1
|
Ramineni V, Millroth P, Iyadurai L, Jaki T, Kingslake J, Highfield J, Summers C, Bonsall MB, Holmes EA. Treating intrusive memories after trauma in healthcare workers: a Bayesian adaptive randomised trial developing an imagery-competing task intervention. Mol Psychiatry 2023; 28:2985-2994. [PMID: 37100869 PMCID: PMC10131522 DOI: 10.1038/s41380-023-02062-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/28/2023]
Abstract
Intensive care unit (ICU) staff continue to face recurrent work-related traumatic events throughout the COVID-19 pandemic. Intrusive memories (IMs) of such traumatic events comprise sensory image-based memories. Harnessing research on preventing IMs with a novel behavioural intervention on the day of trauma, here we take critical next steps in developing this approach as a treatment for ICU staff who are already experiencing IMs days, weeks, or months post-trauma. To address the urgent need to develop novel mental health interventions, we used Bayesian statistical approaches to optimise a brief imagery-competing task intervention to reduce the number of IMs. We evaluated a digitised version of the intervention for remote, scalable delivery. We conducted a two-arm, parallel-group, randomised, adaptive Bayesian optimisation trial. Eligible participants worked clinically in a UK NHS ICU during the pandemic, experienced at least one work-related traumatic event, and at least three IMs in the week prior to recruitment. Participants were randomised to receive immediate or delayed (after 4 weeks) access to the intervention. Primary outcome was the number of IMs of trauma during week 4, controlling for baseline week. Analyses were conducted on an intention-to-treat basis as a between-group comparison. Prior to final analysis, sequential Bayesian analyses were conducted (n = 20, 23, 29, 37, 41, 45) to inform early stopping of the trial prior to the planned maximum recruitment (n = 150). Final analysis (n = 75) showed strong evidence for a positive treatment effect (Bayes factor, BF = 1.25 × 106): the immediate arm reported fewer IMs (median = 1, IQR = 0-3) than the delayed arm (median = 10, IQR = 6-16.5). With further digital enhancements, the intervention (n = 28) also showed a positive treatment effect (BF = 7.31). Sequential Bayesian analyses provided evidence for reducing IMs of work-related trauma for healthcare workers. This methodology also allowed us to rule out negative effects early, reduced the planned maximum sample size, and allowed evaluation of enhancements. Trial Registration NCT04992390 ( www.clinicaltrials.gov ).
Collapse
Affiliation(s)
- Varsha Ramineni
- Department of Psychology, Uppsala University, Uppsala, Uppsala County, Sweden
- P1vital Products Ltd, Wallingford, Oxfordshire, UK
| | - Philip Millroth
- Department of Psychology, Uppsala University, Uppsala, Uppsala County, Sweden
| | | | - Thomas Jaki
- MRC Biostatistics Unit, University of Cambridge, Cambridge, Cambridgeshire, UK
- University of Regensburg, Regensburg, Bavaria, Germany
| | | | | | - Charlotte Summers
- Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Michael B Bonsall
- Department of Biology, University of Oxford, Oxford, Oxfordshire, UK
| | - Emily A Holmes
- Department of Psychology, Uppsala University, Uppsala, Uppsala County, Sweden.
