1
|
Tong Y, Pu X, Chen S, Chen C, Chen Y, Chen W, Gong A, Cao Y, Fu H, Zeng R. Real-world evaluation of intracardiac echocardiography guided radio-frequency catheter ablation for atrial fibrillation: a retrospective cohort study. Sci Rep 2024; 14:31521. [PMID: 39733130 DOI: 10.1038/s41598-024-83186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/12/2024] [Indexed: 12/30/2024] Open
Abstract
Intracardiac echocardiography (ICE) has been used to guide radio-frequency catheter ablation (RFCA) for better catheter navigation and less radiation exposure in treating atrial fibrillation (AF). This retrospective cohort study enrolled 227 AF patients undergoing ICE- or traditional fluoroscopy (TF)-guided RFCA for AF in a tertiary hospital. ICE was used more often in patients with atrial tachycardia [odds ratio (OR) 3.692, p = 0.062], a higher score of Hypertension, Abnormal renal/liver function, Stroke, Bleeding history or predisposition, Labile INR, Elderly, Drugs/alcohol concomitantly (OR 1.541, p = 0.050), or heart failure (OR 2.098, p = 0.156). Based on the comparisons of 47 propensity score-matched pairs from 156 patients only undergoing pulmonary vein isolation (PVI), patients using ICE exhibited a significantly higher success rate in the first transseptal puncture (100% vs. 87.2%, p = 0.041) and less radiation exposure [utilization of radiographic contrast agent (2.7 ml vs. 6.0 ml, p < 0.001), fluoroscopy time (5.7 min vs. 7.6 min, p = 0.026), and fluoroscopy dose (208.4 mGy vs. 332.3 mGy, p = 0.024)] than patients using TF. Other perioperative efficacy outcomes (PVI success, free from AF after RFCA and complications) showed no difference between the matched pairs. ICE can enhance procedural safety and efficiency of RFCA, particularly for more complex patient profiles, in real-world setting.
Collapse
Affiliation(s)
- Yao Tong
- Department of Cardiology, West China Hospital of Sichuan University, 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400030, China
| | - Xiaobo Pu
- Department of Cardiology, West China Hospital of Sichuan University, 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Shi Chen
- Department of Cardiology, West China Hospital of Sichuan University, 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Chunjia Chen
- Changsha Normin Health Technology Ltd, Changsha, 410013, China
| | - Yi Chen
- Changsha Normin Health Technology Ltd, Changsha, 410013, China
| | - Wendong Chen
- Changsha Normin Health Technology Ltd, Changsha, 410013, China
- Normin Health Consulting Ltd, Mississauga, ON, L5R 0E9, Canada
| | - Aobo Gong
- Department of Cardiology, West China Hospital of Sichuan University, 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Ying Cao
- Department of Cardiology, West China Hospital of Sichuan University, 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Hua Fu
- Department of Cardiology, West China Hospital of Sichuan University, 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Rui Zeng
- Department of Cardiology, West China Hospital of Sichuan University, 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Tzeis S, Gerstenfeld EP, Kalman J, Saad EB, Sepehri Shamloo A, Andrade JG, Barbhaiya CR, Baykaner T, Boveda S, Calkins H, Chan N, Chen M, Chen S, Dagres N, Damiano RJ, De Potter T, Deisenhofer I, Derval N, Di Biase L, Duytschaever M, Dyrda K, Hindricks G, Hocini M, Kim Y, la Meir M, Merino JL, Michaud GF, Natale A, Nault I, Nava S, Nitta T, O’Neill M, Pak H, Piccini JP, Pürerfellner H, Reichlin T, Saenz LC, Sanders P, Schilling R, Schmidt B, Supple GE, Thomas KL, Tondo C, Verma A, Wan EY. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. J Arrhythm 2024; 40:1217-1354. [PMID: 39669937 PMCID: PMC11632303 DOI: 10.1002/joa3.13082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 12/14/2024] Open
Abstract
In the last three decades, ablation of atrial fibrillation (AF) has become an evidence-based safe and efficacious treatment for managing the most common cardiac arrhythmia. In 2007, the first joint expert consensus document was issued, guiding healthcare professionals involved in catheter or surgical AF ablation. Mounting research evidence and technological advances have resulted in a rapidly changing landscape in the field of catheter and surgical AF ablation, thus stressing the need for regularly updated versions of this partnership which were issued in 2012 and 2017. Seven years after the last consensus, an updated document was considered necessary to define a contemporary framework for selection and management of patients considered for or undergoing catheter or surgical AF ablation. This consensus is a joint effort from collaborating cardiac electrophysiology societies, namely the European Heart Rhythm Association, the Heart Rhythm Society, the Asia Pacific Heart Rhythm Society, and the Latin American Heart Rhythm Society.
