1
|
Zormpas G, Boulmpou A, Potoupni V, Siskos F, Chatzipapa N, Fragakis N, Doumas M, Kassimis G, Vassilikos V, Papadopoulos CE. Identifying the Role of Flow-Mediated Dilatation Assessment in Acute Coronary Syndromes: A Systematic Review. Cardiol Rev 2024:00045415-990000000-00323. [PMID: 39254543 DOI: 10.1097/crd.0000000000000768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
In the context of the global burden of cardiovascular disease, the development of novel, patient-targeted diagnostic and therapeutic strategies is of paramount importance. Acute coronary syndromes (ACS) comprise a subset of cardiovascular disease, with constantly increasing prevalence requiring urgent attention. Flow-mediated dilatation (FMD), a noninvasive method for the evaluation of endothelial function, has been previously implemented in patients with ACS. A systematic review following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines was conducted in order to identify all relevant studies assessing the implementation of FMD among patients with ACS. Our review reflects an effort to present all available data regarding the role of FMD to date, a valuable noninvasive and easy accessible diagnostic tool, in the prognosis of patients with ACS. FMD evaluation in patients with ACS reveals a decline in values, indicative of the presence of endothelial function among this distinct patient group. FMD has also been used to assess the response to various treatments, as well as to predict major adverse cardiovascular events. Dynamic responses to interventions highlights its potential in the evolving field of interventional cardiology.
Collapse
Affiliation(s)
- Georgios Zormpas
- From the Second Department of Cardiology, Aristotle University of Thessaloniki, Ippokratio General Hospital of Thessaloniki, Greece
| | - Aristi Boulmpou
- Third Department of Cardiology, Aristotle University of Thessaloniki, Ippokratio General Hospital of Thessaloniki, Greece
| | - Victoria Potoupni
- Third Department of Cardiology, Aristotle University of Thessaloniki, Ippokratio General Hospital of Thessaloniki, Greece
| | - Fotios Siskos
- Second Propaedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, Ippokratio General Hospital of Thessaloniki, Greece
| | - Nikoleta Chatzipapa
- Second Propaedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, Ippokratio General Hospital of Thessaloniki, Greece
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, Greece
| | - Nikolaos Fragakis
- From the Second Department of Cardiology, Aristotle University of Thessaloniki, Ippokratio General Hospital of Thessaloniki, Greece
| | - Michael Doumas
- Second Propaedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, Ippokratio General Hospital of Thessaloniki, Greece
| | - George Kassimis
- From the Second Department of Cardiology, Aristotle University of Thessaloniki, Ippokratio General Hospital of Thessaloniki, Greece
| | - Vassilios Vassilikos
- Third Department of Cardiology, Aristotle University of Thessaloniki, Ippokratio General Hospital of Thessaloniki, Greece
| | - Christodoulos E Papadopoulos
- Third Department of Cardiology, Aristotle University of Thessaloniki, Ippokratio General Hospital of Thessaloniki, Greece
| |
Collapse
|
2
|
Gao H, Li Z, Gan L, Chen X. The Role and Potential Mechanisms of Rehabilitation Exercise Improving Cardiac Remodeling. J Cardiovasc Transl Res 2024; 17:923-934. [PMID: 38558377 DOI: 10.1007/s12265-024-10498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/08/2024] [Indexed: 04/04/2024]
Abstract
Rehabilitation exercise is a crucial non-pharmacological intervention for the secondary prevention and treatment of cardiovascular diseases, effectively ameliorating cardiac remodeling in patients. Exercise training can mitigate cardiomyocyte apoptosis, reduce extracellular matrix deposition and fibrosis, promote angiogenesis, and regulate inflammatory response to improve cardiac remodeling. This article presents a comprehensive review of recent research progress, summarizing the pivotal role and underlying mechanism of rehabilitation exercise in improving cardiac remodeling and providing valuable insights for devising effective rehabilitation treatment programs. Graphical Abstract.
Collapse
Affiliation(s)
- Haizhu Gao
- Colleague of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Zhongxin Li
- Colleague of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Lijun Gan
- Department of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, No.89 Guhuai Road, Jining, 272029, Shandong, China
| | - Xueying Chen
- Department of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, No.89 Guhuai Road, Jining, 272029, Shandong, China.
- Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| |
Collapse
|
3
|
Li QQ, Qin KR, Zhang W, Guan XM, Cheng M, Wang YX. Advancements in the Regulation of Different-Intensity Exercise Interventions on Arterial Endothelial Function. Rev Cardiovasc Med 2023; 24:306. [PMID: 39076455 PMCID: PMC11262454 DOI: 10.31083/j.rcm2411306] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 07/31/2024] Open
Abstract
Normal-functioning endothelium is crucial to maintaining vascular homeostasis and inhibiting the development and progression of cardiovascular diseases such as atherosclerosis. Exercise training has been proven effective in regulating arterial endothelial function, and the effect of this regulation is closely related to exercise intensity and the status of arterial endothelial function. With this review, we investigated the effects of the exercise of different intensity on the function of arterial endothelium and the underlying molecular biological mechanisms. Existing studies indicate that low-intensity exercise improves arterial endothelial function in individuals who manifest endothelial dysfunction relative to those with normal endothelial function. Most moderate-intensity exercise promotes endothelial function in individuals with both normal and impaired arterial endothelial function. Continuous high-intensity exercise can lead to impaired endothelial function, and high-intensity interval exercise can enhance both normal and impaired endothelial function. In addition, it was demonstrated that the production of vasomotor factors, oxidative stress, and inflammatory response is involved in the regulation of arterial endothelial function under different-intensity exercise interventions. We posit that this synthesis will then provide a theoretical basis for choosing the appropriate exercise intensity and optimize the prescription of clinical exercise for persons with normal and impaired endothelium.
Collapse
Affiliation(s)
- Qian-Qian Li
- School of Rehabilitation Medicine, Weifang Medical University, 261053 Weifang, Shandong, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, 266071 Qingdao, Shandong, China
| | - Kai-Rong Qin
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, 116024 Dalian, Liaoning, China
| | - Wen Zhang
- School of Rehabilitation Medicine, Weifang Medical University, 261053 Weifang, Shandong, China
- Department of Neurology, Nanjing Drum Tower Hospital Group Suqian Hospital, 223800 Suqian, Jiangsu, China
| | - Xiu-Mei Guan
- School of Basic Medicine Sciences, Weifang Medical University, 261053 Weifang, Shandong, China
| | - Min Cheng
- School of Basic Medicine Sciences, Weifang Medical University, 261053 Weifang, Shandong, China
| | - Yan-Xia Wang
- School of Rehabilitation Medicine, Weifang Medical University, 261053 Weifang, Shandong, China
| |
Collapse
|
4
|
Ren J, Xiao H, Wang P. Acute Effects of the Interval and Duration of Intermittent Exercise on Arterial Stiffness in Young Men. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16847. [PMID: 36554739 PMCID: PMC9779233 DOI: 10.3390/ijerph192416847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
We proved the hypothesis that intermittent exercise would have a better effect on arterial stiffness by shortening the duration of intervals and increasing the number of bouts. Twenty healthy male college students (20.4 ± 0.4 years) were randomly assigned to a quiet control (CON), 30 min continuous exercise (CE), long-interval intermittent exercise with long intervals (IELL), long-interval intermittent exercise with short intervals (IELS), and short-interval intermittent exercise with short intervals (IESS). The intensity was set to 45% of the heart rate reserve. The brachial-ankle pulse wave (baPWV) was measured at baseline (BL), 0 min post-exercise, 20 min post-exercise, 40 min post-exercise, and 60 min post-exercise. BaPWV changes (⊿baPWV) from the BL in the same tests were used for the analysis. ⊿baPWV did not change significantly in the CON. ⊿baPWV decreased significantly at 0, 20, and 40 min in all exercise tests. ⊿baPWV decreased significantly at 60 min in IELS and IESS. At 60 min, the ⊿baPWV of IELS and IESS was still significantly lower than that of CON and CE, and the ⊿baPWV of IESS was still significantly lower than that of IELS. Hence, shortening the intervals of intermittent exercise and increasing the number of repetitions may enhance the effect of improving arterial stiffness.
