1
|
Jiang Z, Ainiwaer M, Liu J, Ying B, Luo F, Sun X. Hydrogen therapy: recent advances and emerging materials. Biomater Sci 2024; 12:4136-4154. [PMID: 39021349 DOI: 10.1039/d4bm00446a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Hydrogen therapy, leveraging its selective attenuation of hydroxyl radicals (˙OH) and ONOO-, has emerged as a pivotal pathophysiological modulator with antioxidant, anti-inflammatory, and antiapoptotic attributes. Hydrogen therapy has been extensively studied both preclinically and clinically, especially in diseases with an inflammatory nature. Despite the substantial progress, challenges persist in achieving high hydrogen concentrations in target lesions, especially in cancer treatment. A notable breakthrough lies in water/acid reactive materials, offering enhanced hydrogen generation and sustained release potential. However, limitations include hydrogen termination upon material depletion and reduced bioavailability at targeted lesions. To overcome these challenges, catalytic materials like photocatalytic and sonocatalytic materials have surfaced as promising solutions. With enhanced permeability and retention effects, these materials exhibit targeted delivery and sustained stimuli-reactive hydrogen release. The future of hydrogen therapy hinges on continuous exploration and modification of catalytic materials. Researchers are urged to prioritize improved catalytic efficiency, enhanced lesion targeting effects, and heightened biosafety and biocompatibility in future development.
Collapse
Affiliation(s)
- Zheng Jiang
- Department of Otolaryngology, Head and Neck surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Mailudan Ainiwaer
- Department of Otolaryngology, Head and Neck surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jun Liu
- Department of Otolaryngology, Head and Neck surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Fengming Luo
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xuping Sun
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| |
Collapse
|
2
|
Kura B, Slezak J. The Protective Role of Molecular Hydrogen in Ischemia/Reperfusion Injury. Int J Mol Sci 2024; 25:7884. [PMID: 39063126 PMCID: PMC11276695 DOI: 10.3390/ijms25147884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Ischemia/reperfusion injury (IRI) represents a significant contributor to morbidity and mortality associated with various clinical conditions, including acute coronary syndrome, stroke, and organ transplantation. During ischemia, a profound hypoxic insult develops, resulting in cellular dysfunction and tissue damage. Paradoxically, reperfusion can exacerbate this injury through the generation of reactive oxygen species and the induction of inflammatory cascades. The extensive clinical sequelae of IRI necessitate the development of therapeutic strategies to mitigate its deleterious effects. This has become a cornerstone of ongoing research efforts in both basic and translational science. This review examines the use of molecular hydrogen for IRI in different organs and explores the underlying mechanisms of its action. Molecular hydrogen is a selective antioxidant with anti-inflammatory, cytoprotective, and signal-modulatory properties. It has been shown to be effective at mitigating IRI in different models, including heart failure, cerebral stroke, transplantation, and surgical interventions. Hydrogen reduces IRI via different mechanisms, like the suppression of oxidative stress and inflammation, the enhancement of ATP production, decreasing calcium overload, regulating cell death, etc. Further research is still needed to integrate the use of molecular hydrogen into clinical practice.
Collapse
Affiliation(s)
- Branislav Kura
- Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia;
| | | |
Collapse
|
3
|
Obara T, Naito H, Nojima T, Hirayama T, Hongo T, Ageta K, Aokage T, Hisamura M, Yumoto T, Nakao A. Hydrogen in Transplantation: Potential Applications and Therapeutic Implications. Biomedicines 2024; 12:118. [PMID: 38255223 PMCID: PMC10813693 DOI: 10.3390/biomedicines12010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Hydrogen gas, renowned for its antioxidant properties, has emerged as a novel therapeutic agent with applications across various medical domains, positioning it as a potential adjunct therapy in transplantation. Beyond its antioxidative properties, hydrogen also exerts anti-inflammatory effects by modulating pro-inflammatory cytokines and signaling pathways. Furthermore, hydrogen's capacity to activate cytoprotective pathways bolsters cellular resilience against stressors. In recent decades, significant advancements have been made in the critical medical procedure of transplantation. However, persistent challenges such as ischemia-reperfusion injury (IRI) and graft rejection continue to hinder transplant success rates. This comprehensive review explores the potential applications and therapeutic implications of hydrogen in transplantation, shedding light on its role in mitigating IRI, improving graft survival, and modulating immune responses. Through a meticulous analysis encompassing both preclinical and clinical studies, we aim to provide valuable insights into the promising utility of hydrogen as a complementary therapy in transplantation.
Collapse
Affiliation(s)
| | - Hiromichi Naito
- Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (T.O.); (T.N.); (T.H.); (T.H.); (K.A.); (T.A.); (M.H.); (T.Y.); (A.N.)