Collapse
Affiliation(s)
| | | | - Jonathan Kalman
- Department of CardiologyRoyal Melbourne HospitalMelbourneAustralia
- Department of MedicineUniversity of Melbourne and Baker Research InstituteMelbourneAustralia
| | - Eduardo B. Saad
- Electrophysiology and PacingHospital Samaritano BotafogoRio de JaneiroBrazil
- Cardiac Arrhythmia Service, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | | | - Jason G. Andrade
- Department of MedicineVancouver General HospitalVancouverBritish ColumbiaCanada
| | | | - Tina Baykaner
- Division of Cardiology and Cardiovascular InstituteStanford UniversityStanfordCAUSA
| | - Serge Boveda
- Heart Rhythm Management DepartmentClinique PasteurToulouseFrance
- Universiteit Brussel (VUB)BrusselsBelgium
| | - Hugh Calkins
- Division of Cardiology, Department of MedicineJohns Hopkins UniversityBaltimoreMDUSA
| | - Ngai‐Yin Chan
- Department of Medicine and GeriatricsPrincess Margaret Hospital, Hong Kong Special Administrative RegionChina
| | - Minglong Chen
- The First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Shih‐Ann Chen
- Heart Rhythm CenterTaipei Veterans General Hospital, Taipei, and Cardiovascular Center, Taichung Veterans General HospitalTaichungTaiwan
| | | | - Ralph J. Damiano
- Division of Cardiothoracic Surgery, Department of SurgeryWashington University School of Medicine, Barnes‐Jewish HospitalSt. LouisMOUSA
| | | | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center MunichTechnical University of Munich (TUM) School of Medicine and HealthMunichGermany
| | - Nicolas Derval
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation DepartmentFondation Bordeaux Université and Bordeaux University Hospital (CHU)Pessac‐BordeauxFrance
| | - Luigi Di Biase
- Montefiore Medical CenterAlbert Einstein College of MedicineBronxNYUSA
| | | | - Katia Dyrda
- Department of Medicine, Montreal Heart InstituteUniversité de MontréalMontrealCanada
| | | | - Meleze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation DepartmentFondation Bordeaux Université and Bordeaux University Hospital (CHU)Pessac‐BordeauxFrance
| | - Young‐Hoon Kim
- Division of CardiologyKorea University College of Medicine and Korea University Medical CenterSeoulRepublic of Korea
| | - Mark la Meir
- Cardiac Surgery DepartmentVrije Universiteit Brussel, Universitair Ziekenhuis BrusselBrusselsBelgium
| | - Jose Luis Merino
- La Paz University Hospital, IdipazUniversidad AutonomaMadridSpain
- Hospital Viamed Santa ElenaMadridSpain
| | | | - Andrea Natale
- Texas Cardiac Arrhythmia InstituteSt. David's Medical CenterAustinTXUSA
- Case Western Reserve UniversityClevelandOHUSA
- Interventional ElectrophysiologyScripps ClinicSan DiegoCAUSA
- Department of Biomedicine and Prevention, Division of CardiologyUniversity of Tor VergataRomeItaly
| | - Isabelle Nault
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec (IUCPQ)QuebecCanada
| | - Santiago Nava
- Departamento de ElectrocardiologíaInstituto Nacional de Cardiología ‘Ignacio Chávez’Ciudad de MéxicoMéxico
| | - Takashi Nitta
- Department of Cardiovascular SurgeryNippon Medical SchoolTokyoJapan
| | - Mark O’Neill
- Cardiovascular DirectorateSt. Thomas’ Hospital and King's CollegeLondonUK
| | - Hui‐Nam Pak
- Division of Cardiology, Department of Internal MedicineYonsei University College of MedicineSeoulRepublic of Korea
| | | | | | - Tobias Reichlin
- Department of Cardiology, Inselspital BernBern University Hospital, University of BernBernSwitzerland
| | - Luis Carlos Saenz
- International Arrhythmia CenterCardioinfantil FoundationBogotaColombia
| | - Prashanthan Sanders
- Centre for Heart Rhythm DisordersUniversity of Adelaide and Royal Adelaide HospitalAdelaideAustralia
| | | | - Boris Schmidt
- Cardioangiologisches Centrum BethanienMedizinische Klinik III, Agaplesion MarkuskrankenhausFrankfurtGermany
| | - Gregory E. Supple
- Cardiac Electrophysiology SectionUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | | | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico MonzinoIRCCSMilanItaly
- Department of Biomedical, Surgical and Dental SciencesUniversity of MilanMilanItaly
| | - Atul Verma
- McGill University Health CentreMcGill UniversityMontrealCanada
| | - Elaine Y. Wan
- Department of Medicine, Division of CardiologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkNYUSA
| |
Collapse
|
3
|
Liu GA, Shao B, Wu W, Zhou L, Cui J, Chen W, Zhang R, Liu F. Safety and efficacy of intracardiac echocardiography-guided zero-fluoroscopy ablation in atrial fibrillation patients: a comparative study of high-power short-duration and low-power long-duration strategies. Front Cardiovasc Med 2024; 11:1510889. [PMID: 39639974 PMCID: PMC11617511 DOI: 10.3389/fcvm.2024.1510889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction In atrial fibrillation (AF) ablation, fluoroscopy has been a standard tool for catheter guidance. However, the combination of electroanatomic mapping systems (EAMs) and intracardiac echocardiography (ICE) now allows for minimal or zero-fluoroscopy procedures. Concurrently, high-power short-duration (HPSD) ablation has emerged as a promising technique, offering enhanced resistive heating while reducing conductive heating. This approach potentially improves both safety and efficacy. Despite these advancements, there is a lack of comprehensive clinical data on the safety and effectiveness of HPSD ablation when used in conjunction with ICE-guided zero-fluoroscopy procedures. Objective To compare two different ablation strategies-high-power short-duration (HPSD) and low-power long-duration (LPLD)-both utilizing intracardiac echocardiography (ICE)-guided zero-fluoroscopy in the context of atrial fibrillation (AF) ablation. Methods This retrospective study included 173 consecutive patients with AF who underwent ICE-guided zero-fluoroscopy ablation. Patients were divided into two groups: HPSD and LPLD. All procedures were conducted using an EAM system with ICE guidance. Both groups underwent routine pulmonary vein isolation (PVI), with additional linear ablations performed for persistent AF when necessary. We compared treatment outcomes and the incidence of complications between the two groups. Results All procedures were successfully completed under ICE-guided zero-fluoroscopy, establishing a feasible and reliable workflow. The procedure and ablation times were significantly shorter in the HPSD group compared to the LPLD group. At one-year follow-up, sinus rhythm was maintained in 77 patients in the HPSD group and 74 patients in the LPLD group, with no significant difference between the two group. Postoperative complications occurred in 5 patients in the HPSD group and 3 patients in the LPLD group. Importantly, there were no major adverse cardiac and cerebrovascular events (MACCE) in either group. Conclusion A zero-fluoroscopy workflow utilizing an EAM system combined with ICE appears to be both feasible and safe for ablation in AF patients. In patients undergoing ICE-guided zero-fluoroscopy ablation, the HPSD strategy is comparable to LPLD ablation in effectiveness while offering the benefit of shorter procedure and ablation times.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Feng Liu
- Department of Cardiology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, China
| |
Collapse
|
4
|
Tzeis S, Gerstenfeld EP, Kalman J, Saad EB, Shamloo AS, Andrade JG, Barbhaiya CR, Baykaner T, Boveda S, Calkins H, Chan NY, Chen M, Chen SA, Dagres N, Damiano RJ, De Potter T, Deisenhofer I, Derval N, Di Biase L, Duytschaever M, Dyrda K, Hindricks G, Hocini M, Kim YH, la Meir M, Merino JL, Michaud GF, Natale A, Nault I, Nava S, Nitta T, O'Neill M, Pak HN, Piccini JP, Pürerfellner H, Reichlin T, Saenz LC, Sanders P, Schilling R, Schmidt B, Supple GE, Thomas KL, Tondo C, Verma A, Wan EY. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm 2024; 21:e31-e149. [PMID: 38597857 DOI: 10.1016/j.hrthm.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
In the last three decades, ablation of atrial fibrillation (AF) has become an evidence-based safe and efficacious treatment for managing the most common cardiac arrhythmia. In 2007, the first joint expert consensus document was issued, guiding healthcare professionals involved in catheter or surgical AF ablation. Mounting research evidence and technological advances have resulted in a rapidly changing landscape in the field of catheter and surgical AF ablation, thus stressing the need for regularly updated versions of this partnership which were issued in 2012 and 2017. Seven years after the last consensus, an updated document was considered necessary to define a contemporary framework for selection and management of patients considered for or undergoing catheter or surgical AF ablation. This consensus is a joint effort from collaborating cardiac electrophysiology societies, namely the European Heart Rhythm Association, the Heart Rhythm Society, the Asia Pacific Heart Rhythm Society, and the Latin American Heart Rhythm Society.