Collapse
|
5
|
Effect of Exercise on Carotid Artery Intima-Media Thickness in Adults: A Systematic Review and Meta-Analysis. J Phys Act Health 2022; 19:855-867. [PMID: 36257606 DOI: 10.1123/jpah.2022-0372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Carotid intima-media thickness (cIMT) is a validated surrogate marker of atherosclerosis that is independently associated with the risk for cardiovascular disease. Recent studies on the effect of exercise on cIMT have yielded conflicting results. METHODS Studies that were available up until October 30, 2021 from the PubMed, Cochrane Library, Embase, and Web of Science databases were included in the analysis. Subgroup analyses were performed to determine the effects of the type, intensity, and duration of exercise on cIMT. RESULTS This review included 26 studies with 1370 participants. Compared with control participants, those who engaged in exercise showed a decline in cIMT (weighted mean difference [WMD] -0.02; 95% confidence interval [CI], -0.03 to -0.01; I2 = 90.1%). Participants who engaged in aerobic (WMD -0.02; 95% CI, -0.04 to -0.01; I2 = 52.7%) or resistance (WMD -0.01; 95% CI, -0.02 to -0.00; I2 = 38.5%) exercise showed lower cIMT compared with control participants. An exercise duration of >6 months was associated with a 0.02 mm reduction in cIMT. In participants with low cIMT at baseline (<0.7 mm), exercise alone was not associated with a change in cIMT (WMD -0.01; 95% CI, -0.03 to 0.00; I2 = 93.9%). CONCLUSIONS Exercise was associated with reduced cIMT in adults. Aerobic exercise is associated with a greater decline in cIMT than other forms of exercise. Large, multicenter, randomized controlled trials are required to establish optimal exercise protocols for improving the pathological process of atherosclerosis.
Collapse
|
6
|
Vriz O, Mos L, Palatini P. Leisure-Time Physical Activity Has a More Favourable Impact on Carotid Artery Stiffness Than Vigorous Physical Activity in Hypertensive Human Beings. J Clin Med 2022; 11:5303. [PMID: 36142949 PMCID: PMC9506238 DOI: 10.3390/jcm11185303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Aim. To assess the effect of leisure time versus vigorous long-term dynamic physical activity (PA) on carotid stiffness in normotensive versus hypertensive subjects. Methods. The study was conducted on 120 leisure-time exercisers and 120 competitive athletes. One hundred and twenty sedentary subjects served as controls. In addition, participants were classified according to whether their systolic blood pressure was ≥130 mmHg (hypertensives, n = 120) or normal (normotensives, n = 240) according to the ACC/AHA 2017 definition. Carotid artery stiffness was assessed with an echo-tracking ultrasound system, using the pressure-strain elastic modulus (EP) and one-point pulse wave velocity (PWVβ) as parameters of stiffness. Results. The effect of the two levels of PA differed in the normotensives and the hypertensives. Among the normotensives, there was an ongoing, graded reduction in EP and PWVβ from the sedentary subjects to the athletes. By contrast, among the hypertensives, the lowest levels of EP and PWVβ were found among the leisure-time PA participants. EP and PWVβ did not differ between the hypertensive sedentary subjects and the athletes. A significant interaction was found between PA and BP status on EP (p = 0.03) and a borderline interaction on PWVβ (p = 0.06). In multiple regression analyses, PA was a negative predictor of EP (p = 0.001) and PWVβ (p = 0.0001). The strength of the association was weakened after the inclusion of heart rate in the models (p = 0.04 and 0.007, respectively). Conclusions. These data indicate that in people with hypertension, leisure-time PA has beneficial effects on carotid artery stiffness, whereas high-intensity chronic PA provides no benefit to vascular functions.