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Peng J, He Q, Li S, Liu T, Zhang J. Hydrogen-Rich Water Mitigates LPS-Induced Chronic Intestinal Inflammatory Response in Rats via Nrf-2 and NF-κB Signaling Pathways. Vet Sci 2022; 9:621. [PMID: 36356098 PMCID: PMC9692594 DOI: 10.3390/vetsci9110621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 04/04/2024] Open
Abstract
Long-term exposure to low-dose lipopolysaccharide can impair intestinal barriers, causing intestinal inflammation and leading to systemic inflammation. Hydrogen-rich water possesses antioxidant and anti-inflammatory functions and exerts inhibitory effects on various inflammatory diseases. In this study, we investigated whether oral hydrogen-rich water could prevent lipopolysaccharide-induced chronic intestinal inflammation. An experimental model was established by feeding hydrogen-rich water, followed by the injection of lipopolysaccharide (200 μg/kg) in the tail vein of rats after seven months. ELISA, Western blot, immunohistochemistry, and other methods were used to detect related cytokines, proteins related to the NF-κB and Nrf-2 signaling pathways, and tight-junction proteins to study the anti-inflammatory and antioxidant effects of hydrogen-rich water. The obtained results show that hydrogen-rich water significantly increased the levels of superoxide dismutase and structural proteins; activated the Nrf-2 signaling pathway; downregulated the expression of inflammatory factors cyclooxygenase-2, myeloperoxidase, and ROS; and decreased the activation of the NF-κB signaling pathway. These results suggest that hydrogen-rich water could protect against chronic intestinal inflammation in rats caused by lipopolysaccharide-induced activation of the NF-κB signaling pathway by regulating the Nrf-2 signaling pathway.
Collapse
Affiliation(s)
- Jin Peng
- Heilongjiang Key Laboratory for Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| | - Qi He
- Heilongjiang Key Laboratory for Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| | - Shuaichen Li
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Tao Liu
- Heilongjiang Key Laboratory for Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| | - Jiantao Zhang
- Heilongjiang Key Laboratory for Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| |
Collapse
|
5
|
Molecular Hydrogen Inhibits Colorectal Cancer Growth via the AKT/SCD1 Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8024452. [PMID: 35528164 PMCID: PMC9071919 DOI: 10.1155/2022/8024452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 12/24/2022]
Abstract
Objective Molecular hydrogen (H2) has been considered a potential therapeutic target in many cancers. Therefore, we sought to assess the potential effect of H2 on colorectal cancer (CRC) in this study. Methods The effect of H2 on the proliferation and apoptosis of RKO, SW480, and HCT116 CRC cell lines was assayed by CCK-8, colony formation, and flow cytometry assays. The effect of H2 on tumor growth was observed in xenograft implantation models (inhalation of 67% hydrogen two hours per day). Western blot and immunohistochemistry analyses were performed to examine the expression of p-PI3K, PI3K, AKT, pAKT, and SCD1 in CRC cell lines and xenograft mouse models. The expression of SCD1 in 491 formalin-fixed, paraffin-embedded CRC specimens was investigated with immunochemistry. The relationship between SCD1 status and clinicopathological characteristics and outcomes was determined. Results Hydrogen treatment suppressed the proliferation of CRC cell lines independent of apoptosis, and the cell lines showed different responses to different doses of H2. Hydrogen also elicited a potent antitumor effect to reduce CRC tumor volume and weight in vivo. Western blot and IHC staining demonstrated that H2 inhibits CRC cell proliferation by decreasing pAKT/SCD1 levels, and the inhibition of cell proliferation induced by H2 was reversed by the AKT activator SC79. IHC showed that SCD1 expression was significantly higher in CRC tissues than in normal epithelial tissues (70.3% vs. 29.7%, p = 0.02) and was correlated with a more advanced TNM stage (III vs. I + II; 75.9% vs. 66.3%, p = 0.02), lymph node metastasis (with vs. without; 75.9% vs. 66.3%, p = 0.02), and patients without a family history of CRC (78.7% vs. 62.1%, p = 0.047). Conclusion This study demonstrates that high concentrations of H2 exert an inhibitory effect on CRC by inhibiting the pAKT/SCD1 pathway. Further studies are warranted for clinical evaluation of H2 as SCD1 inhibitor to target CRC.
Collapse
|
6
|
Local Treatment of Hydrogen-Rich Saline Promotes Wound Healing In Vivo by Inhibiting Oxidative Stress via Nrf-2/HO-1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2949824. [PMID: 35300173 PMCID: PMC8923808 DOI: 10.1155/2022/2949824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/30/2022] [Accepted: 02/18/2022] [Indexed: 11/26/2022]
Abstract
Wound healing is a complex dynamic process involving a large number of biological events. Excessive oxidative stress is a key factor delaying wound healing. Hydrogen is an antioxidant, anti-inflammatory, and antiapoptotic medical gas with safety, effectiveness, and penetrability. However, the effects of local treatment of hydrogen on wound healing and its potential mechanisms remain unclear. In this study, Kunming (KM) mice were used to set up a wound model. All the mice were randomly divided into the control, the local treatment with saline group, the local treatment with the hydrogen-rich saline group, and the intraperitoneal injection of the hydrogen-rich saline group. To evaluate the impact of hydrogen-rich saline on wound healing, we assessed the wound healing rate, wound closure time, histomorphology, oxidative stress indicators, inflammatory cytokines, the apoptosis index, and the expression of the nuclear factor-erythroid-related factor 2(Nrf-2). Furthermore, the immortalized nontumorigenic human epidermal (HaCaT) cells were chosen to investigate the therapeutic effects of hydrogen-rich medium on oxidative stress and its underlying mechanisms. The results showed that local treatment of hydrogen-rich saline shortened wound closure time and reduced the level of proinflammatory cytokines and lipid peroxidation. Meanwhile, it decreased the cell apoptosis index and increased the Nrf-2 expression. Besides, hydrogen-rich medium relieved the oxidative stress via the activation of the Nrf-2/heme oxygenase-1 (HO-1) pathway. In conclusion, local treatment of hydrogen-rich saline exhibits the healing-promoting function through antioxidant, anti-inflammatory, and antiapoptotic effects. Hydrogen relieves the oxidative stress in the wound microenvironment via Nrf-2/HO-1 signaling pathway. This study may offer a new strategy to promote wound healing and a new perspective to illustrate the mechanism of wound healing.
