1
|
Si H, He Z, Malhotra S, Zhang X, Zou F, Xue S, Qian Z, Wang Y, Hou X, Zhou W, Zou J. A novel method combining gated SPECT and vectorcardiography to guide left ventricular lead placement to improve response to cardiac resynchronization therapy: A proof of concept study. J Nucl Cardiol 2024; 36:101867. [PMID: 38697386 DOI: 10.1016/j.nuclcard.2024.101867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND The segment of the latest mechanical contraction (LMC) does not always overlap with the site of the latest electrical activation (LEA). By integrating both mechanical and electrical dyssynchrony, this proof-of-concept study aimed to propose a new method for recommending left ventricular (LV) lead placements, with the goal of enhancing response to cardiac resynchronization therapy (CRT). METHODS The LMC segment was determined by single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI) phase analysis. The LEA site was detected by vectorcardiogram. The recommended segments for LV lead placement were as follows: (1) the LMC viable segments that overlapped with the LEA site; (2) the LMC viable segments adjacent to the LEA site; (3) If no segment met either of the above, the LV lateral wall was recommended. The response was defined as ≥15% reduction in left ventricular end-systolic volume (LVESV) 6-months after CRT. Patients with LV lead located in the recommended site were assigned to the recommended group, and those located in the non-recommended site were assigned to the non-recommended group. RESULTS The cohort comprised of 76 patients, including 54 (71.1%) in the recommended group and 22 (28.9%) in the non-recommended group. Among the recommended group, 74.1% of the patients responded to CRT, while 36.4% in the non-recommended group were responders (P = .002). Compared to pacing at the non-recommended segments, pacing at the recommended segments showed an independent association with an increased response by univariate and multivariable analysis (odds ratio 5.00, 95% confidence interval 1.73-14.44, P = .003; odds ratio 7.33, 95% confidence interval 1.53-35.14, P = .013). Kaplan-Meier curves showed that pacing at the recommended LV lead position demonstrated a better long-term prognosis. CONCLUSION Our findings indicate that pacing at the recommended segments, by integrating of mechanical and electrical dyssynchrony, is significantly associated with an improved CRT response and better long-term prognosis.
Collapse
Affiliation(s)
- Hongjin Si
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Department of Cardiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Zhuo He
- Department of Applied Computing, Michigan Technological University, Houghton, MI, USA
| | - Saurabh Malhotra
- Division of Cardiology, Cook County Health and Hospitals System, Chicago, IL, USA; Division of Cardiology, Rush Medical College, Chicago, IL, USA
| | - Xinwei Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fengwei Zou
- Department of Cardiology, Montefiore Medical Center, 111 E 210th St, Bronx, NY, 10467, USA
| | - Siyuan Xue
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhiyong Qian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yao Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaofeng Hou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weihua Zhou
- Department of Applied Computing, Michigan Technological University, Houghton, MI, USA; Center for Biocomputing and Digital Health, Institute of Computing and Cybersystems, and Health Research Institute, Michigan Technological University, Houghton, MI, USA
| | - Jiangang Zou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Kadoglou NPE, Bouwmeester S, de Lepper AGW, de Kleijn MC, Herold IHF, Bouwman ARA, Korakianitis I, Simmers T, Bracke FALE, Houthuizen P. The Prognostic Role of Global Longitudinal Strain and NT-proBNP in Heart Failure Patients Receiving Cardiac Resynchronization Therapy. J Pers Med 2024; 14:188. [PMID: 38392621 PMCID: PMC10890173 DOI: 10.3390/jpm14020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND We aimed to evaluate whether baseline GLS (global longitudinal strain), NT-proBNP, and changes in these after cardiac resynchronization therapy (CRT) can predict long-term clinical outcomes and the echocardiographic-based response to CRT (defined by 15% relative reduction in left ventricular end-systolic volume). METHODS We enrolled 143 patients with stable ischemic heart failure (HF) undergoing CRT-D implantation. NT-proBNP and echocardiography were obtained before and 6 months after. The patients were followed up (median: 58 months) for HF-related deaths and/or HF hospitalizations (primary endpoint) or HF-related deaths (secondary endpoint). RESULTS A total of 84 patients achieved the primary and 53 the secondary endpoint, while 104 patients were considered CRT responders and 39 non-responders. At baseline, event-free patients had higher absolute GLS values (p < 0.001) and lower NT-proBNP serum levels (p < 0001) than those achieving the primary endpoint. A similar pattern was observed in favor of CRT responders vs. non-responders. On Cox regression analysis, baseline absolute GLS value (HR = 0.77; 95% CI, 0.51-1.91; p = 0.002) was beneficially associated with lower primary endpoint incidence, while baseline NT-proBNP levels (HR = 1.55; 95% CI, 1.43-2.01; p = 0.002) and diabetes presence (HR = 1.27; 95% CI, 1.12-1.98; p = 0.003) were related to higher primary endpoint incidence. CONCLUSIONS In HF patients undergoing CRT-D, baseline GLS and NT-proBNP concentrations may serve as prognostic factors, while they may predict the echocardiographic-based response to CRT.