Collapse
Affiliation(s)
- Olga Vriz
- Cardiac Centre, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
- School of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Lucio Mos
- Department of Cardiology, San Antonio Hospital, 33038 San Daniele del Friuli, Italy
| | - Paolo Palatini
- Department of Medicine, University of Padova, 35128 Padua, Italy
| |
Collapse
|
7
|
Aminuddin A, Noor Hashim MF, Mohd Zaberi NAS, Zheng Wei L, Ching Chu B, Jamaludin NA, Salamt N, Che Roos NA, Ugusman A. The Association Between Arterial Stiffness and Muscle Indices Among Healthy Subjects and Subjects With Cardiovascular Risk Factors: An Evidence-Based Review. Front Physiol 2021; 12:742338. [PMID: 34887771 PMCID: PMC8650579 DOI: 10.3389/fphys.2021.742338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle is one of the major tissues in the body and is important for performing daily physical activity. Previous studies suggest that vascular dysfunction contributes to reduced skeletal muscle mass. However, the association between vascular dysfunction and muscle mass, muscle strength and muscle flexibility are less established. Therefore, the focus of this review was to investigate the association between arterial stiffness (AS) which is a marker of vascular function, and muscle indices among healthy and those with cardiovascular risk factors. Three databases were used to search for relevant studies. These keywords were used: "arterial stiffness" OR "vascular stiffness" OR "aortic stiffness" OR "pulse wave velocity" OR "carotid femoral pulse wave velocity" OR "pulse wave analysis" AND "muscle" OR "skeletal" OR "flexibility" OR "range of motion" OR "articular" OR "arthrometry" OR "strength" OR "hand strength" OR "pinch strength" OR "mass" OR "lean" OR "body composition." The criteria were; (1) original, full-text articles, (2) articles written in English language, (3) human studies involving healthy adults and/or adults with cardiovascular disease (CVD) or CVD risk factors (4) articles that reported the relationship between AS (measured as carotid-femoral pulse wave velocity or brachial-ankle pulse wave velocity) and muscle indices (measured as muscle mass, muscle flexibility and muscle strength) after adjusting for relevant confounders. The search identified 2295 articles published between 1971 and June 2021. Only 17 articles fulfilled the criteria. Two studies showed an inverse association between AS and muscle strength in healthy subjects, whereas in subjects with CVD risk factors, five out of seven studies found an inverse correlation between the two parameters. Eleven studies showed an inverse association between AS and muscle mass in subjects with CVD and CVD risk factors. The association between AS and muscle flexibility was not studied in any of the articles reviewed. In conclusion, there is an inverse correlation between muscle indices and AS in healthy adults and those with CVD or CVD risk factors. However, most of the studies were cross-sectional studies, hence the need for future prospective studies to address this issue.
Collapse
Affiliation(s)
- Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Malaysia
| | | | | | - Lee Zheng Wei
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Malaysia
| | - Beh Ching Chu
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Malaysia
| | - Nur Amalina Jamaludin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Malaysia
| | - Norizam Salamt
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Malaysia
| | - Nur Aishah Che Roos
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kem Sungai Besi, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Malaysia
| |
Collapse
|
8
|
Sakellariou XM, Papafaklis MI, Domouzoglou EM, Katsouras CS, Michalis LK, Naka KK. Exercise-mediated adaptations in vascular function and structure: Beneficial effects in coronary artery disease. World J Cardiol 2021; 13:399-415. [PMID: 34621486 PMCID: PMC8462042 DOI: 10.4330/wjc.v13.i9.399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/30/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
Exercise exerts direct effects on the vasculature via the impact of hemodynamic forces on the endothelium, thereby leading to functional and structural adaptations that lower cardiovascular risk. The patterns of blood flow and endothelial shear stress during exercise lead to atheroprotective hemodynamic stimuli on the endothelium and contribute to adaptations in vascular function and structure. The structural adaptations observed in arterial lumen dimensions after prolonged exercise supplant the need for acute functional vasodilatation in case of an increase in endothelial shear stress due to repeated exercise bouts. In contrast, wall thickness is affected by rather systemic factors, such as transmural pressure modulated during exercise by generalized changes in blood pressure. Several mechanisms have been proposed to explain the exercise-induced benefits in patients with coronary artery disease (CAD). They include decreased progression of coronary plaques in CAD, recruitment of collaterals, enhanced blood rheological properties, improvement of vascular smooth muscle cell and endothelial function, and coronary blood flow. This review describes how exercise via alterations in hemodynamic factors influences vascular function and structure which contributes to cardiovascular risk reduction, and highlights which mechanisms are involved in the positive effects of exercise on CAD.