Collapse
|
7
|
Hydrogen: Potential Applications in Solid Organ Transplantation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6659310. [PMID: 34868455 PMCID: PMC8635874 DOI: 10.1155/2021/6659310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 10/13/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022]
Abstract
Ischemia reperfusion injury (IRI) in organ transplantation has always been an important hotspot in organ protection. Hydrogen, as an antioxidant, has been shown to have anti-inflammatory, antioxidant, and antiapoptotic effects. In this paper, the protective effect of hydrogen against IRI in organ transplantation has been reviewed to provide clues for future clinical studies.
Collapse
|
8
|
Abstract
Since the late 18th century, molecular hydrogen (H2) has been shown to be well tolerated, firstly in animals, and then in humans. However, although research into the beneficial effects of molecular hydrogen in both plant and mammalian physiology is gaining momentum, the idea of utilising this electrochemically neutral and non-polar diatomic compound for the benefit of health has yet to be widely accepted by regulatory bodies worldwide. Due to the precise mechanisms of H2 activity being as yet undefined, the lack of primary target identification, coupled with difficulties regarding administration methods (e.g., dosage and dosage frequencies, long-term effects of treatment, and the patient’s innate antioxidant profile), there is a requirement for H2 research to evidence how it can reasonably and most effectively be incorporated into medical practice. This review collates and assesses the current information regarding the many routes of molecular hydrogen administration in animals and humans, whilst evaluating how targeted delivery methods could be integrated into a modern healthcare system.
Collapse
|
9
|
Zheng P, Kang J, Xing E, Zheng B, Wang X, Zhou H. Lung Inflation With Hydrogen During the Cold Ischemia Phase Alleviates Lung Ischemia-Reperfusion Injury by Inhibiting Pyroptosis in Rats. Front Physiol 2021; 12:699344. [PMID: 34408660 PMCID: PMC8365359 DOI: 10.3389/fphys.2021.699344] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Lung inflation with hydrogen is an effective method to protect donor lungs from lung ischemia-reperfusion injury (IRI). This study aimed to examine the effect of lung inflation with 3% hydrogen during the cold ischemia phase on pyroptosis in lung grafts of rats. Methods: Adult male Wistar rats were randomly divided into the sham group, the control group, the oxygen (O2) group, and the hydrogen (H2) group. The sham group underwent thoracotomy but no lung transplantation. In the control group, the donor lungs were deflated for 2 h. In the O2 and H2 groups, the donor lungs were inflated with 40% O2 + 60% N2 and 3% H2 + 40% O2 + 57% N2, respectively, at 10 ml/kg, and the gas was replaced every 20 min during the cold ischemia phase for 2 h. Two hours after orthotopic lung transplantation, the recipients were euthanized. Results: Compared with the control group, the O2 and H2 groups improved oxygenation indices, decreases the inflammatory response and oxidative stress, reduced lung injury, and improved pressure-volume (P-V) curves. H2 had a better protective effect than O2. Furthermore, the levels of the pyroptosis-related proteins selective nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), cysteinyl aspartate specific proteinase (caspase)-1 p20, and the N-terminal of gasdermin D (GSDMD-N) were decreased in the H2 group. Conclusion: Lung inflation with 3% hydrogen during the cold ischemia phase inhibited the inflammatory response, oxidative stress, and pyroptosis and improved the function of the graft. Inhibiting reactive oxygen species (ROS) production may be the main mechanism of the antipyroptotic effect of hydrogen.
