1
|
Fan T, Wang W, Wang Y, Zeng M, Liu Y, Zhu S, Yang L. PDE4 inhibitors: potential protective effects in inflammation and vascular diseases. Front Pharmacol 2024; 15:1407871. [PMID: 38915460 PMCID: PMC11194378 DOI: 10.3389/fphar.2024.1407871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
Phosphodiesterase 4 (PDE4) inhibitors are effective therapeutic agents for various inflammatory diseases. Roflumilast, apremilast, and crisaborole have been developed and approved for the treatment of chronic obstructive pulmonary disease psoriatic arthritis, and atopic dermatitis. Inflammation underlies many vascular diseases, yet the role of PDE4 inhibitors in these diseases remains inadequately explored. This review elucidates the clinical applications and anti-inflammatory mechanisms of PDE4 inhibitors, as well as their potential protective effects on vascular diseases. Additionally, strategies to mitigate the adverse reactions of PDE4 inhibitors are discussed. This article emphasizes the need for further exploration of the therapeutic potential and clinical applications of PDE4 inhibitors in vascular diseases.
Collapse
Affiliation(s)
- Tianfei Fan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjing Wang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Shuyao Zhu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Yang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Zhu J, Chen YH, Ji JJ, Lu CX, Liu ZF. Calcitonin gene-related peptide inhibits neuronal apoptosis in heatstroke rats via PKA/p-CREB pathway. Chin J Traumatol 2024; 27:18-26. [PMID: 37423838 PMCID: PMC10859278 DOI: 10.1016/j.cjtee.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/28/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
PURPOSE The incidence of heatstroke (HS) is not particularly high; however, once it occurs, the consequences are serious. It is reported that calcitonin gene-related peptide (CGRP) is protective against brain injury in HS rats, but detailed molecular mechanisms need to be further investigated. In this study, we further explored whether CGRP inhibited neuronal apoptosis in HS rats via protein kinase A (PKA)/p-cAMP response element-binding protein (p-CREB) pathway. METHODS We established a HS rat model in a pre-warmed artificial climate chamber with a temperature of (35.5 ± 0.5) °C and a relative humidity of 60% ± 5%. Heatstress was stopped once core body temperature reaches above 41 °C. A total of 25 rats were randomly divided into 5 groups with 5 animals each: control group, HS group, HS+CGRP group, HS+CGRP antagonist (CGRP8-37) group, and HS+CGRP+PKA/p-CREB pathway blocker (H89) group. A bolus injection of CGRP was administered to each rat in HS+CGRP group, CGRP8-37 (antagonist of CGRP) in HS+CGRP8-37 group, and CGRP with H89 in HS+CGRP+H89 group. Electroencephalograms were recorded and the serum concentration of S100B, neuron-specific enolase (NSE), neuron apoptosis, activated caspase-3 and CGRP expression, as well as pathological morphology of brain tissue were detected at 2 h, 6 h, and 24 h after HS in vivo. The expression of PKA, p-CREB, and Bcl-2 in rat neurons were also detected at 2 h after HS in vitro. Exogenous CGRP, CGRP8-37, or H89 were used to determine whether CGRP plays a protective role in brain injury via PKA/p-CREB pathway. The unpaired t-test was used between the 2 samples, and the mean ± SD was used for multiple samples. Double-tailed p < 0.05 was considered statistically significant. RESULTS Electroencephalogram showed significant alteration of θ (54.50 ± 11.51 vs. 31.30 ± 8.71, F = 6.790, p = 0.005) and α wave (16.60 ± 3.21 vs. 35.40 ± 11.28, F = 4.549, p = 0.020) in HS group compared to the control group 2 h after HS. The results of triphosphate gap terminal labeling (TUNEL) showed that the neuronal apoptosis of HS rats was increased in the cortex (9.67 ± 3.16 vs. 1.80 ± 1.10, F = 11.002, p = 0.001) and hippocampus (15.73 ± 8.92 vs. 2.00 ± 1.00, F = 4.089, p = 0.028), the expression of activated caspase-3 was increased in the cortex (61.76 ± 25.13 vs. 19.57 ± 17.88, F = 5.695, p = 0.009) and