Collapse
Affiliation(s)
- Xenofon M Sakellariou
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
| | - Michail I Papafaklis
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
- 2nd Department of Cardiology, University Hospital of Ioannina, Ioannina 45100, Epirus, Greece
| | - Eleni M Domouzoglou
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
- Department of Pediatrics, University Hospital of Ioannina, Ioannina 45100, Epirus, Greece
| | - Christos S Katsouras
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
- 2nd Department of Cardiology, University Hospital of Ioannina, Ioannina 45100, Epirus, Greece
| | - Lampros K Michalis
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
- 2nd Department of Cardiology, University Hospital of Ioannina, Ioannina 45100, Epirus, Greece
| | - Katerina K Naka
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
- 2nd Department of Cardiology, University Hospital of Ioannina, Ioannina 45100, Epirus, Greece
| |
Collapse
|
9
|
Pettersson H, Alexanderson H, Poole JL, Varga J, Regardt M, Russell AM, Salam Y, Jensen K, Mansour J, Frech T, Feghali-Bostwick C, Varjú C, Baldwin N, Heenan M, Fligelstone K, Holmner M, Lammi MR, Scholand MB, Shapiro L, Volkmann ER, Saketkoo LA. Exercise as a multi-modal disease-modifying medicine in systemic sclerosis: An introduction by The Global Fellowship on Rehabilitation and Exercise in Systemic Sclerosis (G-FoRSS). Best Pract Res Clin Rheumatol 2021; 35:101695. [PMID: 34217607 PMCID: PMC8478716 DOI: 10.1016/j.berh.2021.101695] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Systemic sclerosis (SSc) is a heterogeneous multisystem autoimmune disease whereby its main pathological drivers of disability and damage are vascular injury, inflammatory cell infiltration, and fibrosis. These mechanisms result in diffuse and diverse impairments arising from ischemic circulatory dysfunction leading to painful skin ulceration and calcinosis, neurovascular aberrations hindering gastrointestinal (GI) motility, progressive painful, incapacitating or immobilizing effects of inflammatory and fibrotic effects on the lungs, skin, articular and periarticular structures, and muscle. SSc-related impairments impede routine activities of daily living (ADLs) and disrupt three critical life areas: work, family, social/leisure, and also impact on psychological well-being. Physical activity and exercise are globally recommended; however, for connective tissue diseases, this guidance carries greater impact on inflammatory disease manifestations, recovery, and cardiovascular health. Exercise, through myogenic and vascular phenomena, naturally targets key pathogenic drivers by downregulating multiple inflammatory and fibrotic pathways in serum and tissue, while increasing circulation and vascular repair. G-FoRSS, The Global Fellowship on Rehabilitation and Exercise in Systemic Sclerosis recognizes the scientific basis of and advocates for education and research of exercise as a systemic and targeted SSc disease-modifying treatment. An overview of biophysiological mechanisms of physical activity and exercise are herein imparted for patients, clinicians, and researchers, and applied to SSc disease mechanisms, manifestations, and impairment. A preliminary guidance on exercise in SSc, a research agenda, and the current state of research and outcome measures are set forth.
Collapse
Affiliation(s)
- Henrik Pettersson
- Women's Health and Allied Health Professionals, Medical Unit Occupational Therapy and Physiotherapy, Karolinska University Hospital, Stockholm, Sweden; Division of Rheumatology, Department of Medicin, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Helene Alexanderson
- Women's Health and Allied Health Professionals, Medical Unit Occupational Therapy and Physiotherapy, Karolinska University Hospital, Stockholm, Sweden; Division of Rheumatology, Department of Medicin, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Janet L Poole
- Occupational Therapy Graduate Program, University of New Mexico, Albuquerque, NM, USA
| | - Janos Varga
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Malin Regardt
