1
|
Farbu BH, Lydersen S, Mohus RM, Ueland T, Mollnes TE, Klepstad P, Langeland H. The detrimental effects of intestinal injury mediated by inflammation are limited in cardiac arrest patients: A prospective cohort study. Resusc Plus 2024; 18:100639. [PMID: 38666252 PMCID: PMC11043872 DOI: 10.1016/j.resplu.2024.100639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Background Ischaemic intestines could be a driver of critical illness through an inflammatory response. We have previously published reports on a biomarker for intestinal injury, plasma Intestinal Fatty Acid Binding Protein (IFABP), and inflammatory biomarkers after out-of-hospital cardiac arrest (OHCA). In this post-hoc study we explored the potential indirect effects of intestinal injury mediated through the inflammatory response on organ dysfunction and mortality. Methods We measured IFABP and twenty-one inflammatory biomarkers in 50 patients at admission to intensive care unit after OHCA. First, we stratified patients on median IFABP and compared biomarkers between "low" and "high" IFABP. Second, by causal mediation analysis, we assessed effects of IFABP through the two most important inflammatory biomarkers, interleukin (IL)-6 and terminal complement complex (TCC), on day two circulatory variables, Sequential Organ Failure Assessment (SOFA)-score, and 30-day mortality. Results Cytokines and complement activation were higher in the high IFABP group. In mediation analysis, patients on the 75th percentile of IFABP, compared to the 25th percentile, had 53% (95% CI, 33-74; p < 0.001) higher risk of dying, where 13 (95% CI, 3-23; p = 0.01) percentage points were mediated through an indirect effect of IL-6. Similarly, the indirect effect of IFABP through IL-6 on SOFA-score was significant, but smaller than potential other effects. Effects through IL-6 on circulatory variables, and all effects through TCC, were not statistically significant and/or small. Conclusion Effects of intestinal injury mediated through inflammation on organ dysfunction and mortality were limited. Small, but significant, effects through IL-6 were noted.Trial registration: ClinicalTrials.gov: NCT02648061.
Collapse
Affiliation(s)
- Bjørn Hoftun Farbu
- Department of Anaesthesiology and Intensive Care Medicine, St. Olav's University Hospital Trondheim, Norway
- Institute of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Norwegian Air Ambulance Foundation, Department of Research and Development, Oslo, Norway
| | - Stian Lydersen
- Regional Centre for Child and Youth Mental Health and Child Welfare, Department of Mental Health, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Randi Marie Mohus
- Department of Anaesthesiology and Intensive Care Medicine, St. Olav's University Hospital Trondheim, Norway
- Institute of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thor Ueland
- Thrombosis Research Center (TREC), Division of Internal Medicine, University hospital of North Norway, Tromsø, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
| | - Pål Klepstad
- Department of Anaesthesiology and Intensive Care Medicine, St. Olav's University Hospital Trondheim, Norway
- Institute of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Halvor Langeland
- Department of Anaesthesiology and Intensive Care Medicine, St. Olav's University Hospital Trondheim, Norway
- Institute of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
2
|
Lundin A, Annborn M, Borgquist O, Düring J, Undén J, Rylander C. Veno-arterial CO 2 difference and lactate for prediction of early mortality after cardiac arrest. Acta Anaesthesiol Scand 2023; 67:655-662. [PMID: 36867177 DOI: 10.1111/aas.14224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 03/04/2023]
Abstract
Patients admitted to intensive care after cardiac arrest are at risk of circulatory shock and early mortality due to cardiovascular failure. The aim of this study was to evaluate the ability of the veno-arterial pCO2 difference (∆pCO2 ; central venous CO2 - arterial CO2 ) and lactate to predict early mortality in postcardiac arrest patients. This was a pre-planned prospective observational sub-study of the target temperature management 2 trial. The sub-study patients were included at five Swedish sites. Repeated measurements of ∆pCO2 and lactate were conducted at 4, 8, 12, 16, 24, 48, and 72 h after randomization. We assessed the association between each marker and 96-h mortality and their prognostic value for 96-h mortality. One hundred sixty-three patients were included in the analysis. Mortality at 96 h was 17%. During the initial 24 h, there was no difference in ∆pCO2 levels between 96-h survivors and non-survivors. ∆pCO2 measured at 4 h was associated with an increased risk of death within 96 h (adjusted odds ratio: 1.15; 95% confidence interval [CI]: 1.02-1.29; p = .018). Lactate levels were associated with poor outcome over multiple measurements. The area under the receiving operating curve to predict death within 96 h was 0.59 (95% CI: 0.48-0.74) and 0.82 (95% CI: 0.72-0.92) for ∆pCO2 and lactate, respectively. Our results do not support the use of ∆pCO2 to identify patients with early mortality in the postresuscitation phase. In contrast, non-survivors demonstrated higher lactate levels in the initial phase and lactate identified patients with early mortality with moderate accuracy.
