1
|
Hussen BM, Abdullah SR, Rasul MF, Jawhar ZH, Faraj GSH, Kiani A, Taheri M. MiRNA-93: a novel signature in human disorders and drug resistance. Cell Commun Signal 2023; 21:79. [PMID: 37076893 PMCID: PMC10114484 DOI: 10.1186/s12964-023-01106-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/18/2023] [Indexed: 04/21/2023] Open
Abstract
miRNA-93 is a member of the miR-106b-25 family and is encoded by a gene on chromosome 7q22.1. They play a role in the etiology of various diseases, including cancer, Parkinson's disease, hepatic injury, osteoarthritis, acute myocardial infarction, atherosclerosis, rheumatoid arthritis, and chronic kidney disease. Different studies have found that this miRNA has opposing roles in the context of cancer. Recently, miRNA-93 has been downregulated in breast cancer, gastric cancer, colorectal cancer, pancreatic cancer, bladder cancer, cervical cancer, and renal cancer. However, miRNA-93 is up-regulated in a wide variety of malignancies, such as lung, colorectal, glioma, prostate, osteosarcoma, and hepatocellular carcinoma. The aim of the current review is to provide an overview of miRNA-93's function in cancer disorder progression and non-cancer disorders, with a focus on dysregulated signaling pathways. We also give an overview of this miRNA's function as a biomarker of prognosis in cancer and emphasize how it contributes to drug resistance based on in vivo, in vitro, and human studies. Video Abstract.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Zanko Hassan Jawhar
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, Iraq
| | - Arda Kiani
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Chen J, Liu Z, Ma L, Gao S, Fu H, Wang C, Lu A, Wang B, Gu X. Targeting Epigenetics and Non-coding RNAs in Myocardial Infarction: From Mechanisms to Therapeutics. Front Genet 2022; 12:780649. [PMID: 34987550 PMCID: PMC8721121 DOI: 10.3389/fgene.2021.780649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Myocardial infarction (MI) is a complicated pathology triggered by numerous environmental and genetic factors. Understanding the effect of epigenetic regulation mechanisms on the cardiovascular disease would advance the field and promote prophylactic methods targeting epigenetic mechanisms. Genetic screening guides individualised MI therapies and surveillance. The present review reported the latest development on the epigenetic regulation of MI in terms of DNA methylation, histone modifications, and microRNA-dependent MI mechanisms and the novel therapies based on epigenetics.
Collapse
Affiliation(s)
- Jinhong Chen
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Zhichao Liu
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Li Ma
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Shengwei Gao
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Huanjie Fu
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Can Wang
- Acupuncture Department, The First Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| | - Anmin Lu
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Baohe Wang
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| | - Xufang Gu
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| |
Collapse
|
3
|
Xiao SH, Wang Y, Cao X, Su Z. Long non-coding RNA LUCAT1 inhibits myocardial oxidative stress and apoptosis after myocardial infarction via targeting microRNA-181a-5p. Bioengineered 2021; 12:4546-4555. [PMID: 34414854 PMCID: PMC8806849 DOI: 10.1080/21655979.2021.1966351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
This study hoped to explore the effects and mechanism of long non-coding RNA (lncRNA) LUCAT1 regulating microRNA-181a-5p (miR-181a-5p) on oxidative stress and apoptosis of cardiomyocytes induced by H2O2. Totally, 72 patients with acute myocardial infarction (AMI) were included. H9c2 cardiomyocytes were cultured in vitro, and the H2O2 model of cardiomyocytes was established. The expression levels of LUCAT1 and miR-181a-5p were detected by qRT-PCR after H2O2 induction. The contents of reactive oxygen species (ROS), superoxide dismutase (SOD), and malondialdehyde (MDA) in cells were detected. The survival rate of the cells was detected by the Cell Counting Kit-8 (CCK-8) method; the apoptosis was detected by flow cytometry. The luciferase reporter experiment and quantitative real-time PCR (qRT-PCR) were used to verify the targeted relationship between LUCAT1 and miR-181a-5p. LUCAT1 was lowly expressed in the AMI patients. After H2O2 induction, the expression of LUCAT1 in H9c2 cells lessened significantly, while the expression of miR-181a-5p elevated significantly (P < 0.001). Transfection of p-LUCAT1 significantly reversed the decreased SOD levels, the increased MDA and ROS content, and the elevated tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) in H2O2-stimulated cells (P < 0.001). Upregulation of LUCAT1 contributed to the mitigation of H2O2 injury by promoting viable cells and repressing apoptotic cells (P < 0.01). LUCAT1 targeted miR-181a-5p and negatively regulated miR-181a-5p expression (P < 0.001). Collectively, LUCAT1 played a protective role on oxidative stress injury, inflammation, viability, and apoptosis of cardiomyocytes induced by H2O2 via regulating miR-181a-5p.