hippocampus (58.60 ± 23.30 vs. 17.80 ± 17.62, F = 4.628, p = 0.019); meanwhile the expression of serum NSE (5.77 ± 1.78 vs. 2.35 ± 0.56, F = 5.174, p = 0.013) and S100B (2.86 ± 0.69 vs. 1.35 ± 0.34, F = 10.982, p = 0.001) were increased significantly under HS. Exogenous CGRP decreased the concentrations of NSE and S100B, and activated the expression of caspase-3 (0.41 ± 0.09 vs. 0.23 ± 0.04, F = 32.387, p < 0.001) under HS; while CGRP8-37 increased NSE (3.99 ± 0.47 vs. 2.40 ± 0.50, F = 11.991, p = 0.000) and S100B (2.19 ± 0.43 vs. 1.42 ± 0.30, F = 4.078, p = 0.025), and activated the expression caspase-3 (0.79 ± 0.10 vs. 0.23 ± 0.04, F = 32.387, p < 0.001). For the cell experiment, CGRP increased Bcl-2 (2.01 ± 0.73 vs. 2.15 ± 0.74, F = 8.993, p < 0.001), PKA (0.88 ± 0.08 vs. 0.37 ± 0.14, F = 20.370, p < 0.001), and p-CREB (0.87 ± 0.13 vs. 0.29 ± 0.10, F = 16.759, p < 0.001) levels; while H89, a blocker of the PKA/p-CREB pathway reversed the expression. CONCLUSIONS CGRP can protect against HS-induced neuron apoptosis via PKA/p-CREB pathway and reduce activation of caspase-3 by regulating Bcl-2. Thus CGRP may be a new target for the treatment of brain injury in HS.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Pediatric, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, China
| | - Ya-Hong Chen
- Department of Pediatric, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, China
| | - Jing-Jing Ji
- Department of Medical Intensive Care Unit, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, China
| | - Cheng-Xiang Lu
- Department of Intensive Care Unit, Zhongshan Hospital Xiamen University, Xiamen, Fujian province, 361004, China
| | - Zhi-Feng Liu
- Department of Medical Intensive Care Unit, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, China.
| |
Collapse
|
3
|
Song B, Peng Y, Zheng Y, Zhu Y, Liu W, Wang K, Cui Z, Song B. Role of single-cell ferroptosis regulation in intercellular communication and skin cutaneous melanoma progression and immunotherapy. Cancer Immunol Immunother 2023; 72:3523-3541. [PMID: 37638981 PMCID: PMC10991472 DOI: 10.1007/s00262-023-03504-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND The involvement of ferroptosis in the pathogenesis and progression of various cancers has been well established. However, limited studies have investigated the role of ferroptosis-mediated tumor microenvironment (TME) in skin cutaneous melanoma (SKCM). METHODS By leveraging single-cell RNA sequencing data, the nonnegative matrix factorization (NMF) approach was employed to comprehensively characterize and identify distinct gene signatures within ferroptosis-associated TME cell clusters. Prognostic and treatment response analyses were conducted using both bulk datasets and external cancer cohort to evaluate the clinical implications of TME clusters. RESULTS This NMF-based analysis successfully delineated fibroblasts, macrophages, T cells, and B cells into multiple clusters, enabling the identification of unique gene expression patterns and the annotation of distinct TME clusters. Furthermore, pseudotime trajectories, enrichment analysis, cellular communication analysis, and gene regulatory network analysis collectively demonstrated significant intercellular communication between key TME cell clusters, thereby influencing tumor cell development through diverse mechanisms. Importantly, our bulk RNA-seq analysis revealed the prognostic significance of ferroptosis-mediated TME cell clusters in SKCM patients. Moreover, our analysis of immune checkpoint blockade highlighted the crucial role of TME cell clusters in tumor immunotherapy, facilitating the discovery of potential immunotherapeutic targets. CONCLUSIONS In conclusion, this pioneering study employing NMF-based analysis unravels the intricate cellular communication mediated by ferroptosis within the TME and its profound implications for the pathogenesis and progression of SKCM. We provide compelling evidence for the prognostic value of ferroptosis-regulated TME cell clusters in SKCM, as well as their potential as targets for immunotherapy.