Collapse
Affiliation(s)
- Panpan Zheng
- Department of Anesthesiology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jiyu Kang
- Department of Anesthesiology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Entong Xing
- Department of Anesthesiology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Bin Zheng
- Department of Anesthesiology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xueyao Wang
- Department of Anesthesiology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Huacheng Zhou
- Department of Anesthesiology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
10
|
Zhang CS, Han Q, Song ZW, Jia HY, Shao TP, Chen YP. Hydrogen gas post-conditioning attenuates early neuronal pyroptosis in a rat model of subarachnoid hemorrhage through the mitoK ATP signaling pathway. Exp Ther Med 2021; 22:836. [PMID: 34149882 PMCID: PMC8200808 DOI: 10.3892/etm.2021.10268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
Neuronal pyroptosis serves an important role in the progress of neurologic dysfunction following subarachnoid hemorrhage (SAH), which is predominantly caused by a ruptured aneurysm. Hydrogen gas has been previously reported to be an effective anti-inflammatory agent against ischemia-associated diseases by regulating mitochondrial function. The objective of the present study was to investigate the potential neuroprotective effects of hydrogen gas post-conditioning against neuronal pyroptosis after SAH, with specific focus on the mitochondrial ATP-sensitive K+ (mitoKATP) channels. Following SAH induction by endovascular perforation, rats were treated with inhalation of 2.9% hydrogen gas for 2 h post-perforation. Neurologic deficits, brain water content, reactive oxygen species (ROS) levels, neuronal pyroptosis, phosphorylation of ERK1/2, p38 MAPK and pyroptosis-associated proteins IL-1β and IL-18 were evaluated 24 h after perforation by a modified Garcia method, ratio of wet/dry weight, 2',7'-dichlorofluorescin diacetate, immunofluorescence and western blot assays, respectively. An inhibitor of the mitoKATP channel, 5-hydroxydecanoate sodium (5-HD), was used to assess the potential role of the mitoKATP-ERK1/2-p38 MAPK signal pathway. Hydrogen gas post-conditioning significantly alleviated brain edema and improved neurologic function, reduced ROS production and neuronal pyroptosis, suppressed the expression of IL-1β and IL-18 whilst upregulating ERK1/2 phosphorylation, but downregulated p38 MAPK activation 24 h post-SAH. These aforementioned effects neuroprotective were partially reversed by 5-HD treatment. Therefore, these observations suggest that post-conditioning with hydrogen gas ameliorated SAH-induced neuronal pyroptosis at least in part through the mitoKATP/ERK1/2/p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Chuan-Suo Zhang
- Department of Radioactive Intervention, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Qian Han
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Zhao-Wei Song
- Department of Radioactive Intervention, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Hong-Yan Jia
- Department of Radioactive Intervention, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Tian-Peng Shao
- Department of Radioactive Intervention, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Yan-Peng Chen
- Department of Radioactive Intervention, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
11
|
Quan L, Zheng B, Zhou H. Protective effects of molecular hydrogen on lung injury from lung transplantation. Exp Biol Med (Maywood) 2021; 246:1410-1418. [PMID: 33899545 DOI: 10.1177/15353702211007084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lung grafts may experience multiple injuries during lung transplantation, such as warm ischaemia, cold ischaemia, and reperfusion injury. These injuries all contribute to primary graft dysfunction, which is a major cause of morbidity and mortality after lung transplantation. As a potential selective antioxidant, hydrogen molecule (H2) protects against post-transplant complications in animal models of multiple organ transplantation. Herein, the authors review the current literature regarding the effects of H2 on lung injury from lung transplantation. The reviewed studies showed that H2 improved the outcomes of lung transplantation by decreasing oxidative stress and inflammation at the donor and recipient phases. H2 is primarily administered via inhalation, drinking hydrogen-rich water, hydrogen-rich saline injection, or a hydrogen-rich water bath. H2 favorably modulates signal transduction and gene expression, resulting in the suppression of pro-inflammatory cytokines and excess reactive oxygen species production. Although H2 appears to be a physiological regulatory molecule with antioxidant, anti-inflammatory and anti-apoptotic properties, its exact mechanisms of action remain elusive. Taken together, accumulating experimental evidence indicates that H2 can significantly alleviate transplantation-related lung injury, mainly via inhibition of inflammatory cytokine secretion and reduction in oxidative stress through several underlying mechanisms. Further animal experiments and preliminary human clinical trials will lay the foundation for the use of H2 as a treatment in the clinic.
Collapse
Affiliation(s)
- Lini Quan
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Bin Zheng
- Department of Anesthesiology, Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Huacheng Zhou
- Department of Anesthesiology, Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
12
|
de Sousa SG, Nascimento da Silva GV, Costa Rodrigues AM, Meireles Fernandes da Silva TM, Costa FC, Freitas Teixeira da Silva A, Santana de Macedo BF, Brito MVH. Organ Preservation Solutions in Transplantation: A Literature Review. EXP CLIN TRANSPLANT 2021; 19:511-521. [PMID: 33797354 DOI: 10.6002/ect.2020.0506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Renal transplant with ABO-incompatible donors expands the donor pool. Earlier studies have focused the use of protocol biopsies in ABOincompatible transplant patients. Our study described outcomes of indication (for cause) renal biopsies and clinical outcomes in patients with ABO-incompatible renal transplant. MATERIALS AND METHODS This retrospective study included 164 patients from January 2012 to June 2019. Biochemical parameters, serial immunoglobulin G anti-ABO titers, and class I and II donor-specific antibody findings were obtained from hospital records, and renal graft biopsies were reviewed according to the Banff 2017 update. RESULTS We analyzed the results of 65 biopsies from 54 patients. Biopsy-proven acute antibody-mediated rejection (12.8%) was found to be more prevalent than acute cellular rejection (1.8%). Patients with antibodymediated rejection all had microvascular inflammation (g+ptc score of 2 or more, where g+ptc is the sum of the glomerulitis and peritubular capillaritis scores) and were positive for C4d. Acute tubular injury per se was seen in 10.3% of patients; 65% of these patients had C4d positivity in peritubular capillaries, and only 1 patient developed chronic active antibody-mediated rejection on follow-up. Patient and death-censored graft survival rates were 92% and 98% at 1 year after transplant and 88% and 91% at 3 years, respectively. Patients with an episode of antibody-mediated rejection had lower rates of patient (76.5%) and deathcensored graft survival (84.6%) at 1 year. CONCLUSIONS The microvascular inflammation score (g+ptc score of 2 or higher) is more reliable than diffuse C4d positivity to determine antibody-mediated rejection in ABO-incompatible transplants because diffuse C4d positivity may also be seen in etiologies unrelated to antibody-mediated rejection. Acute tubular injury with C4d positivity without microvascular injury does not confirm antibody-mediated rejection. We suggest that Banff classification be updated in ABOincompatible transplants to include diagnostic criteria for the diagnosis of antibody-mediated rejection.