Collapse
Affiliation(s)
| | - Sjoerd Bouwmeester
- Department of Cardiology, Catharina Hospital Eindhoven, 5623 Eindhoven, The Netherlands
| | - Anouk G W de Lepper
- Department of Cardiology, Catharina Hospital Eindhoven, 5623 Eindhoven, The Netherlands
| | - Marloes C de Kleijn
- Department of Cardiology, Catharina Hospital Eindhoven, 5623 Eindhoven, The Netherlands
| | - Ingeborg H F Herold
- Department of Cardiology, Catharina Hospital Eindhoven, 5623 Eindhoven, The Netherlands
| | - Arthur R A Bouwman
- Department of Cardiology, Catharina Hospital Eindhoven, 5623 Eindhoven, The Netherlands
| | | | - Tim Simmers
- Department of Cardiology, Catharina Hospital Eindhoven, 5623 Eindhoven, The Netherlands
| | - Franke A L E Bracke
- Department of Cardiology, Catharina Hospital Eindhoven, 5623 Eindhoven, The Netherlands
| | - Patrick Houthuizen
- Department of Cardiology, Catharina Hospital Eindhoven, 5623 Eindhoven, The Netherlands
| |
Collapse
|
3
|
Pavía-López AA, Magaña-Serrano JA, Cigarroa-López JA, Chávez-Mendoza A, Mayorga-Butrón JL, Araiza-Garaygordobil D, Ivey-Miranda JB, Méndez-Machado GF, González-Godínez H, Aguilera-Mora LF, Jordán-Ríos A, Olmos-Domínguez L, Olalde-Román MJ, Miranda-Malpica EM, Vázquez-Ortiz Z, Rayo-Chávez J, Mendoza AA, Márquez-Murillo MF, Chávez-Leal SA, Gabriel AÁS, Silva-García MA, Pacheco-Bouthiller AD, Aldrete-Velazco JA, Guizar-Sánchez CA, Gaxiola-López E, Guerra-López A, Figueiras-Graillet L, Sánchez-Miranda G, Mendoza-Zavala GH, Aceves-García M, Chávez-Negrete A, Arroyo-Hernández M, Montaño-Velázquez BB, Romero-Moreno LF, Baquero-Hoyos MM, Velasco-Hidalgo L, Rodríguez-Lozano AL, Aguilar-Gómez NE, Rodríguez-Vega M, Cossío-Aranda JE. Clinical practice guidelines for diagnostic and treatment of the chronic heart failure. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2024; 94:1-74. [PMID: 38648647 PMCID: PMC11160508 DOI: 10.24875/acm.m24000095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 04/25/2024] Open
Abstract
Chronic heart failure continues to be one of the main causes of impairment in the functioning and quality of life of people who suffer from it, as well as one of the main causes of mortality in our country and around the world. Mexico has a high prevalence of risk factors for developing heart failure, such as high blood pressure, diabetes, and obesity, which makes it essential to have an evidence-based document that provides recommendations to health professionals involved in the diagnosis and treatment of these patients. This document establishes the clinical practice guide (CPG) prepared at the initiative of the Mexican Society of Cardiology (SMC) in collaboration with the Iberic American Agency for the Development and Evaluation of Health Technologies, with the purpose of establishing recommendations based on the best available evidence and agreed upon by an interdisciplinary group of experts. This document complies with international quality standards, such as those described by the US Institute of Medicine (IOM), the National Institute of Clinical Excellence (NICE), the Intercollegiate Network for Scottish Guideline Development (SIGN) and the Guidelines International Network (G-I-N). The Guideline Development Group was integrated in a multi-collaborative and interdisciplinary manner with the support of methodologists with experience in systematic literature reviews and the development of CPG. A modified Delphi panel methodology was developed and conducted to achieve an adequate level of consensus in each of the recommendations contained in this CPG. We hope that this document contributes to better clinical decision making and becomes a reference point for clinicians who manage patients with chronic heart failure in all their clinical stages and in this way, we improve the quality of clinical care, improve their quality of life and reducing its complications.