Collapse
Affiliation(s)
- Binyu Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Chanle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Yixuan Peng
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Chanle West Road, Xi'an, 710032, Shaanxi Province, China
- School of Basic Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Yu Zheng
- Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Yuhan Zhu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Chanle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Wei Liu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Chanle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Kai Wang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Chanle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Zhiwei Cui
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Chanle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Baoqiang Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Chanle West Road, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
4
|
Li J, Wan T, Liu C, Liu H, Ke D, Li L. ANGPTL2 aggravates LPS-induced septic cardiomyopathy via NLRP3-mediated inflammasome in a DUSP1-dependent pathway. Int Immunopharmacol 2023; 123:110701. [PMID: 37531825 DOI: 10.1016/j.intimp.2023.110701] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/04/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023]
Abstract
Angiopoietin-like protein 2 (ANGPTL2) was implicated in various cardiovascular diseases; however, its role in lipopolysaccharide (LPS)-related septic cardiomyopathy remains unclear. Herein, mice were exposed to LPS to generate septic cardiomyopathy, and adeno-associated viral vector was employed to overexpress ANGPTL2 in the myocardium. Besides, mice were treated with adenoviral vector to knock down ANGPTL2 in hearts. ANGPTL2 expressions in hearts and cardiomyocytes were upregulated by LPS challenge. ANGPTL2 overexpression aggravated, while ANGPTL2 silence ameliorated LPS-associated cardiac impairment and inflammation. Mechanically, we found that ANGPTL2 activated NLRP3 inflammasome via suppressing DUSP1 signaling, and NLRP3 knockdown abrogated the detrimental role of ANGPTL2 in aggravating LPS-induced cardiac inflammation. Furthermore, DUSP1 overexpression significantly inhibited ANGPTL2-mediated NLRP3 activation, and subsequently improved LPS-related cardiac dysfunction. In summary, ANGPTL2 exacerbated septic cardiomyopathy via activating NLRP3-mediated inflammation in a DUSP1-dependent manner, and our study uncovered a promising therapeutic target in preventing septic cardiomyopathy.
Collapse
Affiliation(s)
- Jun Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, Hubei, China
| | - Ting Wan
- Department of Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Cheng Liu
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen 518020, Guangdong, China
| | - Huadong Liu
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen 518020, Guangdong, China
| | - Dong Ke
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China.
| | - Luocheng Li
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China.
| |
Collapse
|
5
|
Wu X, Lv Y, Li Z, Yang Z. Serelaxin Inhibits Lipopolysaccharide-induced Inflammatory Response in Cardiac Fibroblasts by Activating Peroxisome Proliferator-activated Receptor-γ and Suppressing the Nuclear Factor-Kappa B Signaling Pathway. J Cardiovasc Pharmacol 2023; 82:201-211. [PMID: 37418294 PMCID: PMC10473033 DOI: 10.1097/fjc.0000000000001447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/03/2023] [Indexed: 07/08/2023]
Abstract
ABSTRACT Serelaxin (sRLX) has an inhibitory effect on fibrosis. However, whether the antifibrotic effects of sRLX are achieved by inhibiting the inflammatory response has not been clarified. This study aimed to investigate the role of sRLX in lipopolysaccharide (LPS)-induced inflammation in cardiac fibroblasts and elucidate the underlying mechanisms. Cardiac fibroblasts were isolated from adult rat hearts. The effect of sRLX on the inhibition of the inflammatory response after LPS induction was examined. Cell viability was measured by MMT assay. Cell proliferation was determined using the Cell Counting Kit-8. The levels of inflammatory cytokines IL-1β, IL-6, TNF-α, and IL-10 were measured using an enzyme-linked immunosorbent assay. The mRNA levels of α-smooth muscle actin (α-SMA), collagen I/III, MMP-2, MMP-9, IL-1β, IL-6, TNF-α, IL-10, IκBα, p-IκBα, p65 subunit of nuclear factor-kappa B (NF-κB), and peroxisome proliferator-activated receptor-γ (PPAR-γ) were assessed by real-time quantitative PCR. The protein levels of α-SMA, collagen I/III, MMP-2, MMP-9, IκBα, p-IκBα, p65, p-p65, and PPAR-γ were examined by western blotting. sRLX inhibited LPS-induced IL-1β, IL-6, TNF-α, α-SMA, and collagen I/III, and elevated the expression of IL-10, MMP-2, and MMP-9. Moreover, LPS-induced activation of NF-κB pathway was suppressed by sRLX treatment. Further studies showed that sRLX did not significantly increase the expression of PPAR-γ mRNA and protein, but activated PPAR-γ activity, and the PPAR-γ inhibitor GW9662 reversed the inhibitory effect of sRLX on IL-1β, IL-6, and TNF-α production. These results suggest that sRLX alleviates cardiac fibrosis by stimulating PPAR-γ through a ligand-independent mechanism that subsequently abolish the expression of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xueping Wu
- Departments of Anatomy, Histology and Embryology; and
| | - Yehui Lv
- Departments of Anatomy, Histology and Embryology; and
| | - Zhihong Li
- Departments of Anatomy, Histology and Embryology; and
| | - Zhifang Yang
- Physiology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
6
|