Collapse
Affiliation(s)
- Andreas Lundin
- Department of Anaesthesiology and Intensive Care Medicine, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martin Annborn
- Anesthesia & Intensive Care, Department of Clinical Sciences Lund, Lund University, Helsingborg Hospital, Helsingborg, Sweden
| | - Ola Borgquist
- Anaesthesia & Intensive Care, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.,Department of Cardiothoracic Surgery, Anaesthesia and Intensive Care, Skane University Hospital, Lund, Sweden
| | - Joachim Düring
- Anaesthesia and Intensive Care, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Malmö, Sweden
| | - Johan Undén
- Operation and Intensive Care, Department of Clinical Sciences Lund, Lund University, Hallands Hospital, Halmstad, Sweden
| | - Christian Rylander
- Anaesthesia and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Hoftun Farbu B, Langeland H, Ueland T, Michelsen AE, Jørstad Krüger A, Klepstad P, Nordseth T. Intestinal injury in cardiac arrest is associated with multiple organ dysfunction: A prospective cohort study. Resuscitation 2023; 185:109748. [PMID: 36842675 DOI: 10.1016/j.resuscitation.2023.109748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/20/2023] [Indexed: 02/28/2023]
Abstract
BACKGROUND The impact of intestinal injury in cardiac arrest is not established. The first aim of this study was to assess associations between clinical characteristics in out-of-hospital cardiac arrest (OHCA) and a biomarker for intestinal injury, Intestinal Fatty Acid Binding Protein (IFABP). The second aim was to assess associations between IFABP and multiple organ dysfunction and 30-day mortality. METHODS We measured plasma IFABP in 50 patients at admission to intensive care unit (ICU) after OHCA. Demographic and clinical variables were analysed by stratifying patients on median IFABP, and by linear regression. We compared Sequential Organ Failure Assessment (SOFA) score, haemodynamic variables, and clinical-chemistry tests at day two between the "high" and "low" IFABP groups. Logistic regression was applied to assess factors associated with 30-day mortality. RESULTS Several markers of whole body ischaemia correlated with intestinal injury. Duration of arrest and lactate serum concentrations contributed to elevated IFABP in a multivariable model (p < 0.01 and p = 0.04, respectively). At day two, all seven patients who had died were in the "high" IFABP group, and all six patients who had been transferred to ward were in the "low" group. Of patients still treated in the ICU, the "high" group had higher total, renal and respiratory SOFA score (p < 0.01) and included all patients receiving inotropic drugs. IFABP predicted mortality (OR 16.9 per standard deviation increase, p = 0.04). CONCLUSION Cardiac arrest duration and lactate serum concentrations were risk factors for intestinal injury. High levels of IFABP at admission were associated with multiple organ dysfunction and mortality. TRIAL REGISTRATION ClinicalTrials.gov: NCT02648061.
Collapse
Affiliation(s)
- Bjørn Hoftun Farbu
- Department of Anaesthesiology and Intensive Care Medicine, St. Olav's University Hospital, Trondheim, Norway; Institute of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Norwegian Air Ambulance Foundation, Department of Research and Development, Oslo, Norway.