| |
Collapse
|
2
|
Khoo SH, FitzGerald R, Saunders G, Middleton C, Ahmad S, Edwards CJ, Hadjiyiannakis D, Walker L, Lyon R, Shaw V, Mozgunov P, Periselneris J, Woods C, Bullock K, Hale C, Reynolds H, Downs N, Ewings S, Buadi A, Cameron D, Edwards T, Knox E, Donovan-Banfield I, Greenhalf W, Chiong J, Lavelle-Langham L, Jacobs M, Northey J, Painter W, Holman W, Lalloo DG, Tetlow M, Hiscox JA, Jaki T, Fletcher T, Griffiths G, Hayden F, Darbyshire J, Lucas A, Lorch U, Freedman A, Knight R, Julious S, Byrne R, Cubas Atienzar A, Jones J, Williams C, Song A, Dixon J, Alexandersson A, Hatchard P, Tilt E, Titman A, Doce Carracedo A, Chandran Gorner V, Davies A, Woodhouse L, Carlucci N, Okenyi E, Bula M, Dodd K, Gibney J, Dry L, Rashid Gardner Z, Sammour A, Cole C, Rowland T, Tsakiroglu M, Yip V, Osanlou R, Stewart A, Parker B, Turgut T, Ahmed A, Starkey K, Subin S, Stockdale J, Herring L, Baker J, Oliver A, Pacurar M, Owens D, Munro A, Babbage G, Faust S, Harvey M, Pratt D, Nagra D, Vyas A. Molnupiravir versus placebo in unvaccinated and vaccinated patients with early SARS-CoV-2 infection in the UK (AGILE CST-2): a randomised, placebo-controlled, double-blind, phase 2 trial. THE LANCET. INFECTIOUS DISEASES 2023; 23:183-195. [PMID: 36272432 PMCID: PMC9662684 DOI: 10.1016/s1473-3099(22)00644-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND The antiviral drug molnupiravir was licensed for treating at-risk patients with COVID-19 on the basis of data from unvaccinated adults. We aimed to evaluate the safety and virological efficacy of molnupiravir in vaccinated and unvaccinated individuals with COVID-19. METHODS This randomised, placebo-controlled, double-blind, phase 2 trial (AGILE CST-2) was done at five National Institute for Health and Care Research sites in the UK. Eligible participants were adult (aged ≥18 years) outpatients with PCR-confirmed, mild-to-moderate SARS-CoV-2 infection who were within 5 days of symptom onset. Using permuted blocks (block size 2 or 4) and stratifying by site, participants were randomly assigned (1:1) to receive either molnupiravir (orally; 800 mg twice daily for 5 days) plus standard of care or matching placebo plus standard of care. The primary outcome was the time from randomisation to SARS-CoV-2 PCR negativity on nasopharyngeal swabs and was analysed by use of a Bayesian Cox proportional hazards model for estimating the probability of a superior virological response (hazard ratio [HR]>1) for molnupiravir versus placebo. Our primary model used a two-point prior based on equal prior probabilities (50%) that the HR was 1·0 or 1·5. We defined a priori that if the probability of a HR of more than 1 was more than 80% molnupiravir would be recommended for further testing. The primary outcome was analysed in the intention-to-treat population and safety was analysed in the safety population, comprising participants who had received at least one dose of allocated treatment. This trial is registered in ClinicalTrials.gov, NCT04746183, and the ISRCTN registry, ISRCTN27106947, and is ongoing. FINDINGS Between Nov 18, 2020, and March 16, 2022, 1723 patients were assessed for eligibility, of whom 180 were randomly assigned to receive either molnupiravir (n=90) or placebo (n=90) and were included in the intention-to-treat analysis. 103 (57%) of 180 participants were female and 77 (43%) were male and 90 (50%) participants had received at least one dose of a COVID-19 vaccine. SARS-CoV-2 infections with the delta (B.1.617.2; 72 [40%] of 180), alpha (B.1.1.7; 37 [21%]), omicron (B.1.1.529; 38 [21%]), and EU1 (B.1.177; 28 [16%]) variants were represented. All 180 participants received at least one dose of treatment and four participants discontinued the study (one in the molnupiravir group and three in the placebo group). Participants in the molnupiravir group had a faster median time from randomisation to negative PCR (8 days [95% CI 8-9]) than participants in the placebo group (11 days [10-11]; HR 1·30, 95% credible interval 0·92-1·71; log-rank p=0·074). The probability of molnupiravir being superior to placebo (HR>1) was 75·4%, which was less than our threshold of 80%. 73 (81%) of 90 participants in the molnupiravir group and 68 (76%) of 90 participants in the placebo group had at least one adverse event by day 29. One participant in the molnupiravir group and three participants in the placebo group had an adverse event of a Common Terminology Criteria for Adverse Events grade 3 or higher severity. No participants died (due to any cause) during the trial. INTERPRETATION We found molnupiravir to be well tolerated and, although our predefined threshold was not reached, we observed some evidence that molnupiravir has antiviral activity in vaccinated and unvaccinated individuals infected with a broad range of SARS-CoV-2 variants, although this evidence is not conclusive. FUNDING Ridgeback Biotherapeutics, the UK National Institute for Health and Care Research, the Medical Research Council, and the Wellcome Trust.