Collapse
Affiliation(s)
- Stylianos Tzeis
- Department of Cardiology, Mitera Hospital, 6, Erythrou Stavrou Str., Marousi, Athens, PC 151 23, Greece.
| | - Edward P Gerstenfeld
- Section of Cardiac Electrophysiology, University of California, San Francisco, CA, USA
| | - Jonathan Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia; Department of Medicine, University of Melbourne and Baker Research Institute, Melbourne, Australia
| | - Eduardo B Saad
- Electrophysiology and Pacing, Hospital Samaritano Botafogo, Rio de Janeiro, Brazil; Cardiac Arrhythmia Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Jason G Andrade
- Department of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | - Tina Baykaner
- Division of Cardiology and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Serge Boveda
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France; Universiteit Brussel (VUB), Brussels, Belgium
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ngai-Yin Chan
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong Special Administrative Region, China
| | - Minglong Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shih-Ann Chen
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, and Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | - Ralph J Damiano
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MO, USA
| | | | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM) School of Medicine and Health, Munich, Germany
| | - Nicolas Derval
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Luigi Di Biase
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Katia Dyrda
- Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | | | - Meleze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Young-Hoon Kim
- Division of Cardiology, Korea University College of Medicine and Korea University Medical Center, Seoul, Republic of Korea
| | - Mark la Meir
- Cardiac Surgery Department, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Jose Luis Merino
- La Paz University Hospital, Idipaz, Universidad Autonoma, Madrid, Spain; Hospital Viamed Santa Elena, Madrid, Spain
| | | | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, TX, USA; Case Western Reserve University, Cleveland, OH, USA; Interventional Electrophysiology, Scripps Clinic, San Diego, CA, USA; Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Isabelle Nault
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec (IUCPQ), Quebec, Canada
| | - Santiago Nava
- Departamento de Electrocardiología, Instituto Nacional de Cardiología 'Ignacio Chávez', Ciudad de México, México
| | - Takashi Nitta
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan
| | - Mark O'Neill
- Cardiovascular Directorate, St. Thomas' Hospital and King's College, London, UK
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Tobias Reichlin
- Department of Cardiology, Inselspital Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luis Carlos Saenz
- International Arrhythmia Center, Cardioinfantil Foundation, Bogota, Colombia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | | | - Boris Schmidt
- Cardioangiologisches Centrum Bethanien, Medizinische Klinik III, Agaplesion Markuskrankenhaus, Frankfurt, Germany
| | - Gregory E Supple
- Cardiac Electrophysiology Section, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino, IRCCS, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Atul Verma
- McGill University Health Centre, McGill University, Montreal, Canada
| | - Elaine Y Wan
- Department of Medicine, Division of Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
5
|
Sousonis V, Asvestas D, Vavouris E, Karanikas S, Ypsilanti E, Tzeis S. The use of Intracardiac Echocardiography in Catheter Ablation of Atrial Fibrillation. Curr Cardiol Rep 2024; 26:893-901. [PMID: 38995505 DOI: 10.1007/s11886-024-02091-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
PURPOSE OF THE REVIEW Intracardiac echocardiography (ICE) provides real-time, fluoroless imaging of cardiac structures, allowing optimal catheter positioning and energy delivery during ablation procedures. This review summarizes the use of ICE in catheter ablation of atrial fibrillation (AF). RECENT FINDINGS Growing evidence suggests that the use of ICE improves procedural safety and facilitates radiofrequency and cryoballoon AF ablation. ICE-guided catheter ablation is associated with reduced procedural duration and fluoroscopy use. Recent studies have examined the role of ICE in guiding novel ablation techniques, such as pulsed field ablation. Finally, the use of ICE allows for early detection and timely management of potentially serious procedural complications. Intracardiac echocardiography offers significant advantages during AF ablation procedures and its use should be encouraged to improve procedural safety and efficacy.
Collapse
Affiliation(s)
- Vasileios Sousonis
- Department of Cardiology, Mitera Hospital, 6 Erithrou Stavrou str., Marousi, Athens, 151 23, Greece
| | - Dimitrios Asvestas
- Department of Cardiology, Mitera Hospital, 6 Erithrou Stavrou str., Marousi, Athens, 151 23, Greece
| | - Emmanouil Vavouris
- Department of Cardiology, Mitera Hospital, 6 Erithrou Stavrou str., Marousi, Athens, 151 23, Greece
| | - Stavros Karanikas
- Department of Cardiology, Mitera Hospital, 6 Erithrou Stavrou str., Marousi, Athens, 151 23, Greece
| | - Elissavet Ypsilanti
- Department of Cardiology, Mitera Hospital, 6 Erithrou Stavrou str., Marousi, Athens, 151 23, Greece
| | - Stylianos Tzeis
- Department of Cardiology, Mitera Hospital, 6 Erithrou Stavrou str., Marousi, Athens, 151 23, Greece.