Collapse
|
13
|
Sano M, Tamura T. Hydrogen Gas Therapy: From Preclinical Studies to Clinical Trials. Curr Pharm Des 2021; 27:650-658. [PMID: 33349213 DOI: 10.2174/1381612826666201221150857] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mounting evidence indicates that hydrogen gas (H2) is a versatile therapeutic agent, even at very low, non-combustible concentrations. The Chinese National Health and Medical Commission recently recommended the use of inhaled H2 in addition to O2 therapy in the treatment of COVID-19-associated pneumonia, and its effects extend to anti-tumor, anti-inflammatory and antioxidant actions. SUMMARY In this review, we have highlighted key findings from preclinical research and recent clinical studies demonstrating that H2 reduces the organ damage caused by ischemia-reperfusion. We have also outlined the critical role this effect plays in a variety of medical emergencies, including myocardial infarction, hemorrhagic shock, and out-of-hospital cardiac arrest, as well as in organ transplantation. H2 is compared with established treatments such as targeted temperature management, and we have also discussed its possible mechanisms of action, including the recently identified suppression of TNF-α-mediated endothelial glycocalyx degradation by inhaled H2. In addition, our new method that enables H2 gas to be easily transported to emergency settings and quickly injected into an organ preservation solution at the site of donor organ procurement have been described. CONCLUSION H2 is an easily administered, inexpensive and well-tolerated agent that is highly effective for a wide range of conditions in emergency medicine, as well as for preserving donated organs.
Collapse
Affiliation(s)
- Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Tomoyoshi Tamura
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
Wu S, Fang Z, Zhou S. Saturated hydrogen alleviates CCl 4-induced acute kidney injury via JAK2/STAT3/p65 signaling. J Int Med Res 2020; 48:300060519895353. [PMID: 31937177 PMCID: PMC7114280 DOI: 10.1177/0300060519895353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objectives This study assessed the protective effects of saturated hydrogen against CCl4-induced acute kidney injury (AKI) in mice, and investigated signaling pathways activated by exposure to saturated hydrogen. Methods A mouse model of CCl4-induced AKI was established; some mice were treated with saturated hydrogen. Levels of cystatin C and kidney injury molecule 1 were determined using enzyme-linked immunosorbent assays. Blood urea nitrogen and serum creatinine were measured on a fully automated biochemical analyzer. Interleukin-8, tumor necrosis factor-α, and interferon-γ in serum and kidney tissues were measured using enzyme-linked immunosorbent assays. Malondialdehyde, glutathione peroxidase, and superoxide dismutase in kidney tissues were measured using biochemical kits. Oxidative stress in kidney tissues was analyzed using nitrotyrosine staining. Expression levels of p-JAK2, p-STAT3, and p-p65 signal protein were assayed by immunohistochemistry and western blotting. Results Compared with untreated mice with CCl4-induced AKI, mice that were treated with saturated hydrogen exhibited improved renal function and reduced oxidative stress. Moreover, expression levels of p-JAK2, p-STAT3, and p-p65 were significantly reduced in mice treated with saturated hydrogen, compared with expression levels in untreated mice. Conclusions Treatment with saturated hydrogen can reduce oxidative stress and inflammatory cytokine activation, potentially through inhibition of JAK2/STAT3/p65 signaling, thereby protecting against AKI.
Collapse
Affiliation(s)
- Song Wu
- Emergency Department, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Zheng Fang
- Emergency Department, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Shujun Zhou
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| |
Collapse
|
15
|
Ke H, Liu D, Li T, Chu X, Xin D, Han M, Wang S, Wang Z. Hydrogen-Rich Saline Regulates Microglial Phagocytosis and Restores Behavioral Deficits Following Hypoxia-Ischemia Injury in Neonatal Mice via the Akt Pathway. Drug Des Devel Ther 2020; 14:3827-3839. [PMID: 33061290 PMCID: PMC7526477 DOI: 10.2147/dddt.s264684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION We have reported previously that hydrogen-rich saline (HS) plays a neuroprotective role in hypoxia-ischemia (HI) brain damage in newborn mice. However, the mechanisms for this neuroprotection resulting from HS remain unknown. In this study, we examined the potential for HS to exert effects upon microglial phagocytosis via involvement of the Akt signaling pathway as one of the neuroprotective mechanisms in response to neonatal HI. METHODS The HI brain injury model was performed on postnatal day (PND) 7 (modified Vannucci model). The acute brain damage was detected at 3 days after HI exposure. The behavioral and functional screening of the pups at PND11 and PND13 and their long-term outcomes (PND35, 28-days post-HI) were evaluated sensorimotor performance and cognitive functions, respectively. RESULTS The result showed that HS administration alleviated HI-induced edema, infract volume and cellular apoptosis within the cortex of neonatal mice. Accompanying these indices of neuroprotection from HS were reductions in HI-induced phagocytosis in microglia as demonstrated in vivo and in vitro, effects that were associated with increasing levels of Akt phosphorylation and improvements in neurobehavioral responses. These beneficial effects of HS were abolished in mice treated with an Akt inhibitor. DISCUSSION These results demonstrate that HS treatment attenuates neurobehavioral deficits and apoptosis resulting from HI, effects which were associated with reductions in phagocytosis and appear to involve the Akt signaling pathway.
