild-type plants, suggesting that the BrRBP gene may enhance the cold tolerance of Arabidopsis thaliana. CONCLUSIONS This study offers a significant foundation for comprehending the regulation mechanism of the RRM1 gene family in winter Brassica rapa subjected to cold stress, as well as for finding key genes associated with cold resistance.
Collapse
Affiliation(s)
- Li Ma
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiaolei Tao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wangtian Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jintang Jiao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuanyuan Pu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Gang Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lijun Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yan Fang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Junyan Wu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Wancang Sun
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
4
|
Hao S, Zhang L, Zhao D, Zhou J, Ye C, Qu H, Li QQ. Inhibitor AN3661 reveals biological functions of Arabidopsis CLEAVAGE and POLYADENYLATION SPECIFICITY FACTOR 73. PLANT PHYSIOLOGY 2023; 193:537-554. [PMID: 37335917 DOI: 10.1093/plphys/kiad352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/09/2023] [Accepted: 05/21/2023] [Indexed: 06/21/2023]
Abstract
Cleavage and polyadenylation specificity factor (CPSF) is a protein complex that plays an essential biochemical role in mRNA 3'-end formation, including poly(A) signal recognition and cleavage at the poly(A) site. However, its biological functions at the organismal level are mostly unknown in multicellular eukaryotes. The study of plant CPSF73 has been hampered by the lethality of Arabidopsis (Arabidopsis thaliana) homozygous mutants of AtCPSF73-I and AtCPSF73-II. Here, we used poly(A) tag sequencing to investigate the roles of AtCPSF73-I and AtCPSF73-II in Arabidopsis treated with AN3661, an antimalarial drug with specificity for parasite CPSF73 that is homologous to plant CPSF73. Direct seed germination on an AN3661-containing medium was lethal; however, 7-d-old seedlings treated with AN3661 survived. AN3661 targeted AtCPSF73-I and AtCPSF73-II, inhibiting growth through coordinating gene expression and poly(A) site choice. Functional enrichment analysis revealed that the accumulation of ethylene and auxin jointly inhibited primary root growth. AN3661 affected poly(A) signal recognition, resulted in lower U-rich signal usage, caused transcriptional readthrough, and increased the distal poly(A) site usage. Many microRNA targets were found in the 3' untranslated region lengthened transcripts; these miRNAs may indirectly regulate the expression of these targets. Overall, this work demonstrates that AtCPSF73 plays important part in co-transcriptional regulation, affecting growth, and development in Arabidopsis.
Collapse
Affiliation(s)
- Saiqi Hao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Lidan Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Danhui Zhao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiawen Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Congting Ye
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Haidong Qu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
- Biomedical Sciences, College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|