| |
Collapse
|
6
|
Tzeis S, Gerstenfeld EP, Kalman J, Saad E, Shamloo AS, Andrade JG, Barbhaiya CR, Baykaner T, Boveda S, Calkins H, Chan NY, Chen M, Chen SA, Dagres N, Damiano RJ, De Potter T, Deisenhofer I, Derval N, Di Biase L, Duytschaever M, Dyrda K, Hindricks G, Hocini M, Kim YH, la Meir M, Merino JL, Michaud GF, Natale A, Nault I, Nava S, Nitta T, O'Neill M, Pak HN, Piccini JP, Pürerfellner H, Reichlin T, Saenz LC, Sanders P, Schilling R, Schmidt B, Supple GE, Thomas KL, Tondo C, Verma A, Wan EY. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. J Interv Card Electrophysiol 2024; 67:921-1072. [PMID: 38609733 DOI: 10.1007/s10840-024-01771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
In the last three decades, ablation of atrial fibrillation (AF) has become an evidence-based safe and efficacious treatment for managing the most common cardiac arrhythmia. In 2007, the first joint expert consensus document was issued, guiding healthcare professionals involved in catheter or surgical AF ablation. Mounting research evidence and technological advances have resulted in a rapidly changing landscape in the field of catheter and surgical AF ablation, thus stressing the need for regularly updated versions of this partnership which were issued in 2012 and 2017. Seven years after the last consensus, an updated document was considered necessary to define a contemporary framework for selection and management of patients considered for or undergoing catheter or surgical AF ablation. This consensus is a joint effort from collaborating cardiac electrophysiology societies, namely the European Heart Rhythm Association, the Heart Rhythm Society (HRS), the Asia Pacific HRS, and the Latin American HRS.
Collapse
Affiliation(s)
| | - Edward P Gerstenfeld
- Section of Cardiac Electrophysiology, University of California, San Francisco, CA, USA
| | - Jonathan Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne and Baker Research Institute, Melbourne, Australia
| | - Eduardo Saad
- Electrophysiology and Pacing, Hospital Samaritano Botafogo, Rio de Janeiro, Brazil
- Cardiac Arrhythmia Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Jason G Andrade
- Department of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | - Tina Baykaner
- Division of Cardiology and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Serge Boveda
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France
- Universiteit Brussel (VUB), Brussels, Belgium
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ngai-Yin Chan
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong Special Administrative Region, China
| | - Minglong Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shih-Ann Chen
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Nikolaos Dagres
- Department of Cardiac Electrophysiology, Charité University Berlin, Berlin, Germany
| | - Ralph J Damiano
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MO, USA
| | | | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM) School of Medicine and Health, Munich, Germany
| | - Nicolas Derval
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Luigi Di Biase
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Katia Dyrda
- Department of Cardiology, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - Gerhard Hindricks
- Department of Cardiac Electrophysiology, Charité University Berlin, Berlin, Germany
| | - Meleze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Young-Hoon Kim
- Division of Cardiology, Korea University College of Medicine and Korea University Medical Center, Seoul, Republic of Korea
| | - Mark la Meir
- Cardiac Surgery Department, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Jose Luis Merino
- La Paz University Hospital, Idipaz, Universidad Autonoma, Madrid, Spain
- Hospital Viamed Santa Elena, Madrid, Spain
| | - Gregory F Michaud
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, TX, USA
- Case Western Reserve University, Cleveland, OH, USA
- Interventional Electrophysiology, Scripps Clinic, San Diego, CA, USA
- Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Isabelle Nault
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec (IUCPQ), Quebec, Canada
| | - Santiago Nava
- Departamento de Electrocardiología, Instituto Nacional de Cardiología 'Ignacio Chávez', Ciudad de México, México
| | - Takashi Nitta
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan
| | - Mark O'Neill
- Cardiovascular Directorate, St. Thomas' Hospital and King's College, London, UK
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Tobias Reichlin
- Department of Cardiology, Inselspital Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luis Carlos Saenz
- International Arrhythmia Center, Cardioinfantil Foundation, Bogota, Colombia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | | | - Boris Schmidt
- Cardioangiologisches Centrum Bethanien, Medizinische Klinik III, Agaplesion Markuskrankenhaus, Frankfurt, Germany
| | - Gregory E Supple
- Cardiac Electrophysiology Section, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Atul Verma
- McGill University Health Centre, McGill University, Montreal, Canada
| | - Elaine Y Wan
- Department of Medicine, Division of Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
7
|
Tzeis S, Gerstenfeld EP, Kalman J, Saad EB, Sepehri Shamloo A, Andrade JG, Barbhaiya CR, Baykaner T, Boveda S, Calkins H, Chan NY, Chen M, Chen SA, Dagres N, Damiano RJ, De Potter T, Deisenhofer I, Derval N, Di Biase L, Duytschaever M, Dyrda K, Hindricks G, Hocini M, Kim YH, la Meir M, Merino JL, Michaud GF, Natale A, Nault I, Nava S, Nitta T, O’Neill M, Pak HN, Piccini JP, Pürerfellner H, Reichlin T, Saenz LC, Sanders P, Schilling R, Schmidt B, Supple GE, Thomas KL, Tondo C, Verma A, Wan EY. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. Europace 2024; 26:euae043. [PMID: 38587017 PMCID: PMC11000153 DOI: 10.1093/europace/euae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 04/09/2024] Open
Abstract
In the last three decades, ablation of atrial fibrillation (AF) has become an evidence-based safe and efficacious treatment for managing the most common cardiac arrhythmia. In 2007, the first joint expert consensus document was issued, guiding healthcare professionals involved in catheter or surgical AF ablation. Mounting research evidence and technological advances have resulted in a rapidly changing landscape in the field of catheter and surgical AF ablation, thus stressing the need for regularly updated versions of this partnership which were issued in 2012 and 2017. Seven years after the last consensus, an updated document was considered necessary to define a contemporary framework for selection and management of patients considered for or undergoing catheter or surgical AF ablation. This consensus is a joint effort from collaborating cardiac electrophysiology societies, namely the European Heart Rhythm Association, the Heart Rhythm Society, the Asia Pacific Heart Rhythm Society, and the Latin American Heart Rhythm Society .