Collapse
Affiliation(s)
- Abel A. Pavía-López
- Coordinador de las Guías Mexicanas de Práctica Clínica de la Sociedad Mexicana de Cardiología, Centro Médico ABC, Ciudad de México, México
| | - José A. Magaña-Serrano
- Jefe de la División de Insuficiencia Cardiaca y Trasplante, Hospital Asociación Mexicana de Insuficiencia Cardiaca, Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Ciudad de México, México
- Presidente de la Asociación Mexicana de Insuficiencia Cardiaca, Ciudad de México, México
| | - José A. Cigarroa-López
- Jefe de la Clínica de Insuficiencia Cardiaca y Trasplante, Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Ciudad de México, México
| | - Adolfo Chávez-Mendoza
- Jefe de la Clínica de Insuficiencia Cardiaca Hospital de Día, Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Ciudad de México, México
| | - José L. Mayorga-Butrón
- Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México, México
- Unidad de Posgrado, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
- Ibero American Agency for Development & Assessment of Health Technologies
| | - Diego Araiza-Garaygordobil
- Adscrito a la Unidad Coronaria, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Juan B. Ivey-Miranda
- Adscrito a la Clínica de Insuficiencia Cardiaca Avanzada y Trasplante, Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Ciudad de México, México
| | - Gustavo F. Méndez-Machado
- Cardiólogo Especialista en Insuficiencia Cardiaca, Imperial College, Londres, Reino Unido
- Unidad de Investigación Clínica Hospital Ángeles Xalapa, Veracruz, México
| | | | - Luisa F. Aguilera-Mora
- Directora de la Clínica de Insuficiencia Cardiaca, Instituto Cardiovascular de Mínima Invasión, Hospital Puerta de Hierro, Zapopan, Jalisco, México
| | - Antonio Jordán-Ríos
- Coordinador Digital, Sociedad Mexicana de Cardiología A.C., México
- Cardiólogo Clínico, Ecocardiografía Adultos, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Luis Olmos-Domínguez
- Cardiólogo Adscrito a la Clínica de Insuficiencia Cardiaca, Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Ciudad de México, México
| | - Marcos J. Olalde-Román
- Cardiólogo Adscrito a la Clínica de Insuficiencia Cardiaca, Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Ciudad de México, México
| | | | | | - Jorge Rayo-Chávez
- Adscrito a la Clínica de Insuficiencia Cardiaca, Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Ciudad de México, México
| | - Alexandra A. Mendoza
- Cardióloga Especialista en Medicina Crítica, Centro Médico ABC Observatorio, Ciudad de México, México
- Jefa de Urgencias y Unidad Coronaria, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Manlio F. Márquez-Murillo
- Cardiólogo Especialista en Electrofisiología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Sergio A. Chávez-Leal
- Clínica de Insuficiencia Cardiaca, SIMNSA Health Care, Tijuana, Baja California, México
| | - Amada Álvarez-San Gabriel
- Coordinadora del Programa de Insuficiencia Cardiaca, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | | | - Alex D. Pacheco-Bouthiller
- Director de la Clínica de Arritmias y Estimulación Cardiaca, Instituto Cardiovascular de Mínima Invasión, Hospital Puerta de Hierro, Zapopan, Jalisco, México
| | | | - Carlos A. Guizar-Sánchez
- Coordinador del Programa de Insuficiencia Cardiaca, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
- Hospital Central Sur, PEMEX, Ciudad de México, México
| | | | | | | | | | - Genaro H. Mendoza-Zavala
- Adscrito a la Clínica de Insuficiencia Cardiaca, Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Moisés Aceves-García
- Adscrito a la Clínica de Insuficiencia Cardiaca, Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | | | - Marisol Arroyo-Hernández
- Adscrito a la Unidad Coronaria, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
- Servicio de Neumología, Instituto Nacional de Cancerología, Tlapan, México
| | - Bertha B. Montaño-Velázquez
- Adscrito a la Unidad Coronaria, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
- Hospital de Especialidades, Centro Médico Nacional La Raza, Ciudad de México, México
| | - Luis F. Romero-Moreno
- Adscrito a la Unidad Coronaria, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
- Médico Adscrito a la Fundación Hospital de la Misericordia, Bogotá, Colombia
| | - María M. Baquero-Hoyos
- Unidad de Posgrado, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
- Adscrito a la Unidad Coronaria, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Liliana Velasco-Hidalgo
- Unidad de Posgrado, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