- Women's Health and Allied Health Professionals, Medical Unit Occupational Therapy and Physiotherapy, Karolinska University Hospital, Stockholm, Sweden; Department of Occupational Therapy, Karolinska Institutet, Stockholm, Sweden
| | - Anne-Marie Russell
- University of Exeter, College of Medicine and Health, Exeter, UK; National Institute of Health Research, Senior Nurse Research Leader, London, UK
| | - Yasser Salam
- Department of Physical Therapy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Kelly Jensen
- Oregon Health and Science University, Portland, OR, USA; New Orleans Scleroderma and Sarcoidosis Patient Care and Research Center, New Orleans, USA; Tulane University School of Medicine, New Orleans, USA
| | - Jennifer Mansour
- New Orleans Scleroderma and Sarcoidosis Patient Care and Research Center, New Orleans, USA; Tulane University School of Medicine, New Orleans, USA
| | - Tracy Frech
- Vanderbilt University, Division of Rheumatology, Nashville, TN, USA
| | | | - Cecília Varjú
- Department of Rheumatology and Immunology, University of Pécs Clinical Center, Pecs, Hungary
| | | | - Matty Heenan
- Scleroderma Foundation/Pulmonary Hypertension Association, Tucson, AZ, USA
| | - Kim Fligelstone
- Scleroderma & Raynaud Society UK (SRUK), London, UK; Royal Free Hospital, London, UK
| | - Monica Holmner
- The Swedish Rheumatism Association National Association for Systemic Sclerosis, Sweden
| | - Matthew R Lammi
- New Orleans Scleroderma and Sarcoidosis Patient Care and Research Center, New Orleans, USA; University Medical Center - Comprehensive Pulmonary Hypertension Center and Interstitial Lung Disease Clinic Programs, New Orleans, USA; Louisiana State University School of Medicine, Section of Pulmonary Medicine, New Orleans, USA
| | - Mary Beth Scholand
- University of Utah, Division of Pulmonary Medicine, Pulmonary Fibrosis Center, Salt Lake City, UT, USA
| | - Lee Shapiro
- Division of Rheumatology, Albany Medical Center, Albany, NY, USA; Steffens Scleroderma Foundation, Albany, NY, USA
| | - Elizabeth R Volkmann
- University of California, David Geffen School of Medicine, UCLA Scleroderma Program and UCLA CTD-ILD Program, Division of Rheumatology, Department of Medicine, Los Angeles, CA, USA
| | - Lesley Ann Saketkoo
- New Orleans Scleroderma and Sarcoidosis Patient Care and Research Center, New Orleans, USA; Tulane University School of Medicine, New Orleans, USA; University Medical Center - Comprehensive Pulmonary Hypertension Center and Interstitial Lung Disease Clinic Programs, New Orleans, USA; Louisiana State University School of Medicine, Section of Pulmonary Medicine, New Orleans, USA.
| |
Collapse
|
10
|
Zhang X, Zheng Y, Geng C, Guan J, Wang L, Zhang X, Cheng Y, Li J, Lu X. Isometric exercise promotes arteriogenesis in rats after myocardial infarction. J Biomed Res 2021; 35:436-447. [PMID: 34776455 PMCID: PMC8637657 DOI: 10.7555/jbr.35.20210062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Isometric exercise (IE) is a promising intervention of noninvasive revascularization in patients with acute myocardial infarction (AMI). This study aimed to investigate the impact and mechanisms of IE training on arteriogenesis in AMI. Male Sprague-Dawley rats were randomly assigned into the sham-operation group (SO), myocardial infarction (MI) group, and 13 IE subgroups treated according to training intensity, frequency, duration, or monocyte chemoattractant protein-1 (MCP-1), or/and fibroblast growth factor-2 (FGF-2) inhibitors for eight weeks. Our results demonstrated that the IE group achieved superior improvement compared with the MI group in terms of left ventricular ejection fraction (LVEF), myocardial infarction size (MIS), arterial density (AD), monocytes (MNCs), smooth muscle cells (SMCs), endothelial cells (ECs), relative collateral blood flow (RCBF), MCP-1, and FGF-2 at the endpoint. Positive correlations between MCP-1 and MNCs, MNCs and FGF-2, FGF-2 and SMCs, SMCs and AD, as well as AD and RCBF were observed. This study demonstrated that with MI of 100% load 20 times daily for eight weeks, the arteriogenesis was improved, which may be attributed to the recruitment of MNCs and SMCs in remote ischemic myocardium caused by increases in MCP-1 and FGF-2 expression.