Collapse
Affiliation(s)
- Stylianos Tzeis
- Department of Cardiology, Mitera Hospital, 6, Erythrou Stavrou Str., Marousi, Athens, PC 151 23, Greece
| | - Edward P Gerstenfeld
- Section of Cardiac Electrophysiology, University of California, San Francisco, CA, USA
| | - Jonathan Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne and Baker Research Institute, Melbourne, Australia
| | - Eduardo B Saad
- Electrophysiology and Pacing, Hospital Samaritano Botafogo, Rio de Janeiro, Brazil
- Cardiac Arrhythmia Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Jason G Andrade
- Department of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | - Tina Baykaner
- Division of Cardiology and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Serge Boveda
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France
- Universiteit Brussel (VUB), Brussels, Belgium
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ngai-Yin Chan
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong Special Administrative Region, China
| | - Minglong Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shih-Ann Chen
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, and Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | - Ralph J Damiano
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MO, USA
| | | | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM) School of Medicine and Health, Munich, Germany
| | - Nicolas Derval
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Luigi Di Biase
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Katia Dyrda
- Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | | | - Meleze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Young-Hoon Kim
- Division of Cardiology, Korea University College of Medicine and Korea University Medical Center, Seoul, Republic of Korea
| | - Mark la Meir
- Cardiac Surgery Department, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Jose Luis Merino
- La Paz University Hospital, Idipaz, Universidad Autonoma, Madrid, Spain
- Hospital Viamed Santa Elena, Madrid, Spain
| | | | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David’s Medical Center, Austin, TX, USA
- Case Western Reserve University, Cleveland, OH, USA
- Interventional Electrophysiology, Scripps Clinic, San Diego, CA, USA
- Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Isabelle Nault
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec (IUCPQ), Quebec, Canada
| | - Santiago Nava
- Departamento de Electrocardiología, Instituto Nacional de Cardiología ‘Ignacio Chávez’, Ciudad de México, México
| | - Takashi Nitta
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan
| | - Mark O’Neill
- Cardiovascular Directorate, St. Thomas’ Hospital and King’s College, London, UK
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Tobias Reichlin
- Department of Cardiology, Inselspital Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luis Carlos Saenz
- International Arrhythmia Center, Cardioinfantil Foundation, Bogota, Colombia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | | | - Boris Schmidt
- Cardioangiologisches Centrum Bethanien, Medizinische Klinik III, Agaplesion Markuskrankenhaus, Frankfurt, Germany
| | - Gregory E Supple
- Cardiac Electrophysiology Section, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Atul Verma
- McGill University Health Centre, McGill University, Montreal, Canada
| | - Elaine Y Wan
- Department of Medicine, Division of Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
8
|
Xie M, Liu D, Jia R, Bai Y, Chan J, Lin Z, Khairy P, Cui K. Comparison of safety and effectiveness of different sheaths in ablation of focal atrial tachycardia: a retrospective study. J Thorac Dis 2024; 16:2011-2018. [PMID: 38617770 PMCID: PMC11009573 DOI: 10.21037/jtd-24-52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/29/2024] [Indexed: 04/16/2024]
Abstract
Background A novel visualized steerable sheath, referred to as the Vizigo sheath, has been utilized in clinical interventions. The objective of this study was to evaluate and contrast the efficacy and safety of the Vizigo sheath with other sheaths in the catheter ablation (CA) for focal atrial tachycardia (FAT). Methods A retrospective cohort study was conducted on consecutive patients with CA for FAT from March 2019 to February 2022. Objectives were to assess the impact of the Vizigo sheath on acute and long-term ablation success rates, procedural and fluoroscopy times, and contact force (CF). Results A total of 164 patients, mean age 50±15 years, 97 (59.1%) women, underwent CA of FAT using the Vizigo sheath (N=42), non-visualized steerable sheath (N=36), or other conventional sheath (N=86). Age, sex, body mass index (BMI), presence of hypertension, heart failure, and diabetes mellitus were not significantly different among the three groups. The acute success rate of 94.0% was similar among the three groups. Over a follow-up of 14±2 months, the Vizigo sheath was associated with superior arrhythmia-free survival (88.1%) when compared to non-visualized steerable (69.4%; P=0.04) and other conventional (72.1%, P=0.046) sheaths. Procedural duration, number of ablation lesions, and ablation times were similar among the three groups. However, the Vizigo sheath was associated with lower fluoroscopy times (e.g., 145 vs. 250 s with Vizigo versus non-visualized steerable sheaths, P=0.03) and higher CF (e.g., average CF 12.0 versus 8.0 g with Vizigo versus non-visualized steerable sheaths, P=0.003). Conclusions The application of Vizigo sheath can improve the long-term success rate of FAT and reduce the radiation exposure of patients and medical staff in our single-center limited sample study. More research may be needed in the future to confirm our findings.
Collapse
Affiliation(s)
- Min Xie
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Cardiology, Chengdu Seventh People’s Hospital, Chengdu, China
| | - Dingming Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruikun Jia
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yixuan Bai
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Chan
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongyun Lin
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Paul Khairy
- Electrophysiology Service, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - Kaijun Cui
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
MA CS, WU SL, LIU SW, HAN YL. Chinese Guidelines for the Diagnosis and Management of Atrial Fibrillation. J Geriatr Cardiol 2024; 21:251-314. [PMID: 38665287 PMCID: PMC11040055 DOI: 10.26599/1671-5411.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024] Open
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, significantly impacting patients' quality of life and increasing the risk of death, stroke, heart failure, and dementia. Over the past two decades, there have been significant breakthroughs in AF risk prediction and screening, stroke prevention, rhythm control, catheter ablation, and integrated management. During this period, the scale, quality, and experience of AF management in China have greatly improved, providing a solid foundation for the development of guidelines for the diagnosis and management of AF. To further promote standardized AF management, and apply new technologies and concepts to clinical practice in a timely and comprehensive manner, the Chinese Society of Cardiology of the Chinese Medical Association and the Heart Rhythm Committee of the Chinese Society of Biomedical Engineering have jointly developed the Chinese Guidelines for the Diagnosis and Management of Atrial Fibrillation. The guidelines have comprehensively elaborated on various aspects of AF management and proposed the CHA2DS2-VASc-60 stroke risk score based on the characteristics of AF in the Asian population. The guidelines have also reevaluated the clinical application of AF screening, emphasized the significance of early rhythm control, and highlighted the central role of catheter ablation in rhythm control.