- Adscrito a la Unidad Coronaria, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Ana L. Rodríguez-Lozano
- Unidad de Posgrado, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
- Adscrito a la Unidad Coronaria, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Nancy E. Aguilar-Gómez
- Unidad de Posgrado, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
- Adscrito a la Unidad Coronaria, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Mario Rodríguez-Vega
- Adscrito a la Unidad Coronaria, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | | |
Collapse
|
4
|
Knijnik L, Wang B, Cardoso R, Shanafelt C, Lloyd MS. Clinical outcomes of automatic algorithms in cardiac resynchronization therapy: Systematic review and meta-analysis. Heart Rhythm O2 2023; 4:618-624. [PMID: 37936674 PMCID: PMC10626183 DOI: 10.1016/j.hroo.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
Background Algorithms to automatically adjust atrioventricular (AV) and interventricular (VV) intervals in cardiac resynchronization therapy (CRT) devices are common, but their clinical efficacy is unknown. Objective The purpose of this study was to evaluate automatic CRT algorithms in patients with heart failure for the reduction of mortality, heart failure hospitalizations, and clinical improvement. Methods We performed a systematic review and meta-analysis of randomized controlled trials (RCTs) in patients with CRT using automatic algorithms that change AV and VV intervals dynamically without manual input, on a beat-to-beat basis. We performed a subgroup analysis including intracardiac electrogram-based (EGM) algorithms and contractility-based algorithms. Results Nine RCTs with 8531 participants were included, of whom 4275 (50.1%) were randomized to automatic algorithm. Seven of the 9 trials used EGM-based algorithms, and 2 used contractility sensors. There was no difference in all-cause mortality (10.3% vs 11.3%; odds ratio [OR] 0.90; 95% confidence interval [CI] 0.71-1.03; P = .13; I2 = 0%) or heart failure hospitalizations (15.0% vs 16.1%; OR 0.924; 95% CI 0.81-1.04; P = .194; I2 = 0%) between the automatic algorithm group and the control group. Study-defined clinical improvement was also not significantly different between groups (66.6% vs 63.3%; risk ratio 1.01; 95% CI 0.95-1.06; P = .82; I2 = 50%). In the contractility-based subgroup, there was a trend toward greater clinical improvement with the use of the automatic algorithm (75% vs 68.3%; OR 1.45; 95% CI 0.97-2.18; P = .07; I2 = 40%), which did not reach statistical significance. The overall risk of bias was low. Conclusion Automatic algorithms that change AV or VV intervals did not improve mortality, heart failure hospitalizations, or cardiovascular symptoms in patients with heart failure and CRT.
Collapse
Affiliation(s)
- Leonardo Knijnik
- Emory University Adult Congenital Heart Center, Atlanta, Georgia
| | - Bo Wang
- Emory University Adult Congenital Heart Center, Atlanta, Georgia
| | - Rhanderson Cardoso
- Heart and Vascular Center, Brigham and Women’s Hospital, Boston Massachusetts
| | - Colby Shanafelt
- Emory University Adult Congenital Heart Center, Atlanta, Georgia
| | - Michael S. Lloyd
- Emory University Adult Congenital Heart Center, Atlanta, Georgia
| |
Collapse
|
5
|
Gerrits W, Danad I, Velthuis B, Mushtaq S, Cramer MJ, van der Harst P, van Slochteren FJ, Meine M, Suchá D, Guglielmo M. Cardiac CT in CRT as a Singular Imaging Modality for Diagnosis and Patient-Tailored Management. J Clin Med 2023; 12:6212. [PMID: 37834855 PMCID: PMC10573271 DOI: 10.3390/jcm12196212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Between 30-40% of patients with cardiac resynchronization therapy (CRT) do not show an improvement in left ventricular (LV) function. It is generally known that patient selection, LV lead implantation location, and device timing optimization are the three main factors that determine CRT response. Research has shown that image-guided CRT placement, which takes into account both anatomical and functional cardiac properties, positively affects the CRT response rate. In current clinical practice, a multimodality imaging approach comprised of echocardiography, cardiac magnetic resonance imaging, or nuclear medicine imaging is used to capture these features. However, with cardiac computed tomography (CT), one has an all-in-one acquisition method for both patient selection and the division of a patient-tailored, image-guided CRT placement strategy. This review discusses the applicability of CT in CRT patient identification, selection, and guided placement, offering insights into potential advancements in optimizing CRT outcomes.