| | - Halvor Langeland
- Department of Anaesthesiology and Intensive Care Medicine, St. Olav's University Hospital, Trondheim, Norway; Institute of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thor Ueland
- K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | - Annika E Michelsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | - Andreas Jørstad Krüger
- Institute of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Norwegian Air Ambulance Foundation, Department of Research and Development, Oslo, Norway; Department of Emergency Medicine and Pre-Hospital Services, St. Olav's University Hospital, Trondheim, Norway
| | - Pål Klepstad
- Department of Anaesthesiology and Intensive Care Medicine, St. Olav's University Hospital, Trondheim, Norway; Institute of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Trond Nordseth
- Department of Anaesthesiology and Intensive Care Medicine, St. Olav's University Hospital, Trondheim, Norway; Institute of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
4
|
Petit M, Lascarrou JB, Colin G, Merdji H, Cariou A, Geri G. Hemodynamics and vasopressor support during targeted temperature management after cardiac arrest with non-shockable rhythm: A post hoc analysis of a randomized controlled trial. Resusc Plus 2022; 11:100271. [PMID: 35860752 PMCID: PMC9289859 DOI: 10.1016/j.resplu.2022.100271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022] Open
Abstract
Background Patients admitted after cardiac arrest with non-shockable rhythm frequently experience hemodynamic instability. This study assessed the hemodynamic consequences of TTM in this sub population. Methods This is a post hoc analysis of the HYPERION trial (NCT01994772), that randomized patients to either hypothermia or normothermia after non-shockable rhythm related cardiac arrest. Patients with no, moderate or severe circulatory failure were identified with cardiovascular Sequential Organ Failure Assessment at randomization. Primary outcome was the number of patients at day 7 with resolution of shock, accounting for the risk of death (competing risk analysis). Secondary endpoint included neurological outcome and death at day-90. Results 584 patients were included in the analysis: 195 (34%), 46 (8%) and 340 (59%) had no, moderate and severe circulatory failure, respectively. Resolution of circulatory failure at day 7 was more frequently observed in the normothermia group than in the TTM group (60% [95 %CI 54-66] versus 53% [95 %CI 46-60], Gray-test: p = 0.016). The severity of circulatory failure at randomization was associated with its less frequent resolution at day 7 accounting for the risk of death (76 % [62-86] versus 54% [49-59] for patients with moderate versus severe circulatory failure, Gray test, p < 0.001, respectively). At day 90, the proportion of patients with Cerebral Performance Category score of 1 or 2 was lower in patients presenting severe circulatory failure (p = 0.038). Conclusion Circulatory failure is frequent after CA with non-shockable rhythm. Its severity at admission and TTM were associated with delayed resolution of circulatory failure.
Collapse
Affiliation(s)
- Matthieu Petit
- Medical Intensive Care Unit, Ambroise Paré Hospital, APHP, Boulogne-Billancourt, France
- Paris-Saclay University, UVSQ, Inserm, CESP, 94807 Villejuif, France
| | - Jean-Baptiste Lascarrou
- Médecine Intensive Réanimation, University Hospital Center, Nantes, France
- Paris Cardiovascular Research Center, INSERM U970, Paris, France
- AfterROSC Network, France
| | - Gwenhael Colin
- Medical-Surgical Intensive Care Unit, District Hospital Center, La Roche-sur-Yon, France
| | - Hamid Merdji
- Université de Strasbourg (UNISTRA), Faculté de Médecine, Hôpitaux universitaires de Strasbourg, Nouvel Hôpital Civil, Service de Médecine Intensive Réanimation, Strasbourg, France
- UMR 1260, Regenerative Nano Medecine, INSERM, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Alain Cariou
- Paris Cardiovascular Research Center, INSERM U970, Paris, France
- AfterROSC Network, France
- Medical Intensive Care Unit, Cochin University Hospital Center, Paris, France
| | - Guillaume Geri
- Medical and Surgical Intensive Care Unit, Ambroise Paré Clinic, Neuilly-sur-Seine, France
| | - HYPERION investigators1
- Medical Intensive Care Unit, Ambroise Paré Hospital, APHP, Boulogne-Billancourt, France
- Paris-Saclay University, UVSQ, Inserm, CESP, 94807 Villejuif, France
- Médecine Intensive Réanimation, University Hospital Center, Nantes, France
- Paris Cardiovascular Research Center, INSERM U970, Paris, France
- AfterROSC Network, France
- Medical-Surgical Intensive Care Unit, District Hospital Center, La Roche-sur-Yon, France
- Université de Strasbourg (UNISTRA), Faculté de Médecine, Hôpitaux universitaires de Strasbourg, Nouvel Hôpital Civil, Service de Médecine Intensive Réanimation, Strasbourg, France