Collapse
|
10
|
Preda A, Bonvicini E, Coradello E, Testoni A, Gigli L, Baroni M, Carbonaro M, Vargiu S, Varrenti M, Colombo G, Paolucci M, Mazzone P, Guarracini F. The Fluoroless Future in Electrophysiology: A State-of-the-Art Review. Diagnostics (Basel) 2024; 14:182. [PMID: 38248058 PMCID: PMC10814721 DOI: 10.3390/diagnostics14020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Fluoroscopy has always been the cornerstone imaging method of interventional cardiology procedures. However, radiation exposure is linked to an increased risk of malignancies and multiorgan diseases. The medical team is even more exposed to X-rays, and a higher incidence of malignancies was reported in this professional group. In the last years, X-ray exposure has increased rapidly, involving, above all, the medical team and young patients and forcing alternative fluoroless imaging methods. In cardiac electrophysiology (EP) and pacing, the advent of 3D electroanatomic mapping systems with dedicated catheters has allowed real-time, high-density reconstruction of both heart anatomy and electrical activity, significantly reducing the use of fluoroscopy. In addition, the diffusion of intracardiac echocardiography has provided high anatomical resolution of moving cardiac structures, providing intraprocedural guidance for more complex catheter ablation procedures. These methods have largely demonstrated safety and effectiveness, allowing for a dramatic reduction in X-ray delivery in most arrhythmias' ablations. However, some technical concerns, as well as higher costs, currently do not allow their spread out in EP labs and limit their use to only procedures that are considered highly complex and time-consuming and in young patients. In this review, we aim to update the current employment of fluoroless imaging in different EP procedures, focusing on its strengths and weaknesses.
Collapse
Affiliation(s)
- Alberto Preda
- Electrophysiology Unit, Cardio-Thoraco-Vascular Department, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy (M.C.); (P.M.)
| | - Eleonora Bonvicini
- Division of Cardiology, Department of Medicine, Verona University Hospital, 37129 Verona, Italy
| | - Elena Coradello
- Division of Cardiology, Department of Medicine, Verona University Hospital, 37129 Verona, Italy
| | - Alessio Testoni
- Electrophysiology Unit, Cardio-Thoraco-Vascular Department, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy (M.C.); (P.M.)
| | - Lorenzo Gigli
- Electrophysiology Unit, Cardio-Thoraco-Vascular Department, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy (M.C.); (P.M.)
| | - Matteo Baroni
- Electrophysiology Unit, Cardio-Thoraco-Vascular Department, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy (M.C.); (P.M.)
| | - Marco Carbonaro
- Electrophysiology Unit, Cardio-Thoraco-Vascular Department, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy (M.C.); (P.M.)
| | - Sara Vargiu
- Electrophysiology Unit, Cardio-Thoraco-Vascular Department, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy (M.C.); (P.M.)
| | - Marisa Varrenti
- Electrophysiology Unit, Cardio-Thoraco-Vascular Department, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy (M.C.); (P.M.)
| | - Giulia Colombo
- Electrophysiology Unit, Cardio-Thoraco-Vascular Department, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy (M.C.); (P.M.)
| | - Marco Paolucci
- Electrophysiology Unit, Cardio-Thoraco-Vascular Department, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy (M.C.); (P.M.)
| | - Patrizio Mazzone
- Electrophysiology Unit, Cardio-Thoraco-Vascular Department, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy (M.C.); (P.M.)
| | - Fabrizio Guarracini
- Electrophysiology Unit, Cardio-Thoraco-Vascular Department, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy (M.C.); (P.M.)
| |
Collapse
|
11
|
Sommer P, Sciacca V, Anselmino M, Tilz R, Bourier F, Lehrmann H, Bulava A. Practical guidance to reduce radiation exposure in electrophysiology applying ultra low-dose protocols: a European Heart Rhythm Association review. Europace 2023; 25:euad191. [PMID: 37410906 PMCID: PMC10365833 DOI: 10.1093/europace/euad191] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Interventional electrophysiology offers a great variety of treatment options to patients suffering from symptomatic cardiac arrhythmia. Catheter ablation of supraventricular and ventricular tachycardia has globally evolved a cornerstone in modern arrhythmia management. Complex interventional electrophysiological procedures engaging multiple ablation tools have been developed over the past decades. Fluoroscopy enabled interventional electrophysiologist throughout the years to gain profound knowledge on intracardiac anatomy and catheter movement inside the cardiac cavities and hence develop specific ablation approaches. However, the application of X-ray technologies imposes serious health risks to patients and operators. To reduce the use of fluoroscopy during interventional electrophysiological procedures to the possibly lowest degree and to establish an optimal protection of patients and operators in cases of fluoroscopy is the main goal of modern radiation management. The present manuscript gives an overview of possible strategies of fluoroscopy reduction and specific radiation protection strategies.
Collapse
Affiliation(s)
- Philipp Sommer
- Clinic for Electrophysiology, Herz- und Diabeteszentrum NRW, Georgstr. 11, Bad Oeynhausen 32545, Germany
| | - Vanessa Sciacca
- Clinic for Electrophysiology, Herz- und Diabeteszentrum NRW, Georgstr. 11, Bad Oeynhausen 32545, Germany
| | - Matteo Anselmino
- Division of Cardiology, Department of Medical Sciences, ‘Citta della Salute e della Scienza di Torino’ Hospital, University of Turin, Torino, Italy
| | - Roland Tilz
- University Heart Center Lübeck, Department of Rhythmology, University Hospital Schleswig-Holstein, Luebeck, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Felix Bourier
- Department of Electrophysiology, German Heart Center, Technical University, Munich, Germany
| | - Heiko Lehrmann
- Department of Cardiology and Angiology (Campus Bad Krozingen), University Hospital Freiburg, Bad Krozingen, Germany
| | - Alan Bulava
- Department of Cardiology, Ceske Budejovice Hospital and Faculty of Health and Social Sciences, University of South Bohemia, Ceske Budejovice, Czech Republic
| |
Collapse
|
12
|
Debreceni D, Janosi K, Bocz B, Turcsan M, Lukacs R, Simor T, Antolič B, Vamos M, Komocsi A, Kupo P. Zero fluoroscopy catheter ablation for atrial fibrillation: a systematic review and meta-analysis. Front Cardiovasc Med 2023; 10:1178783. [PMID: 37396578 PMCID: PMC10313423 DOI: 10.3389/fcvm.2023.1178783] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/07/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction Catheter ablation for atrial fibrillation (AF) is the most frequently performed cardiac ablation procedure worldwide. The majority of ablations can now be performed safely with minimal radiation exposure or even without the use of fluoroscopy, thanks to advances in 3-dimensional electroanatomical mapping systems and/or intracardiac echocardiography. The aim of this study was to conduct a meta-analysis to compare the effectiveness of zero fluoroscopy (ZF) versus non-zero fluoroscopy (NZF) strategies for AF ablation procedures. Methods Electronic databases were searched and systematically reviewed for studies comparing procedural parameters and outcomes of ZF vs. NZF approaches in patients undergoing catheter ablation for AF. We used a random-effects model to derive the mean difference (MD) and risk ratios (RR) with a 95% confidence interval (CI). Results Our meta-analysis included seven studies comprising 1,593 patients. The ZF approach was found to be feasible in 95.1% of patients. Compared to the NZF approach, the ZF approach significantly reduced procedure time [mean difference (MD): -9.11 min (95% CI: -12.93 to -5.30 min; p < 0.01)], fluoroscopy time [MD: -5.21 min (95% CI: -5.51 to -4.91 min; p < 0.01)], and fluoroscopy dose [MD: -3.96 mGy (95% CI: -4.27 to -3.64; p < 0.01)]. However, there was no significant difference between the two groups in terms of total ablation time [MD: -104.26 s (95% CI: -183.37 to -25.14; p = 0.12)]. Furthermore, there was no significant difference in the acute [risk ratio (RR): 1.01, 95% CI: 1.00-1.02; p = 0.72] and long-term success rates (RR: 0.96, 95% CI: 0.90-1.03; p = 0.56) between the ZF and NZF methods. The complication rate was 2.76% in the entire study population and did not differ between the groups (RR: 0.94, 95% CI: 0.41-2.15; p = 0.89). Conclusion The ZF approach is a feasible method for AF ablation procedures. It significantly reduces procedure time and radiation exposure without compromising the acute and long-term success rates or complication rates.