Collapse
Affiliation(s)
- Willem Gerrits
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Ibrahim Danad
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Birgitta Velthuis
- Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Saima Mushtaq
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Via Parea 4, 20138 Milan, Italy
| | - Maarten J. Cramer
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Pim van der Harst
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Frebus J. van Slochteren
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- CART-Tech BV, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Mathias Meine
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Dominika Suchá
- Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Marco Guglielmo
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Department of Cardiology, Haga Teaching Hospital, Els Borst-Eilersplein 275, 2545 AA The Hague, The Netherlands
| |
Collapse
|
6
|
Fyenbo DB, Bjerre HL, Frausing MHJP, Stephansen C, Sommer A, Borgquist R, Bakos Z, Glikson M, Milman A, Beinart R, Kockova R, Sedlacek K, Wichterle D, Saba S, Jain S, Shalaby A, Kronborg MB, Nielsen JC. Targeted left ventricular lead positioning to the site of latest activation in cardiac resynchronization therapy: a systematic review and meta-analysis. Europace 2023; 25:euad267. [PMID: 37695316 PMCID: PMC10507669 DOI: 10.1093/europace/euad267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023] Open
Abstract
AIMS Several studies have evaluated the use of electrically- or imaging-guided left ventricular (LV) lead placement in cardiac resynchronization therapy (CRT) recipients. We aimed to assess evidence for a guided strategy that targets LV lead position to the site of latest LV activation. METHODS AND RESULTS A systematic review and meta-analysis was performed for randomized controlled trials (RCTs) until March 2023 that evaluated electrically- or imaging-guided LV lead positioning on clinical and echocardiographic outcomes. The primary endpoint was a composite of all-cause mortality and heart failure hospitalization, and secondary endpoints were quality of life, 6-min walk test (6MWT), QRS duration, LV end-systolic volume, and LV ejection fraction. We included eight RCTs that comprised 1323 patients. Six RCTs compared guided strategy (n = 638) to routine (n = 468), and two RCTs compared different guiding strategies head-to-head: electrically- (n = 111) vs. imaging-guided (n = 106). Compared to routine, a guided strategy did not significantly reduce the risk of the primary endpoint after 12-24 (RR 0.83, 95% CI 0.52-1.33) months. A guided strategy was associated with slight improvement in 6MWT distance after 6 months of follow-up of absolute 18 (95% CI 6-30) m between groups, but not in remaining secondary endpoints. None of the secondary endpoints differed between the guided strategies. CONCLUSION In this study, a CRT implantation strategy that targets the latest LV activation did not improve survival or reduce heart failure hospitalizations.
Collapse
Affiliation(s)
- Daniel Benjamin Fyenbo
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Denmark
- Diagnostic Center, Silkeborg Regional Hospital, Falkevej 1A, 8600 Silkeborg, Denmark
| | - Henrik Laurits Bjerre
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Denmark
| | - Maria Hee Jung Park Frausing
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Denmark
| | - Charlotte Stephansen
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Anders Sommer
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | | | - Zoltan Bakos
- Department of Cardiology, Kristianstad Hospital, Kristianstad, Sweden
| | - Michael Glikson
- Jesselson Integrated Heart Center, Shaare Zedek Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Anat Milman
- Leviev Heart Institute, The Chaim Sheba Medical Center, Tel Hashomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Roy Beinart
- Leviev Heart Institute, The Chaim Sheba Medical Center, Tel Hashomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Radka Kockova
- Department of Cardiac Surgery, Na Homolce Hospital, Prague, Czech Republic
| | - Kamil Sedlacek
- 1st Department of Internal Medicine—Cardiology and Angiology, University Hospital, Hradec Králové, Czech Republic
- Faculty of Medicine, Charles University, Hradec Králové, Czech Republic
| | - Dan Wichterle
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Samir Saba
- Heart and Vascular Institute, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Sandeep Jain
- Heart and Vascular Institute, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Alaa Shalaby
- Heart and Vascular Institute, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Mads Brix Kronborg
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Denmark
| | - Jens Cosedis Nielsen
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Denmark
| |
Collapse
|
7
|
Liu Z, Yang J, Chen Y. The Chinese Experience of Imaging in Cardiac Intervention: A Bird's Eye Review. J Thorac Imaging 2022; 37:374-384. [PMID: 36162061 DOI: 10.1097/rti.0000000000000680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recent scientific and technological advances have greatly contributed to the development of medical imaging that could enable specific functions. It has become the primary focus of cardiac intervention in preoperative assessment, intraoperative guidance, and postoperative follow-up. This review provides a contemporary overview of the Chinese experience of imaging in cardiac intervention in recent years.