- UMR 1260, Regenerative Nano Medecine, INSERM, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Medical Intensive Care Unit, Cochin University Hospital Center, Paris, France
- Medical and Surgical Intensive Care Unit, Ambroise Paré Clinic, Neuilly-sur-Seine, France
| |
Collapse
|
5
|
Eggen IB, Brønstad G, Langeland H, Klepstad P, Nordseth T. Short-term effects of endotracheal suctioning in post-cardiac arrest patients: A prospective observational cohort study. Resusc Plus 2022; 10:100221. [PMID: 35330756 PMCID: PMC8938328 DOI: 10.1016/j.resplu.2022.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 11/26/2022] Open
Abstract
Background Endotracheal suctioning (ETS) is required in critically ill patients but may lead to adverse physiologic effects. The aim of this study was to investigate risk factors associated with adverse respiratory and circulatory effects of ETS, in post-cardiac arrest patients receiving controlled ventilation. Methods Patients with return of spontaneous circulation after out-of-hospital cardiac arrest were followed the first five days in the intensive care unit (ICU). For each ETS procedure performed, data were extracted from the electronic ICU records 10 min before and until 30 min after the procedure. Adverse events were defined as heart rate > 120 beats/min, systolic blood pressure > 200 or < 80 mmHg or SpO2 < 85%. Multivariate logistic regression was applied with SpO2 < 85% and systolic blood pressure < 80 mmHg as primary outcomes. Results For the 36 patients included in the study, the median number of ETS-procedures per patient was 13 (range 1–33). Oxygen desaturation occurred in 10.3% of procedures and severe hypotension in 6.6% of procedures. In the multivariate analysis, dose of noradrenaline, light sedation and oxygen desaturation prior to suctioning were associated with increased risk of oxygen desaturation. Doses of noradrenaline, suction with manual ventilation, suction in combination with patient repositioning, and first day of treatment in the ICU were significantly associated with severe hypotension. Conclusions The risk of circulatory and respiratory deterioration during ETS in post-cardiac arrest patients is increased the first day of ICU care, and related to sedation, dose of noradrenaline and pre-procedure hypoxemia.
Collapse
|
6
|
Langeland H, Bergum D, Løberg M, Bjørnstad K, Skaug TR, Nordseth T, Klepstad P, Skjærvold NK. Characteristics of circulatory failure after out-of-hospital cardiac arrest: a prospective cohort study. Open Heart 2022; 9:openhrt-2021-001890. [PMID: 35046124 PMCID: PMC8772457 DOI: 10.1136/openhrt-2021-001890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/31/2021] [Indexed: 12/02/2022] Open
Abstract
Background Circulatory failure after out-of-hospital cardiac arrest (OHCA) as part of the postcardiac arrest syndrome (PCAS) is believed to be caused by an initial myocardial depression that later subsides into a superimposed vasodilatation. However, the relative contribution of myocardial dysfunction and systemic inflammation has not been established. Our objective was to describe the macrocirculatory and microcirculatory failure in PCAS in more detail. Methods We included 42 comatose patients after OHCA where circulatory variables were invasively monitored from admission until day 5. We measured the development in cardiac power output (CPO), stroke work (SW), aortic elastance, microcirculatory metabolism, inflammatory and cardiac biomarkers and need for vasoactive medications. We used survival analysis and Cox regression to assess time to norepinephrine discontinuation and negative fluid balance, stratified by inflammatory and cardiac biomarkers. Results CPO, SW and oxygen delivery increased during the first 48 hours. Although the estimated afterload fell, the blood pressure was kept above 65 mmHg with a diminishing need for norepinephrine, indicating a gradually re-established macrocirculatory homoeostasis. Time to norepinephrine discontinuation was longer for patients with higher pro-brain natriuretic peptide concentration (HR 0.45, 95% CI 0.21 to 0.96), while inflammatory biomarkers and other cardiac biomarkers did not predict the duration of vasoactive pressure support. Markers of microcirculatory distress, such as lactate and venous-to-arterial carbon dioxide difference, were normalised within 24 hours. Conclusion The circulatory failure was initially characterised by reduced CPO and SW, however, microcirculatory and macrocirculatory homoeostasis was restored within 48 hours. We found that biomarkers indicating acute heart failure, and not inflammation, predicted longer circulatory support with norepinephrine. Taken together, this indicates an early and resolving, rather than a late and emerging vasodilatation. Trial registration NCT02648061.