Collapse
Affiliation(s)
| | - Kristof Janosi
- Heart Institute, Medical School, University of Pecs, Pecs, Hungary
| | - Botond Bocz
- Heart Institute, Medical School, University of Pecs, Pecs, Hungary
| | - Marton Turcsan
- Heart Institute, Medical School, University of Pecs, Pecs, Hungary
| | - Reka Lukacs
- Heart Institute, Medical School, University of Pecs, Pecs, Hungary
| | - Tamas Simor
- Heart Institute, Medical School, University of Pecs, Pecs, Hungary
| | - Bor Antolič
- Department of Cardiology, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Mate Vamos
- Cardiac Electrophysiology Division, Department of Internal Medicine, University of Szeged, Szeged, Hungary
| | - Andras Komocsi
- Heart Institute, Medical School, University of Pecs, Pecs, Hungary
| | - Peter Kupo
- Heart Institute, Medical School, University of Pecs, Pecs, Hungary
| |
Collapse
|
13
|
Garibaldi S, Chianca M, Fabiani I, Emdin M, Piacenti M, Passino C, Aimo A, Fedele A, Cipolla CM, Cardinale DM. Treatment Options in AF Patients with Cancer; Focus on Catheter Ablation. J Clin Med 2022; 11:jcm11154452. [PMID: 35956068 PMCID: PMC9369260 DOI: 10.3390/jcm11154452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/13/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Longer life expectancy along with advancements in cancer and atrial fibrillation (AF) therapies and treatment strategies have led to an increase in the number of individuals with both diseases. As a result, the complicated management of these patients has become crucial, necessitating individualised treatment that considers the bi-directional relationship between these two diseases. On the one hand, giving appropriate pharmaceutical therapy is exceptionally difficult, considering the recognised thromboembolic risk posed by AF and malignancy, as well as the haemorrhagic risk posed by cancer. The alternative pulmonary vein isolation (PVI) ablation, on the other hand, has been inadequately explored in the cancer patient population; there is yet inadequate data to allow the clinician to unambiguously select patients that can undertake this therapeutic intervention. The goal of this review is to compile the most valuable data and supporting evidence about the characteristics, care, and therapy of cancer patients with AF. Specifically, we will evaluate the pharmaceutical options for a proper anticoagulant therapy, as well as the feasibility and safety of PVI in this population.
Collapse
Affiliation(s)
- Silvia Garibaldi
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy; (S.G.); (M.E.); (M.P.); (C.P.)
| | - Michela Chianca
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, 56127 Pisa, Italy; (M.C.); (A.A.)
| | - Iacopo Fabiani
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy; (S.G.); (M.E.); (M.P.); (C.P.)
- Correspondence:
| | - Michele Emdin
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy; (S.G.); (M.E.); (M.P.); (C.P.)
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, 56127 Pisa, Italy; (M.C.); (A.A.)
| | - Marcello Piacenti
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy; (S.G.); (M.E.); (M.P.); (C.P.)
| | - Claudio Passino
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy; (S.G.); (M.E.); (M.P.); (C.P.)
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, 56127 Pisa, Italy; (M.C.); (A.A.)
| | - Alberto Aimo
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, 56127 Pisa, Italy; (M.C.); (A.A.)
| | - Antonella Fedele
- Cardioncology Unit, Cardioncology and Second Opinion Division, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, 20141 Milan, Italy; (A.F.); (C.M.C.); (D.M.C.)
| | - Carlo Maria Cipolla
- Cardioncology Unit, Cardioncology and Second Opinion Division, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, 20141 Milan, Italy; (A.F.); (C.M.C.); (D.M.C.)
| | - Daniela Maria Cardinale
- Cardioncology Unit, Cardioncology and Second Opinion Division, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, 20141 Milan, Italy; (A.F.); (C.M.C.); (D.M.C.)
| |
Collapse
|
14
|
Myrda K, Buchta P, Błachut A, Skrzypek M, Gąsior M. Temporary Trends Concerning the Extent and Efficacy of Atrial Fibrillation Ablation Using Radiofrequency Energy in a Polish Single-Center Experience. Medicina (B Aires) 2022; 58:medicina58020187. [PMID: 35208512 PMCID: PMC8878639 DOI: 10.3390/medicina58020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: Atrial fibrillation (AF) is the most common supraventricular arrhythmia. Currently, catheter ablation is a preferred treatment strategy. The main objective of our study was a temporary trends analysis of patients’ data undergoing a single AF ablation procedure using radiofrequency energy (RF). The efficacy of the procedure underwent assessment during a 12-month follow-up. Materials and Methods: We analyzed 585 consecutive patients with symptomatic, recurrent, and drug-refractory AF hospitalized in our department between 2013 and 2018 who underwent RF ablation supported by a 3D electroanatomical system. The baseline characteristics, periprocedural parameters, and efficacy of the procedure at 6-, 9- and 12-month follow-ups were analyzed over the years. Results: The number of patients undergoing ablation increased. Patients with paroxysmal AF predominated (71.5%). However, the number of patients with the persistent type of arrhythmia increased over the years. The percentage of patients with chronic heart failure (CHF) increased to 27.5% in 2018, and patients presented with increasingly larger left atria (LA). In all patients, circumferential pulmonary vein isolation was performed. The percentage of patients who underwent arrhythmogenic substrate modification and cavotricuspid isthmus ablation increased. Over the years, the efficacy of a single procedure at the 12-month follow-up remained without significant differences between the years (72.0%, 69.6%, 75.5%, 74.8%, 71.7%, 71.7%). Conclusions: The rate of patients with CHF and advanced LA disease undergoing more extensive ablation increased over the years. The efficacy of a single procedure remained without significant differences between the years.
