1
|
Dai Y, Xu R, Yang K, Jiang T, Wei Y, Liu Y, Chen W, Fu Y, Zhao Y. Effect of tissue factor pathway inhibitor on the pyroptosis of vascular smooth muscle cells induced by angiotensin II. Cardiovasc Diagn Ther 2024; 14:72-83. [PMID: 38434568 PMCID: PMC10904294 DOI: 10.21037/cdt-23-355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/08/2023] [Indexed: 03/05/2024]
Abstract
Background In recent years, a mass of studies have shown that pyroptosis plays an important role in the proliferation of vascular smooth muscle cells (VSMCs). We investigated whether angiotensin II (Ang II) induces the pyroptosis of rat aortic VSMCs and the role of NOD-like receptor family pyrin domain containing 3 (NLRP3) in this process. Additionally, we explored the effect and related mechanism of recombinant tissue factor pathway inhibitor (rTFPI) in Ang II-induced VSMC pyroptosis. Methods Cultured VSMCs were divided into five groups: control group, Ang II group (1×10-5 mol/L), MCC950 group (NLRP3 inhibitor, 15 nmol/L), Ang II + MCC950 group and Ang II + rTFPI (50 µg/L) group. Cell viability was measured by cell counting kit-8 (CCK8) assays and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays. Propidium iodide (PI) staining and immunofluorescence were performed to determine the pyroptosis of VSMCs. Changes in VSMC ultrastructure were evaluated through transmission electron microscopy. The expression levels of NLRP3, pro-caspase-1, gasdermin D-N (GSDMD-N), and interleukin-1β (IL-1β) were determined by western blot analysis. Results The cell viability, the positive rate of PI staining, and the expression level of GSDMD detected by immunofluorescence in the Ang II group were higher than that in the control group, whereas they all decreased in Ang II + MCC950 group and Ang II + rTFPI group compared with Ang II group (P<0.05). Electron microscopy analysis revealed less extracellular matrix, increased myofilaments, and decreased endoplasmic reticulum, Golgi complex, and mitochondria in Ang II + rTFPI-treated VSMCs than in Ang II-treated VSMCs. The protein expression levels of the pyroptosis-related molecules NLRP3, pro-caspase-1, GSDMD-N, and IL-1β in Ang II group showed an increasing trend compared with those in control group (P<0.05); however, these expression levels in Ang II + MCC950 and Ang II + rTFPI groups were significantly lower than those in Ang II group (P<0.05). Conclusions Ang II may induce pyroptosis in VSMCs by activating NLRP3. rTFPI can inhibit Ang II-induced VSMC pyroptosis. Furthermore, rTFPI might exert this effect by inhibiting the NLRP3 pathway and therefore play an important role in the treatment of vascular remodeling induced by hypertension.
Collapse
Affiliation(s)
- Yue Dai
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Xu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kelaier Yang
- Department of Endocrinology, Shenzhen University General Hospital, Shenzhen, China
| | - Tingting Jiang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongkang Wei
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Liu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenjia Chen
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Fu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yong Zhao
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
Wang L, Zhang Z, Liu D, Yuan K, Zhu G, Qi X. Association of -344C/T polymorphism in the aldosterone synthase (CYP11B2) gene with cardiac and cerebrovascular events in Chinese patients with hypertension. J Int Med Res 2020; 48:300060520949409. [PMID: 32938270 PMCID: PMC7503017 DOI: 10.1177/0300060520949409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Objective Several recent studies have shown that the aldosterone synthase gene (CYP11B2) −344C/T polymorphism is related to cardiovascular diseases. However, whether the −344C allele influences the incidence of cardiovascular diseases in Chinese patients with hypertension is unclear. Methods Chinese patients with essential hypertension were genotyped for the −344C/T polymorphism in CYP11B2 (n = 755; CC, n = 112; CT, n = 361; TT, n = 282) and followed for 11 years for major adverse cardiovascular events (MACEs), including stroke, onset of coronary artery disease (CAD), and CAD-related death. Established cardiovascular risk factors were used to adjust the multivariate Cox analysis. Results After a mean follow-up period of 7.60 ± 1.12 years, a significantly higher incidence of MACEs was seen in patients with the CC genotype than in those with the CT and TT genotypes. The CC variant was significantly and independently predictive of MACEs (hazard ratio = 2.049), CAD (hazard ratio = 1.754), and stroke (hazard ratio = 2.588), but not CAD-related stroke or death. Conclusion The CYP11B2 −344 CC genotype is a risk factor for CAD and stroke, independent of other established cardiovascular risk factors in Chinese patients with hypertension.