Collapse
Affiliation(s)
- Hongfei Ke
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, People’s Republic of China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan250012, Shandong, People’s Republic of China
| | - Tingting Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, People’s Republic of China
| | - Xili Chu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, People’s Republic of China
| | - Danqing Xin
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, People’s Republic of China
| | - Min Han
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, People’s Republic of China
| | - Shuanglian Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, People’s Republic of China
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, People’s Republic of China
| |
Collapse
|
16
|
Zhang S, Feng Z, Gao W, Duan Y, Fan G, Geng X, Wu B, Li K, Liu K, Peng C. Aucubin Attenuates Liver Ischemia-Reperfusion Injury by Inhibiting the HMGB1/TLR-4/NF-κB Signaling Pathway, Oxidative Stress, and Apoptosis. Front Pharmacol 2020; 11:544124. [PMID: 33013386 PMCID: PMC7506056 DOI: 10.3389/fphar.2020.544124] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
Liver ischemia-reperfusion injury (IRI) is a common clinical event with high morbidity in patients undergoing complex liver surgery or having abdominal trauma. Inflammatory and oxidative stress responses are the main contributing factors in liver IRI. The iridoid glucoside aucubin (AU) has good anti-inflammatory and antioxidative effects; however, there are no relevant reports on the protective effect of glucosides on hepatic IRI. The purpose of this study was to determine whether AU pretreatment could prevent liver IRI and to explore the mechanism. Sprague–Dawley rats were randomly divided into five groups. The sham operation and IRI control groups were given intraperitoneal injections of normal saline, while the AU low-dose (AU-L) group, AU medium-dose (AU-M) group, and AU high-dose (AU-H) group were given intraperitoneal injections of AU at doses of 1, 5, and 10 mg/kg/day, respectively. After 10 d, liver IRI (70% liver ischemia for 1 h, reperfusion for 6 h) was surgically established in all groups except the sham group. Our results confirmed that liver injury was significantly aggravated after hepatic ischemia-reperfusion. AU alleviated the increase of transaminase and pathological changes induced by ischemia-reperfusion and improved liver damage. AU could also ameliorate the inflammatory and oxidative stress responses induced by ischemia-reperfusion and reduced expression of high mobility group protein (HMG)B1, receptor for advanced glycation end-products (RAGE), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and reactive oxygen species (ROS). Moreover, AU reduced ischemia-reperfusion-induced mitochondrial dysfunction and cells apoptosis, increased peroxisome proliferator-activated receptor γ coactivator (PGC)-1α and uncoupling (UCP)2 protein expression, and reduced caspase-3, cleaved caspase-3, and Cytochrome P450 proteins (CYP) expression. To determine expression levels of the Toll-like receptor (TLR)-4/nuclear factor-κB (NF-κB) pathway-related proteins in vitro and in vivo, we also measured TLR-4, myeloid differentiation factor88 (MyD88), NF-κB P65, p-P65, I-kappa-B-alpha (IκB-α), and p-IκB-α levels. The results showed that AU effectively inhibited activation of the TLR-4/NF-κB signaling pathway. In conclusion, we showed for the first time a hepatoprotective effect for AU in liver IRI, which acted by inhibiting the HMGB1/TLR-4/NF-κB signaling pathway, oxidative stress, and apoptosis. Pretreatment with AU may be a promising strategy for preventing liver IRI.
Collapse
Affiliation(s)
- Shilong Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zanjie Feng
- Department of Biochemistry and Molecular Biology, Zunyi Medical University, Zunyi, China
| | - Weidong Gao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuling Duan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Guoxin Fan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xin Geng
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Bo Wu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Kai Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Kangwei Liu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Cijun Peng
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
17
|
Wang C, Pan Z. Hydrogen-rich saline mitigates pressure overload-induced cardiac hypertrophy and atrial fibrillation in rats via the JAK-STAT signalling pathway. J Int Med Res 2020; 48:300060520936415. [PMID: 32762484 PMCID: PMC7416141 DOI: 10.1177/0300060520936415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective To investigate if hydrogen-rich saline (HRS), which has been shown to have
antioxidant and anti-inflammatory properties, could mitigate cardiac
remodelling and reduce the incidence of atrial fibrillation (AF) in the rat
model of cardiac hypertrophy. Methods Pressure overload was induced in rats by abdominal aortic constriction (AAC).
The animals were separated into four groups: sham; AAC group; AAC plus low
dose HRS (LHRS); AAC plus high dose HRS (HHRS). The sham and AAC groups
received normal saline intraperitoneally and the LHRS and HHRS groups
received 3 or 6 ml/kg HRS daily for six weeks, respectively. In
vitro research was also performed using cardiotrophin-1
(CT-1)-induced hypertrophy of cultured neonatal rat cardiomyocytes. Results Cardiac hypertrophy was successfully induced by AAC and low and high dose HRS
mitigated the pressure overload as shown by lower heart and atrial weights
in these treatment groups. AF incidence and duration of the HRS groups were
also significantly lower in the HRS groups compared with the AAC group.