Collapse
Affiliation(s)
- Shi-Hui Xiao
- Department of Internal Medicine-Cardiovascular, Ganzhou People's Hospital, Ganzhou, Jiangxi Province, China.,Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| | - Ying Wang
- Department of Cardiology, Affiliated Hospital of Gansu Medical College, Pingliang, Gansu Province, China
| | - Xuecai Cao
- Department of Obstetrics, Yidu Central Hospital of Weifang, Weifang, Shandong Province, China
| | - Zhe Su
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
4
|
Di Fiore R, Suleiman S, Drago-Ferrante R, Felix A, O’Toole SA, O’Leary JJ, Ward MP, Beirne J, Yordanov A, Vasileva-Slaveva M, Subbannayya Y, Pentimalli F, Giordano A, Calleja-Agius J. LncRNA MORT (ZNF667-AS1) in Cancer-Is There a Possible Role in Gynecological Malignancies? Int J Mol Sci 2021; 22:ijms22157829. [PMID: 34360598 PMCID: PMC8346052 DOI: 10.3390/ijms22157829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/09/2021] [Accepted: 07/17/2021] [Indexed: 01/21/2023] Open
Abstract
Gynecological cancers (GCs) are currently among the major threats to female health. Moreover, there are different histologic subtypes of these cancers, which are defined as ‘rare’ due to an annual incidence of <6 per 100,000 women. The majority of these tend to be associated with a poor prognosis. Long non-coding RNAs (lncRNAs) play a critical role in the normal development of organisms as well as in tumorigenesis. LncRNAs can be classified into tumor suppressor genes or oncogenes, depending on their function within the cellular context and the signaling pathways in which they are involved. These regulatory RNAs are potential therapeutic targets for cancer due to their tissue and tumor specificity. However, there still needs to be a deeper understanding of the mechanisms by which lncRNAs are involved in the regulation of numerous biological functions in humans, both in normal health and disease. The lncRNA Mortal Obligate RNA Transcript (MORT; alias ZNF667-AS1) has been identified as a tumor-related lncRNA. ZNF667-AS1 gene, located in the human chromosome region 19q13.43, has been shown to be silenced by DNA hypermethylation in several cancers. In this review, we report on the biological functions of ZNF667-AS1 from recent studies and describe the regulatory functions of ZNF667-AS1 in human disease, including cancer. Furthermore, we discuss the emerging insights into the potential role of ZNF667-AS1 as a biomarker and novel therapeutic target in cancer, including GCs (ovarian, cervical, and endometrial cancers).
Collapse
Affiliation(s)
- Riccardo Di Fiore
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Correspondence: (R.D.F.); (J.C.-A.)
| | - Sherif Suleiman
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| | | | - Ana Felix
- Department of Pathology, Instituto Portugues de Oncologia de Lisboa, NOVA Medical School, University NOVA of Lisbon, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal;
| | - Sharon A. O’Toole
- Departments of Obstetrics and Gynaecology, Trinity St James’s Cancer Institute, Trinity College Dublin, D08 HD53 Dublin, Ireland;
| | - John J. O’Leary
- Department of Histopathology, Trinity St James’s Cancer Institute, Emer Casey Molecular Pathology Laboratory, Trinity College Dublin and Coombe Women’s and Infants University Hospital, D08 RX0X Dublin, Ireland; (J.J.O.); (M.P.W.)
| | - Mark P. Ward
- Department of Histopathology, Trinity St James’s Cancer Institute, Emer Casey Molecular Pathology Laboratory, Trinity College Dublin and Coombe Women’s and Infants University Hospital, D08 RX0X Dublin, Ireland; (J.J.O.); (M.P.W.)
| | - James Beirne
- Department of Gynaecological Oncology, Trinity St James’s Cancer Institute, St James Hospital, Trinity College Dublin, D08 X4RX Dublin, Ireland;
| | - Angel Yordanov
- Department of Gynecologic Oncology, Medical University Pleven, 5800 Pleven, Bulgaria;
| | | | - Yashwanth Subbannayya
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway;
| | - Francesca Pentimalli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy;
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- Correspondence: (R.D.F.); (J.C.-A.)
| |
Collapse
|
5
|
Knockdown of lncRNA Abhd11os attenuates myocardial ischemia/reperfusion injury by inhibiting apoptosis in cardiomyocytes. J Cardiovasc Pharmacol 2021; 79:192-198. [PMID: 34117183 DOI: 10.1097/fjc.0000000000001074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/08/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Long non-coding RNA (lncRNA) is one potential target for the treatment of various disorders. Here, we explored the role of Abhd11os in ischemia/reperfusion-induced myocardial injury, and preliminarily explored the regulatory mechanisms. Relative Abhd11os expression level was examined by qRT-PCR. Western blot was done to measure the expression of apoptotic-related proteins. CCK-8 assay and flow cytometry were performed to detect cell viability and apoptosis, respectively. ELISA assay was used to ensure the levels of LDH, CK, and cTnI in serum. Besides, the infarct sizes were confirmed by TTC and Evans blue staining. Apoptotic rate of cardiomyocytes in myocardial tissues was evaluated by TUNEL assay. Here, increased Abhd11os expression was found in rat myocardial ischemia/reperfusion injury (MIRI) model and hypoxia/reoxygenation (H/R)-treated cardiomyocytes. Subsequently, our data in vitro showed that upregulation of Abhd11os inhibited proliferation of cardiomyocytes, but promoted cell apoptosis. In animal experiments, myocardial infarct size in MIRI rats was reduced by Abhd11os knockdown. Moreover, downregulation of Abhd11os inhibited apoptosis of cardiomyocytes. Overall, our results revealed that knockdown of Abhd11os could notably attenuate H/R-induced myocardial injury through suppressing apoptosis of cardiomyocytes. These data suggest that Abhd11os may be a potential target for MIRI therapy.