Collapse
Affiliation(s)
- Krzysztof Myrda
- 3rd Department of Cardiology, Silesian Center for Heart Diseases, 41-800 Zabrze, Poland; (A.B.); (M.G.)
- Correspondence: ; Tel.: +48-506-603-277
| | - Piotr Buchta
- Silesian Center for Heart Diseases, 41-800 Zabrze, Poland;
| | - Aleksandra Błachut
- 3rd Department of Cardiology, Silesian Center for Heart Diseases, 41-800 Zabrze, Poland; (A.B.); (M.G.)
| | - Michał Skrzypek
- Department of Biostatistics, School of Health Sciences in Bytom, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Mariusz Gąsior
- 3rd Department of Cardiology, Silesian Center for Heart Diseases, 41-800 Zabrze, Poland; (A.B.); (M.G.)
- 3rd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
15
|
Bertini M, Pompei G, Tolomeo P, Malagù M, Fiorio A, Balla C, Vitali F, Rapezzi C. Zero-Fluoroscopy Cardiac Ablation: Technology Is Moving Forward in Complex Procedures—A Novel Workflow for Atrial Fibrillation. BIOLOGY 2021; 10:biology10121333. [PMID: 34943247 PMCID: PMC8698328 DOI: 10.3390/biology10121333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/04/2021] [Accepted: 12/13/2021] [Indexed: 12/01/2022]
Abstract
Simple Summary Electrophysiological procedures are mainly performed using fluoroscopy, exposing both healthcare staff and patients to a non-negligible dose of radiation. To date, simple ablation procedures have often been approached with zero fluoroscopy. In complex ablation procedures, such as atrial fibrillation (AF) ablation, zero fluoroscopy is still challenging mainly because of transseptal puncture. We report a workflow to perform a complete zero-fluoroscopy AF ablation using a 3D electro-anatomical mapping system, intracardiac echocardiography and a novel steerable guiding sheath visible on the mapping system. We describe two cases, one with paroxysmal AF and the other with persistent AF during which this novel workflow was successfully applied with complete zero-fluoroscopy exposure and achieving pulmonary vein isolation. Abstract Background and Rationale. A fluoroscopy-based approach to an electrophysiological procedure is widely validated and has been recognized as the gold standard for a long time. The use of fluoroscopy exposes both the healthcare staff and the patient to a non-negligible dose of radiation. To minimize the risks associated with the use of fluoroscopy, it would be reasonable to perform ablation procedures with zero fluoroscopy. This approach is widely used in simple ablation procedures, but not in complex procedures. In atrial fibrillation (AF) ablation procedures, fluoroscopy remains the main technology used, in particular to guide the transseptal puncture. Main results and Implications. We present a workflow to perform a complete zero-fluoroscopy ablation for AF ablation procedures using a 3D electro-anatomical mapping system, intracardiac echocardiography and a novel steerable guiding sheath that can be visualized on the mapping system. We present two cases, one with paroxysmal AF and the other one with persistent AF during which we applied this novel workflow achieving a successful pulmonary vein isolation without complications and complete zero-fluoroscopy exposure.
Collapse
Affiliation(s)
- Matteo Bertini
- Correspondence: ; Tel.: +39-0532236269; Fax: +39-0532236593
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Guo R, Jia R, Cen Z, Lu S, Yang C, Han S, Li D, Cui K. Effects of the visualized steerable sheath applied to catheter ablation of paroxysmal atrial fibrillation. J Interv Card Electrophysiol 2021; 64:511-518. [PMID: 34850310 DOI: 10.1007/s10840-021-01096-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/17/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE A new type of visualized steerable sheath (Vizigo sheath; Biosense Webster Inc., Irvine, CA, USA) has been employed in clinical treatment. This study aimed to compare the effectiveness and safety of the Vizigo sheath to a fixed sheath (Swartz sheath; St. Jude Inc., St. Paul, MN, USA) for catheter ablation of paroxysmal atrial fibrillation (PAF). METHODS We analyzed the procedural time, fluoroscopy time, contact force (CF), and initial pulmonary vein isolation (PVI) rate. After 6 months of follow-up, the success rate of ablation between the two groups was compared. RESULTS Compared to the Swartz sheath, using the Vizigo sheath can significantly reduce the total procedural time and fluoroscopy time and increase the overall average CF, especially in the anterior left pulmonary vein (LPV), superior LPV, posterior right pulmonary vein (RPV), and superior RPV. The proportion of CF within a reasonable range in the Vizigo group was significantly higher than that in the Swartz group, especially in the anterior LPV, posterior RPV, and superior RPV. Besides, the left, right, and bilateral initial PVI rates in the Vizigo group were significantly higher. CONCLUSIONS The visualized steerable sheath for PAF catheter ablation not only reduced radiation exposure but also significantly improved CF and initial PVI rate, all of which indicated an increased rate of successful ablation.
Collapse
Affiliation(s)
- Ran Guo
- West China Hospital, (Department of Cardiology), Sichuan University, Chengdu, 610041, People's Republic of China
| | - Ruikun Jia
- West China Hospital, (Department of Cardiology), Sichuan University, Chengdu, 610041, People's Republic of China
| | - Zhifu Cen
- West China Hospital, (Department of Cardiology), Sichuan University, Chengdu, 610041, People's Republic of China
| | - Sijie Lu
- West China Hospital, (Department of Cardiology), Sichuan University, Chengdu, 610041, People's Republic of China
| | - Chao Yang
- West China Hospital, (Department of Cardiology), Sichuan University, Chengdu, 610041, People's Republic of China
| | - Shaojie Han
- West China Hospital, (Department of Cardiology), Sichuan University, Chengdu, 610041, People's Republic of China
| | - Dong Li
- Mianyang Central Hospital, (Department of Cardiology), University of Electronic Science and Technology of China, Mianyang, 621000, People's Republic of China.
| | - Kaijun Cui
- West China Hospital, (Department of Cardiology), Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|