Antimicrobial Peptides Active in In Vitro Models of Endodontic Bacterial Infections Modulate Inflammation in Human Cardiac Fibroblasts. Pharmaceutics 2022; 14:pharmaceutics14102081. [PMID: 36297519 PMCID: PMC9611259 DOI: 10.3390/pharmaceutics14102081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022] Open
Abstract
Endodontic and periodontal disease are conditions of infectious origin that can lead to tooth loss or develop into systemic hyperinflammation, which may be associated with a wide variety of diseases, including cardiovascular. Endodontic and periodontal treatment often relies on antibiotics. Since new antimicrobial resistances are a major threat, the use of standard antibiotics is not recommended when the infection is only local. Antimicrobial peptides were recently demonstrated to be valid alternatives for dental treatments. The antimicrobial peptide M33D is a tetrabranched peptide active against Gram-negative and Gram-positive bacteria. It has a long life, unusual for peptides, because its branched form provides resistance to proteases. Here the efficacy of M33D and of its analog M33i/l as antibiotics for local use in dentistry was evaluated. M33D and M33i/l were active against reference strains and multidrug-resistant clinical isolates of Gram-negative and Gram-positive species. Their minimum inhibitory concentration against different strains of dental interest was between 0.4 and 6.0 μM. Both peptides acted rapidly on bacteria, impairing membrane function. They also disrupted biofilm effectively. Disinfection of the root canal is crucial for endodontic treatments. M33D and M33i/l reduced E. faecalis colonies to one-twentieth in a dentin slices model reproducing root canal irrigation. They both captured and neutralized lipopolysaccharide (LPS), a bacterial toxin responsible for inflammation. The release of IL-1β and TNFα by LPS-stimulated murine macrophages was reduced by both peptides. Human cardiac fibroblasts respond to different insults with the release of proinflammatory cytokines, and consequently, they are considered directly involved in atherogenic cardiovascular processes, including those triggered by infections. The presence of M33D and M33i/l at MIC concentration reduced IL6 release from LPS- stimulated human cardiac fibroblasts, hence proving to be promising in preventing bacteria-induced atherogenesis. The two peptides showed low toxicity to mammalian cells, with an EC50 one order of magnitude higher than the average MIC and low hemolytic activity. The development of antimicrobial peptides for dental irrigations and medication is a very promising new field of research that will provide tools to fight dental infections and their severe consequences, while at the same time protecting standard antibiotics from new outbreaks of antimicrobial resistance.
Collapse
|
7
|
Zhao K, Zhang J, Xu T, Yang C, Weng L, Wu T, Wu X, Miao J, Guo X, Tu J, Zhang D, Zhou B, Sun W, Kong X. Low-intensity pulsed ultrasound ameliorates angiotensin II-induced cardiac fibrosis by alleviating inflammation via a caveolin-1-dependent pathway. J Zhejiang Univ Sci B 2021; 22:818-838. [PMID: 34636186 DOI: 10.1631/jzus.b2100130] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Cardiac hypertrophy and fibrosis are major pathological manifestations observed in left ventricular remodeling induced by angiotensin II (AngII). Low-intensity pulsed ultrasound (LIPUS) has been reported to ameliorate cardiac dysfunction and myocardial fibrosis in myocardial infarction (MI) through mechano-transduction and its downstream pathways. In this study, we aimed to investigate whether LIPUS could exert a protective effect by ameliorating AngII-induced cardiac hypertrophy and fibrosis and if so, to further elucidate the underlying molecular mechanisms. METHODS We used AngII to mimic animal and cell culture models of cardiac hypertrophy and fibrosis. LIPUS irradiation was applied in vivo for 20 min every 2 d from one week before mini-pump implantation to four weeks after mini-pump implantation, and in vitro for 20 min on each of two occasions 6 h apart. Cardiac hypertrophy and fibrosis levels were then evaluated by echocardiographic, histopathological, and molecular biological methods. RESULTS Our results showed that LIPUS could ameliorate left ventricular remodeling in vivo and cardiac fibrosis in vitro by reducing AngII-induced release of inflammatory cytokines, but the protective effects on cardiac hypertrophy were limited in vitro. Given that LIPUS increased the expression of caveolin-1 in response to mechanical stimulation, we inhibited caveolin-1 activity with pyrazolopyrimidine 2 (pp2) in vivo and in vitro. LIPUS-induced downregulation of inflammation was reversed and the anti-fibrotic effects of LIPUS were absent. CONCLUSIONS These results indicated that LIPUS could ameliorate AngII-induced cardiac fibrosis by alleviating inflammation via a caveolin-1-dependent pathway, providing new insights for the development of novel therapeutic apparatus in clinical practice.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jing Zhang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tianhua Xu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chuanxi Yang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Liqing Weng
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tingting Wu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaoguang Wu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jiaming Miao
- Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Dong Zhang
- Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Bin Zhou
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China. .,Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Wei Sun
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Xiangqing Kong
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|