Collapse
|
6
|
Wu Y, Wu M, Yang J, Li Y, Peng W, Wu M, Yu C, Fang M. Silencing CircHIPK3 Sponges miR-93-5p to Inhibit the Activation of Rac1/PI3K/AKT Pathway and Improves Myocardial Infarction-Induced Cardiac Dysfunction. Front Cardiovasc Med 2021; 8:645378. [PMID: 33996942 PMCID: PMC8119651 DOI: 10.3389/fcvm.2021.645378] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/12/2021] [Indexed: 01/24/2023] Open
Abstract
The ceRNA network involving circular RNAs (circRNAs) is essential in the cardiovascular system. We investigated the underlying ceRNA network involving circHIPK3 in myocardial infarction (MI). After an MI model was established, cardiac function was verified, and myocardial tissue damage in mice with MI was evaluated. A hypoxia model of cardiomyocytes was used to simulate MI in vivo, and the expression of and targeting relationships among circHIPK3, miR-93-5p, and Rac1 were verified. The apoptosis of cardiomyocyte was identified. Gain- and loss-of-functions were performed to verify the ceRNA mechanism. The MI-modeled mice showed cardiac dysfunction and enlarged infarct size. CircHIPK3 was highly expressed in mouse and cell models of MI. Silencing circHIPK3 reduced infarct size, myocardial collagen deposition, and myocardial apoptosis rate and improved cardiac function. CircHIPK3 sponged miR-93-5p, and miR-93-5p targeted Rac1. Overexpression of miR-93-5p inhibited MI-induced cardiomyocyte injury and eliminated the harmful effect of circHIPK3. CircHIPK3 acted as ceRNA to absorb miR-93-5p, thus promoting the activation of the Rac1/PI3K/AKT pathway. We highlighted that silencing circHIPK3 can upregulate miR-93-5p and then inhibit the activation of Rac1/PI3K/Akt pathway, which can improve MI-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Yijin Wu
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Cardiovascular Institute, Guangzhou, China
| | - Min Wu
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Cardiovascular Institute, Guangzhou, China
| | - Jue Yang
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Cardiovascular Institute, Guangzhou, China
| | - Ying Li
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Cardiovascular Institute, Guangzhou, China
| | - Wenying Peng
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Cardiovascular Institute, Guangzhou, China
| | - Meifen Wu
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Cardiovascular Institute, Guangzhou, China
| | - Changjiang Yu
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Cardiovascular Institute, Guangzhou, China,Changjiang Yu
| | - Miaoxian Fang
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Cardiovascular Institute, Guangzhou, China,*Correspondence: Miaoxian Fang
| |
Collapse
|
7
|
Fu Q, Mo TR, Hu XY, Fu Y, Li J. miR-19a mitigates hypoxia/reoxygenation-induced injury by depressing CCL20 and inactivating MAPK pathway in human embryonic cardiomyocytes. Biotechnol Lett 2020; 43:393-405. [PMID: 33165673 DOI: 10.1007/s10529-020-03045-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/31/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Myocardial infarction (MI) is a prevalent cardiovascular puzzle and a mainspring of disease-induced mortality. We performed this investigation to detect the role of putative important miRNAs or genes in MI. RESULTS CCL20 may be a potential therapeutic target, which was directly targeted and negatively regulated by miR-19a. CCL20 expression was significantly increased in MI tissue samples, but miR-19a was expressed at lower levels in MI. H/R treatment inhibited cell viability and induced an increase of apoptotic rate compared with Sham group. However, miR-19a mimic relieved the H/R-stimulated injury to cardiomyocytes. Protective effect of miR-19a against H/R in cardiomyocytes was reversed by CCL20 enhancement, and MAPK pathway was inactivated during this progression. CONCLUSIONS miR-19a eliminates the H/R-induced injury in cardiomyocytes through directly targeting CCL20 and attenuating the activity of MAPK signaling pathway. These observations highlighted the therapeutic roles of miR-19a and CCL20 for MI treatment.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Chinese Formulae, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin, 150040, Heilongjiang, China
| | - Tao-Ran Mo
- Department of Nephrology, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Xiao-Yang Hu
- Department of Chinese Formulae, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin, 150040, Heilongjiang, China
| | - Yin Fu
- Department of Chinese Formulae, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin, 150040, Heilongjiang, China
| | - Ji Li
- Department of Chinese Formulae, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|