Atrial fibrosis was also reduced in the HRS groups and the JAK-STAT
signalling pathway was down-regulated. In vitro experiments
showed that hydrogen-rich medium mitigated the CT-1-induced cardiomyocyte
hypertrophy with a similar effect as the JAK specific antagonists AG490. Conclusions HRS was found to mitigate cardiac hypertrophy induced by pressure overload in
rats and reduce atrial fibrosis and AF which was possibly achieved via
inhibition of the JAK-STAT signalling pathway.
Collapse
Affiliation(s)
- Chufeng Wang
- Clinical medicine and biomedicine, Nanchang Joint Program, Queen Mary University of London, Nanchang, Jiangxi, China
| | - Zezheng Pan
- Department of Biochemistry and Molecular Biology, Medical Faculty of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
18
|
Hu Q, Zhou Y, Wu S, Wu W, Deng Y, Shao A. Molecular hydrogen: A potential radioprotective agent. Biomed Pharmacother 2020; 130:110589. [PMID: 32763820 DOI: 10.1016/j.biopha.2020.110589] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, many studies have shown that hydrogen has therapeutic and preventive effects on various diseases. Its selective antioxidant properties were well noticed. Most of the ionizing radiation-induced damage is caused by hydroxyl radicals (OH) from radiolysis of H2O. Since hydrogen can mitigate such damage through multiple mechanisms, it presents noteworthy potential as a novel radio-protective agent. This review analyses possible mechanisms for hydrogen's radioprotective properties and effective delivery methods. We also look into details of vitro and vivo studies for hydrogen's radioprotective effects, and clinical practices. We conclude that hydrogen has good potential in radio-protection, with evidence that warrants greater research efforts in this field.
Collapse
Affiliation(s)
- Qiongge Hu
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shijie Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Wu
- Department of Medical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
19
|
Zhang Y, Xu J, Yang H. Hydrogen: An Endogenous Regulator of Liver Homeostasis. Front Pharmacol 2020; 11:877. [PMID: 32595504 PMCID: PMC7301907 DOI: 10.3389/fphar.2020.00877] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/27/2020] [Indexed: 01/10/2023] Open
Abstract
Basic and clinical studies have shown that hydrogen (H2), the lightest gas in the air, has significant biological effects of anti-oxidation, anti-inflammation, and anti-apoptosis. The mammalian cells have no abilities to produce H2 due to lack of the expression of hydrogenase. The endogenous H2 in human body is mainly produced by anaerobic bacteria, such as Firmicutes and Bacteroides, in gut and other organs through the reversible oxidation reaction of 2 H+ + 2 e- ⇌ H2. Supplement of exogenous H2 can improve many kinds of liver injuries, modulate glucose and lipids metabolism in animal models or in human beings. Moreover, hepatic glycogen has strong ability to accumulate H2, thus, among the organs examined, liver has the highest concentration of H2 after supplement of exogenous H2 by various strategies in vivo. The inadequate production of endogenous H2 play essential roles in brain, heart, and liver disorders, while enhanced endogenous H2 production may improve hepatitis, hepatic ischemia and reperfusion injury, liver regeneration, and hepatic steatosis. Therefore, the endogenous H2 may play essential roles in maintaining liver homeostasis.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Integrated Traditional Chinese and Western Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jingting Xu
- Biofeedback Laboratory, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Hongzhi Yang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Integrated Traditional Chinese and Western Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Malý O, Zajak J, Hyšpler R, Turek Z, Astapenko D, Jun D, Váňová N, Kohout A, Radochová V, Kotek J, Páral J. Inhalation of molecular hydrogen prevents ischemia-reperfusion liver damage during major liver resection. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:774. [PMID: 32042790 DOI: 10.21037/atm.2019.11.43] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Liver resection is a surgical procedure associated with a high risk of hepatic failure that can be fatal. One of the key mechanisms involves ischemia-reperfusion damage. Building on the well-known positive effects of hydrogen at mitigating this damage, the goal of this work was to demonstrate the antioxidant, anti-inflammatory, and anti-apoptotic effects of inhaled hydrogen in domestic pigs during major liver resection. Methods The study used a total of 12 domestic pigs, 6 animals underwent resection with inhaled hydrogen during general anesthesia, and 6 animals underwent the same procedure using conventional, unsupplemented, general anesthesia. Intraoperative preparation of the left branch of the hepatic portal vein and the left hepatic artery was performed, and a tourniquet was applied. Warm ischemia was induced for 120 minutes and then followed by liver reperfusion for another 120 minutes. Samples from the ischemic and non-ischemic halves of the liver were then removed for histological and biochemical examinations. Results An evaluation of histological changes was based on a numerical expression of damage based on the Suzuki score. Liver samples in the group with inhaled hydrogen showed a statistically significant reduction in histological changes compared to the control group. Biochemical test scores showed no statistically significant difference in hepatic transaminases, alkaline phosphatase (ALP), lactate dehydrogenase (LD), and lactate. However, a surprising result was a statistically significant difference in gamma-glutamyl-transferase (GMT). Marker levels of oxidative damage varied noticeably in plasma samples. Conclusions In this experimental study, we showed that inhaled hydrogen during major liver resection unquestionably reduced the level of oxidative stress associated with ischemia-reperfusion damage. We confirmed this phenomenon both histologically and by direct measurement of oxidative stress in the organism.