Collapse
Affiliation(s)
- Lili Wang
- School of Graduate, Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China.,Department of Cardiology Center, Hebei General Hospital, Shijiazhuang, Hebei Province, People's Republic of China
| | - Zhi Zhang
- Department of Cardiology Center, Hebei General Hospital, Shijiazhuang, Hebei Province, People's Republic of China
| | - Dongxia Liu
- Department of Cardiology Center, Hebei General Hospital, Shijiazhuang, Hebei Province, People's Republic of China
| | - Kexin Yuan
- Department of Cardiology Center, Hebei General Hospital, Shijiazhuang, Hebei Province, People's Republic of China
| | - Guohua Zhu
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiaoyong Qi
- School of Graduate, Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China.,Department of Cardiology Center, Hebei General Hospital, Shijiazhuang, Hebei Province, People's Republic of China
| |
Collapse
|
3
|
Luo C, Pook E, Wang F, Archacki SR, Tang B, Zhang W, Hu JS, Yang J, Leineweber K, Bechem M, Huang W, Song Y, Cheung SH, Laux V, Ke T, Ren X, Tu X, Chen Q, Wang QK, Xu C. ADTRP regulates TFPI expression via transcription factor POU1F1 involved in coronary artery disease. Gene 2020; 753:144805. [PMID: 32445923 DOI: 10.1016/j.gene.2020.144805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022]
Abstract
Genomic variants in both ADTRP and TFPI genes are associated with risk of coronary artery disease (CAD). ADTRP regulates TFPI expression and endothelial cell functions involved in the initiation of atherosclerotic CAD. ADTRP also specifies primitive myelopoiesis and definitive hematopoiesis by upregulating TFPI expression. However, the underlying molecular mechanism is unknown. Here we show that transcription factor POU1F1 is the key by which ADTRP regulates TFPI expression. Luciferase reporter assays, chromatin-immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA) in combination with analysis of large and small deletions of the TFPI promoter/regulatory region were used to identify the molecular mechanism by which ADTRP regulates TFPI expression. Genetic association was assessed using case-control association analysis and phenome-wide association analysis (PhenGWA). ADTRP regulates TFPI expression at the transcription level in a dose-dependent manner. The ADTRP-response element was localized to a 50 bp region between -806 bp and -756 bp upstream of TFPI transcription start site, which contains a binding site for POU1F1. Deletion of POU1F1-binding site or knockdown of POU1F1 expression abolished ADTRP-mediated transcription of TFPI. ChIP and EMSA demonstrated that POU1F1 binds to the ADTRP response element. Genetic analysis identified significant association between POU1F1 variants and risk of CAD. PhenGWA identified other phenotypic traits associated with the ADTRP-POU1F1-TFPI axis such as lymphocyte count (ADTRP), waist circumference (TFPI), and standing height (POU1F1). These data identify POU1F1 as a transcription factor that regulates TFPI transcription in response to ADTRP, and link POU1F1 variants to risk of CAD for the first time.