Collapse
Affiliation(s)
- Halvor Langeland
- Department of Anesthesiology and Intensive Care Medicine, St. Olav's University Hospital, Trondheim, Norway .,Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Daniel Bergum
- Department of Anesthesiology and Intensive Care Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Magnus Løberg
- Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway.,Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Knut Bjørnstad
- Department of Cardiology, St. Olav's University Hospital, Trondheim, Norway
| | - Thomas R Skaug
- Department of Cardiology, St. Olav's University Hospital, Trondheim, Norway
| | - Trond Nordseth
- Department of Anesthesiology and Intensive Care Medicine, St. Olav's University Hospital, Trondheim, Norway.,Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Pål Klepstad
- Department of Anesthesiology and Intensive Care Medicine, St. Olav's University Hospital, Trondheim, Norway.,Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Nils Kristian Skjærvold
- Department of Anesthesiology and Intensive Care Medicine, St. Olav's University Hospital, Trondheim, Norway.,Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
7
|
Langeland H, Damås JK, Mollnes TE, Ludviksen JK, Ueland T, Michelsen AE, Løberg M, Bergum D, Nordseth T, Skjærvold NK, Klepstad P. The inflammatory response is related to circulatory failure after out-of-hospital cardiac arrest: A prospective cohort study. Resuscitation 2021; 170:115-125. [PMID: 34838662 DOI: 10.1016/j.resuscitation.2021.11.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/31/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Whole body ischemia and reperfusion injury after cardiac arrest leads to the massive inflammation clinically manifested in the post-cardiac arrest syndrome. Previous studies on the inflammatory effect on circulatory failure after cardiac arrest have either investigated a selected patient group or a limited part of the inflammatory mechanisms. We examined the association between cardiac arrest characteristics and inflammatory biomarkers, and between inflammatory biomarkers and circulatory failure after cardiac arrest, in an unselected patient cohort. METHODS This was a prospective study of 50 consecutive patients with out-of-hospital cardiac arrest. Circulation was invasively monitored from admission until day five, whereas inflammatory biomarkers, i.e. complement activation, cytokines and endothelial injury, were measured daily. We identified predictors for an increased inflammatory response, and associations between the inflammatory response and circulatory failure. RESULTS We found a marked and broad inflammatory response in patients after cardiac arrest, which was associated with clinical outcome. Long time to return of spontaneous circulation and high lactate level at admission were associated with increased complement activation (TCC and C3bc), pro-inflammatory cytokines (IL-6, IL-8) and endothelial injury (syndecan-1) at admission. These biomarkers were in turn significantly associated with lower mean arterial blood pressure, lower cardiac output and lower systemic vascular resistance, and increased need of circulatory support in the initial phase. High levels of TCC and IL-6 at admission were significantly associated with increased 30-days mortality. CONCLUSION Inflammatory biomarkers, including complement activation, cytokines and endothelial injury, were associated with increased circulatory failure in the initial period after cardiac arrest.
Collapse
Affiliation(s)
- Halvor Langeland
- Department of Anaesthesiology and Intensive Care Medicine, St. Olav's University Hospital, Trondheim, Norway; Institute of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Jan Kristian Damås
- Gemini Center for Sepsis Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Centre of Molecular Inflammation Research, Institute for Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Infectious Diseases, St. Olav's University Hospital, Trondheim, Norway
| | - Tom Eirik Mollnes
- Centre of Molecular Inflammation Research, Institute for Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway; Research Laboratory, Nordland Hospital, Bodø, Norway; K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| | | | - Thor Ueland
- K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | - Annika E Michelsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | - Magnus Løberg
- Clinical Effectiveness Research Group, Institute of Health and Society, University of Oslo, Oslo, Norway; Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Daniel Bergum
- Department of Anaesthesiology and Intensive Care Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Trond Nordseth
- Department of Anaesthesiology and Intensive Care Medicine, St. Olav's University Hospital, Trondheim, Norway; Institute of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Anaesthesia, Molde Hospital, Molde, Norway
| | - Nils Kristian Skjærvold
- Department of Anaesthesiology and Intensive Care Medicine, St. Olav's University Hospital, Trondheim, Norway; Institute of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Pål Klepstad
- Department of Anaesthesiology and Intensive Care Medicine, St. Olav's University Hospital, Trondheim, Norway; Institute of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|