Collapse
Affiliation(s)
- Ondřej Malý
- Department of Military Surgery, Faculty of Military Health Sciences, University of Defense, Hradec Králové, Czech Republic.,Department of Surgery, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Ján Zajak
- Department of Surgery, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Radomír Hyšpler
- Institute of Clinical Biochemistry and Diagnostics, Resuscitation and Intensive Medicine, University Hospital Hradec Králové, Hradec Králové, Czech Republic.,Center for Development and Research, Resuscitation and Intensive Medicine, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Zdeněk Turek
- Department of Anesthesiology, Resuscitation and Intensive Medicine, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - David Astapenko
- Department of Anesthesiology, Resuscitation and Intensive Medicine, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Daniel Jun
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Hradec Králové, Czech Republic
| | - Nela Váňová
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic
| | - Aleš Kohout
- Fingerland Institute of Pathology, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Věra Radochová
- Department of Vivarium, Faculty of Military Health Sciences, University of Defense, Hradec Králové, Czech Republic
| | - Jiří Kotek
- Department of Military Surgery, Faculty of Military Health Sciences, University of Defense, Hradec Králové, Czech Republic
| | - Jiří Páral
- Department of Military Surgery, Faculty of Military Health Sciences, University of Defense, Hradec Králové, Czech Republic.,Department of Surgery, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| |
Collapse
|
21
|
Li L, Liu T, Liu L, Li S, Zhang Z, Zhang R, Zhou Y, Liu F. Effect of hydrogen-rich water on the Nrf2/ARE signaling pathway in rats with myocardial ischemia-reperfusion injury. J Bioenerg Biomembr 2019; 51:393-402. [DOI: 10.1007/s10863-019-09814-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/13/2019] [Indexed: 12/21/2022]
|
22
|
Soo E, Welch A, Marsh C, McKay DB. Molecular strategies used by hibernators: Potential therapeutic directions for ischemia reperfusion injury and preservation of human donor organs. Transplant Rev (Orlando) 2019; 34:100512. [PMID: 31648853 DOI: 10.1016/j.trre.2019.100512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022]
Affiliation(s)
- E Soo
- Scripps Research, Department of Immunology and Molecular Biology, 10550 North Torrey Pines Rd, La Jolla, CA, United States of America; Scripps Clinic and Green Hospital, Department of Medicine and Surgery, 10660 North Torrey Pines Rd, La Jolla, CA, United States of America
| | - A Welch
- Scripps Research, Department of Immunology and Molecular Biology, 10550 North Torrey Pines Rd, La Jolla, CA, United States of America
| | - C Marsh
- Scripps Clinic and Green Hospital, Department of Medicine and Surgery, 10660 North Torrey Pines Rd, La Jolla, CA, United States of America
| | - D B McKay
- Scripps Research, Department of Immunology and Molecular Biology, 10550 North Torrey Pines Rd, La Jolla, CA, United States of America; Scripps Clinic and Green Hospital, Department of Medicine and Surgery, 10660 North Torrey Pines Rd, La Jolla, CA, United States of America.
| |
Collapse
|
23
|
Kobayashi E, Sano M. Organ preservation solution containing dissolved hydrogen gas from a hydrogen-absorbing alloy canister improves function of transplanted ischemic kidneys in miniature pigs. PLoS One 2019; 14:e0222863. [PMID: 31574107 PMCID: PMC6772054 DOI: 10.1371/journal.pone.0222863] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Various methods have been devised to dissolve hydrogen gas in organ preservation solutions, including use of a hydrogen gas cylinder, electrolysis, or a hydrogen-generating agent. However, these methods require considerable time and effort for preparation. We investigated a practical technique for rapidly dissolving hydrogen gas in organ preservation solutions by using a canister containing hydrogen-absorbing alloy. The efficacy of hydrogen-containing organ preservation solution created by this method was tested in a miniature pig model of kidney transplantation from donors with circulatory arrest. The time required for dissolution of hydrogen gas was only 2–3 minutes. When hydrogen gas was infused into a bag containing cold ETK organ preservation solution at a pressure of 0.06 MPa and the bag was subsequently opened to the air, the dissolved hydrogen concentration remained at 1.0 mg/L or more for 4 hours. After warm ischemic injury was induced by circulatory arrest for 30 minutes, donor kidneys were harvested and perfused for 5 minutes with hydrogen-containing cold ETK solution or hydrogen-free cold ETK solution. The perfusion rate was faster from the initial stage with hydrogen-containing cold ETK solution than with hydrogen-free ETK solution. After storage of the kidney in hydrogen-free preservation solution for 1 hour before transplantation, no urine production was observed and blood flow was not detected in the transplanted kidney at sacrifice on postoperative day 6. In contrast, after storage in hydrogen-containing preservation solution for either 1 or 4 hours, urine was detected in the bladder and blood flow was confirmed in the transplanted kidney. This method of dissolving hydrogen gas in organ preservation solution is a practical technique for potentially converting damaged organs to transplantable organs that can be used safely in any clinical setting where organs are removed from donors.
Collapse
Affiliation(s)
- Eiji Kobayashi
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- Department of Organ Fabrication, Keio University School of Medicine, Tokyo, Japan
- Center for Molecular Hydrogen Medicine, Keio University, Tokyo, Japan
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- Center for Molecular Hydrogen Medicine, Keio University, Tokyo, Japan
- * E-mail:
| |
Collapse
|