Collapse
Affiliation(s)
- Chunyan Luo
- The Institute of Infection and Inflammation, Department of Microbiology and Immunology, Medical College, Key Laboratory of Ischemic Cardiovascular and Cerebrovascular Disease Translational Medicine, China Three Gorges University, Yichang, Hubei 443002, PR China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | | | - Fan Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Stephen R Archacki
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Bo Tang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Weiyi Zhang
- Bayer Healthcare Co Ltd, Innovation Center China, Beijing, PR China
| | - Jing-Shan Hu
- Bayer Healthcare Co Ltd, Innovation Center China, Beijing, PR China
| | - Jian Yang
- The Institute of Infection and Inflammation, Department of Microbiology and Immunology, Medical College, Key Laboratory of Ischemic Cardiovascular and Cerebrovascular Disease Translational Medicine, China Three Gorges University, Yichang, Hubei 443002, PR China
| | | | | | - Weifeng Huang
- The Institute of Infection and Inflammation, Department of Microbiology and Immunology, Medical College, Key Laboratory of Ischemic Cardiovascular and Cerebrovascular Disease Translational Medicine, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Yinhong Song
- The Institute of Infection and Inflammation, Department of Microbiology and Immunology, Medical College, Key Laboratory of Ischemic Cardiovascular and Cerebrovascular Disease Translational Medicine, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Shing-Hu Cheung
- Bayer Healthcare Co Ltd, Innovation Center China, Beijing, PR China
| | - Volker Laux
- BayerAG, Drug Discovery, 42096 Wuppertal, Germany
| | - Tie Ke
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xiang Ren
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Qiuyun Chen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44195, USA.
| | - Qing Kenneth Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44195, USA.
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
4
|
Dong W, Chen H, Wang L, Cao X, Bu X, Peng Y, Dong A, Ying M, Chen X, Zhang X, Yao L. Exploring the shared genes of hypertension, diabetes and hyperlipidemia based on microarray. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902020000118333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Wenzhu Dong
- Zhejiang Chinese Medical University, P.R. China; Taizhou Central Hospital, P.R. China
| | | | - Lu Wang
- Zhejiang Chinese Medical University, P.R. China
| | | | - Xiawei Bu
- Zhejiang Chinese Medical University, P.R. China
| | - Yan Peng
- Zhejiang Chinese Medical University, P.R. China
| | | | | | - Xu Chen
- Taizhou Central Hospital, P.R. China
| | - Xin Zhang
- Taizhou Central Hospital, P.R. China
| | - Li Yao
- Zhejiang Chinese Medical University, P.R. China
| |
Collapse
|
5
|
Yuan HQ, Hao YM, Ren Z, Gu HF, Liu FT, Yan BJ, Qu SL, Tang ZH, Liu LS, Chen DX, Jiang ZS. Tissue factor pathway inhibitor in atherosclerosis. Clin Chim Acta 2019; 491:97-102. [PMID: 30695687 DOI: 10.1016/j.cca.2019.01.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 12/13/2022]
Abstract
Tissue factor pathway inhibitor (TFPI) reduces the development of atherosclerosis by regulating tissue factor (TF) mediated coagulation pathway. In this review, we focus on recent findings on the inhibitory effects of TFPI on endothelial cell activation, vascular smooth muscle cell (VSMC) proliferation and migration, inflammatory cell recruitment and extracellular matrix which are associated with the development of atherosclerosis. Meanwhile, we are also concerned about the impact of TFPI levels and genetic polymorphisms on clinical atherogenesis. This article aims to explain the mechanism in inhibiting the development of atherosclerosis and clinical effects of TFPI, and provide new ideas for the clinical researches and mechanism studies of atherothrombosis.
Collapse
Affiliation(s)
- Hou-Qin Yuan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Ya-Meng Hao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Hong-Feng Gu
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Feng-Tao Liu
- Center of Functional Laboratory, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 42100, PR China
| | - Bin-Jie Yan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Zhi-Han Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Lu-Shan Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Da-Xing Chen
- Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China.
| |
Collapse
|