Collapse
Affiliation(s)
- Zinuan Liu
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital
- Medical School of Chinese PLA, Beijing, P.R. China
| | - Junjie Yang
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital
| | - Yundai Chen
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital
| |
Collapse
|
8
|
Mehta VS, Ayis S, Elliott MK, Widjesuriya N, Kardaman N, Gould J, Behar JM, Chiribiri A, Razavi R, Niederer S, Rinaldi CA. The role of guidance in delivering cardiac resynchronization therapy: A systematic review and network meta-analysis. Heart Rhythm O2 2022; 3:482-492. [PMID: 36340494 PMCID: PMC9626880 DOI: 10.1016/j.hroo.2022.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/28/2022] Open
Abstract
Background Positioning the left ventricular lead at the optimal myocardial segment has been proposed to improve cardiac resynchronization therapy (CRT) response. Objectives We performed a systematic review and network meta-analysis evaluating echocardiographic and clinical response delivered with different guidance modalities compared to conventional fluoroscopic positioning. Methods Randomized trials with ≥6 months follow-up comparing any combination of imaging, electrical, hemodynamic, or fluoroscopic guidance were included. Imaging modalities were split whether one modality was used: cardiac magnetic resonance (CMR), speckle-tracking echocardiography (STE), single-photon emission computed tomography, cardiac computed tomography (CT), or a combination of these, defined as “multimodality imaging.” Results Twelve studies were included (n = 1864). Pair-wise meta-analysis resulted in significant odds of reduction in left ventricular end-systolic volume (LVESV) >15% (odds ratio [OR] 1.50, 95% confidence interval [CI] 1.05–2.13, P = .025) and absolute reduction in LVESV (standardized mean difference [SMD] -0.25, 95% CI -0.43 to -0.08, P = .005) with guidance. CMR (OR 55.3, 95% CI 4.7–656.9, P = .002), electrical (OR 17.0, 95% CI 2.9–100, P = .002), multimodality imaging (OR 4.47, 95% CI 1.36–14.7, P = .014), and hemodynamic guidance (OR 1.29–28.0, P = .02) were significant in reducing LVESV >15%. Only STE demonstrated a significant reduction in absolute LVESV (SMD -0.38, 95% CI -0.68 to -0.09, P = .011]. CMR had the highest probability of improving clinical response (OR 17.9, 95% CI 5.14–62.5, P < .001). Conclusion Overall, guidance improves CRT outcomes. STE and multimodality imaging provided the most reliable evidence of efficacy. Wide CIs observed for results of CMR guidance suggest more powered studies are required before a clear ranking is possible.
Collapse
Affiliation(s)
- Vishal S. Mehta
- Cardiology Department, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Address reprint requests and correspondence: Dr Vishal S. Mehta, School of Biomedical Engineering and Imaging Sciences, St Thomas’ Hospital, London, SE1 7EH, UK.
| | - Salma Ayis
- School of Population Health and Environmental Sciences, King's College London, London, United Kingdom
| | - Mark K. Elliott
- Cardiology Department, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Nadeev Widjesuriya
- Cardiology Department, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Nuha Kardaman
- Cardiology Department, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Justin Gould
- Cardiology Department, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Jonathan M. Behar
- Cardiology Department, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Amedeo Chiribiri
- Cardiology Department, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Reza Razavi
- Cardiology Department, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Steven Niederer
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Christopher A. Rinaldi
- Cardiology Department, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| |
Collapse
|