Collapse
Affiliation(s)
- Xintong Zhang
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yu Zheng
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Canru Geng
- Department of Rehabilitation Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Juntao Guan
- Department of Rehabilitation Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Lu Wang
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiu Zhang
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yihui Cheng
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jian'an Li
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiao Lu
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
11
|
Zhang Y, Zhang YJ, Zhang HW, Ye WB, Korivi M. Low-to-Moderate-Intensity Resistance Exercise Is More Effective than High-Intensity at Improving Endothelial Function in Adults: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136723. [PMID: 34206463 PMCID: PMC8297299 DOI: 10.3390/ijerph18136723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/29/2022]
Abstract
Aerobic exercise has been confirmed to improve endothelial function (EF). However, the effect of resistance exercise (RE) on EF remains controversial. We conducted this systematic review and meta-analysis on randomized controlled trials (RCTs) to determine the effect of RE and its intensities on EF. We searched Web of Science, PubMed/MEDLINE, Scopus, and Wiley Online Library, and included 15 articles (17 trials) for the synthesis. Overall, RE intervention significantly improved flow-mediated dilatation (FMD) in brachial artery (SMD = 0.76; 95% CI: 0.47, 1.05; p < 0.00001), which represents improved EF. Meta-regression showed that the RE intensity was correlated with changes in FMD (Coef. = −0.274, T = −2.18, p = 0.045). We found both intensities of RE improved FMD, but the effect size for the low- to moderate-intensity (30–70%1RM) was bigger (SMD = 1.02; 95% CI: 0.60, 1.43; p < 0.0001) than for the high-intensity (≥70%1RM; SMD = 0.48; 95% CI: 0.21, 0.74; p = 0.005). We further noticed that RE had a beneficial effect (SMD = 0.61; 95% CI: 0.13, 1.09; p = 0.01) on the brachial artery baseline diameter at rest (BADrest), and the age variable was correlated with the changes in BADrest after RE (Coef. = −0.032, T = −2.33, p = 0.038). Young individuals (<40 years) presented with a bigger effect size for BADrest (SMD = 1.23; 95% CI: 0.30, 2.15; p = 0.009), while middle-aged to elderly (≥40 years) were not responsive to RE (SMD = 0.07; 95% CI: −0.28, 0.42; p = 0.70). Based on our findings, we conclude that RE intervention can improve the EF, and low- to moderate-intensity is more effective than high-intensity.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Rehabilitation Medicine, Shaoxing University, Shaoxing 312000, China;
| | - Ya-Jun Zhang
- Department of Rehabilitation Medicine, Shaoxing University, Shaoxing 312000, China;
- Correspondence: (Y.-J.Z.); (H.-W.Z.)
| | - Hong-Wei Zhang
- Department of Rehabilitation Medicine, Shaoxing University, Shaoxing 312000, China;
- Correspondence: (Y.-J.Z.); (H.-W.Z.)
| | - Wei-Bing Ye
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, China; (W.-B.Y.); (M.K.)
| | - Mallikarjuna Korivi
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, China; (W.-B.Y.); (M.K.)
| |
Collapse
|
12
|
Urban Environment and Health: A Cross-Sectional Study of the Influence of Environmental Quality and Physical Activity on Blood Pressure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18116126. [PMID: 34204097 PMCID: PMC8201128 DOI: 10.3390/ijerph18116126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/01/2021] [Accepted: 06/04/2021] [Indexed: 12/29/2022]
Abstract
Few studies have examined the relation between urban built environment and the prevalence of hypertension. This cross-sectional study aimed at assessing the relationship between the environmental quality, physical activity, and stress on hypertension among citizens of Kaunas city, Lithuania. We conducted a survey of 1086 citizens residing in 11 districts to determine their perceptions of environmental quality, health behavior, and health indices. The independent variables included residential traffic flows, access to public transportation and green spaces. Dependent variables included physician-diagnosed hypertension, systolic and diastolic blood pressure, and stress level. We used multivariable logistic regression to assess the associations as odds ratios (OR). The environmental factors beneficially associated with meeting the physical activity recommendations were opportunities for walking to reach the city's green spaces and available relaxation areas. Residents of high noise level districts aged 45-64 years had a significantly higher OR of stress and a higher prevalence of hypertension when age, sex, education status, family status, and smoking were accounted for. However, meeting the physical activity recommendations had a beneficial effect on the risk of hypertension. This study provided evidence that improvement of the district-level built environment supporting citizens' physical activity might reduce the risk of hypertension.
Collapse
|