Collapse
Affiliation(s)
- Saye H Khoo
- Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK; Tropical and Infectious Disease Unit, Liverpool University Hospital NHS Foundation Trust, Liverpool, UK.
| | - Richard FitzGerald
- Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK,NIHR Royal Liverpool and Broadgreen Clinical Research Facility, Liverpool University Hospital NHS Foundation Trust, Liverpool, UK
| | - Geoffrey Saunders
- Southampton Clinical Trials Unit, University of Southampton, Southampton, UK
| | - Calley Middleton
- Southampton Clinical Trials Unit, University of Southampton, Southampton, UK
| | - Shazaad Ahmad
- NIHR Manchester Clinical Research Facility, Manchester University NHS Foundation Trust, Manchester, UK
| | - Christopher J Edwards
- Human Development and Health School, University of Southampton, Southampton, UK,NIHR Southampton Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Dennis Hadjiyiannakis
- NIHR Lancashire Clinical Research Facility, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
| | - Lauren Walker
- Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK,NIHR Royal Liverpool and Broadgreen Clinical Research Facility, Liverpool University Hospital NHS Foundation Trust, Liverpool, UK
| | - Rebecca Lyon
- NIHR Royal Liverpool and Broadgreen Clinical Research Facility, Liverpool University Hospital NHS Foundation Trust, Liverpool, UK
| | - Victoria Shaw
- Clinical Directorate, University of Liverpool, Liverpool, UK
| | - Pavel Mozgunov
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Jimstan Periselneris
- NIHR Kings Clinical Research Facility, King's College Hospital NHS Foundation Trust, London, UK
| | - Christie Woods
- NIHR Royal Liverpool and Broadgreen Clinical Research Facility, Liverpool University Hospital NHS Foundation Trust, Liverpool, UK
| | - Katie Bullock
- Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Colin Hale
- NIHR Royal Liverpool and Broadgreen Clinical Research Facility, Liverpool University Hospital NHS Foundation Trust, Liverpool, UK
| | - Helen Reynolds
- Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Nichola Downs
- Southampton Clinical Trials Unit, University of Southampton, Southampton, UK
| | - Sean Ewings
- Southampton Clinical Trials Unit, University of Southampton, Southampton, UK
| | - Amanda Buadi
- NIHR Southampton Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - David Cameron
- NIHR Lancashire Clinical Research Facility, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
| | | | - Emma Knox
- Southampton Clinical Trials Unit, University of Southampton, Southampton, UK
| | - I'ah Donovan-Banfield
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK,National Institute of Health Research Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
| | - William Greenhalf
- Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Justin Chiong
- Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | | | - Michael Jacobs
- Infectious Diseases, Royal Free London NHS Foundation Trust, London, UK
| | - Josh Northey
- Southampton Clinical Trials Unit, University of Southampton, Southampton, UK
| | | | | | | | - Michelle Tetlow
- Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Julian A Hiscox
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK,National Institute of Health Research Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
| | - Thomas Jaki
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK,Computational Statistics, University of Regensburg, Regensburg, Germany
| | - Thomas Fletcher
- Tropical and Infectious Disease Unit, Liverpool University Hospital NHS Foundation Trust, Liverpool, UK,Clinical Sciences, Liverpool, UK
| | - Gareth Griffiths
- Southampton Clinical Trials Unit, University of Southampton, Southampton, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|