1
|
Wang L, Liu H, Zhou L, Zheng P, Li H, Zhang H, Liu W. Association of Obstructive Sleep Apnea with Nonalcoholic Fatty Liver Disease: Evidence, Mechanism, and Treatment. Nat Sci Sleep 2024; 16:917-933. [PMID: 39006248 PMCID: PMC11244635 DOI: 10.2147/nss.s468420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Obstructive sleep apnea (OSA), a common sleep-disordered breathing condition, is characterized by intermittent hypoxia (IH) and sleep fragmentation and has been implicated in the pathogenesis and severity of nonalcoholic fatty liver disease (NAFLD). Abnormal molecular changes mediated by IH, such as high expression of hypoxia-inducible factors, are reportedly involved in abnormal pathophysiological states, including insulin resistance, abnormal lipid metabolism, cell death, and inflammation, which mediate the development of NAFLD. However, the relationship between IH and NAFLD remains to be fully elucidated. In this review, we discuss the clinical correlation between OSA and NAFLD, focusing on the molecular mechanisms of IH in NAFLD progression. We meticulously summarize clinical studies evaluating the therapeutic efficacy of continuous positive airway pressure treatment for NAFLD in OSA. Additionally, we compile potential molecular biomarkers for the co-occurrence of OSA and NAFLD. Finally, we discuss the current research progress and challenges in the field of OSA and NAFLD and propose future directions and prospects.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Hai Li
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Huojun Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Wei Liu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
2
|
Muazzez A, Shimi G, Balam FH, Ghorbani A, Zand H. Different Effects of Obesity and Fasting on the Expression of Type 3 Deiodinase and Thyroid Hormone Receptors in the Liver and Visceral Adipose Tissue of C57BL/6 Male Mice. Indian J Endocrinol Metab 2024; 28:320-326. [PMID: 39086565 PMCID: PMC11288515 DOI: 10.4103/ijem.ijem_400_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/12/2023] [Accepted: 03/18/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Energy status can alter thyroid hormone signalling in different tissues. Little is known about the effect of fasting on the local thyroid hormone metabolism under high-fat diet (HFD)-induced obesity. We aimed to investigate the fasting effect on deiodinase type 3 (DIO3) and thyroid hormone receptors (TRs) expression in liver and visceral adipose tissue (VAT) of HFD-induced obese mice. Methods The 30 male C57BL/6 mice were divided into three groups (n = 10/group): control (CON) group, obese (OB) group, and fasted obese (OBF) group. Materials In a 14-week study, the expression levels of DIO3 and TRs in the liver and VAT of mice were measured by real-time polymerase chain reaction. Gene expression results were shown as fold changes defined by 2-ΔΔct. Comparison between groups was performed by using one-way-ANOVA or Kruskal-Wallis ANOVA test. Results In the liver, there was a significantly lower expression of DIO3 and higher expression of TRs in obese fasted mice compared to obese mice. Compared to the lean mice, OBF mice had significantly lower expression of DIO3 and higher expression of TRβ. In the VAT, mRNA expression of DIO3 was significantly increased in OBF and OB groups compared to the CON group. There were no significant differences in the mRNA expression of TRs between groups. Conclusion Our findings suggest that fasting may be more effective in improving thyroid hormone metabolism in the liver rather than the VAT of obese mice.
Collapse
Affiliation(s)
- Alireza Muazzez
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Shimi
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farinaz H. Balam
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arman Ghorbani
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Zand
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Abdalla SS, Harb AA, Almasri IM, Bustanji YK. The interaction of TRPV1 and lipids: Insights into lipid metabolism. Front Physiol 2022; 13:1066023. [PMID: 36589466 PMCID: PMC9797668 DOI: 10.3389/fphys.2022.1066023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1), a non-selective ligand-gated cation channel with high permeability for Ca2+, has received considerable attention as potential therapeutic target for the treatment of several disorders including pain, inflammation, and hyperlipidemia. In particular, TRPV1 regulates lipid metabolism by mechanisms that are not completely understood. Interestingly, TRPV1 and lipids regulate each other in a reciprocal and complex manner. This review surveyed the recent literature dealing with the role of TRPV1 in the hyperlipidemia-associated metabolic syndrome. Besides TRPV1 structure, molecular mechanisms underlying the regulatory effect of TRPV1 on lipid metabolism such as the involvement of uncoupling proteins (UCPs), ATP-binding cassette (ABC) transporters, peroxisome proliferation-activated receptors (PPAR), sterol responsive element binding protein (SREBP), and hypoxia have been discussed. Additionally, this review extends our understanding of the lipid-dependent modulation of TRPV1 activity through affecting both the gating and the expression of TRPV1. The regulatory role of different classes of lipids such as phosphatidylinositol (PI), cholesterol, estrogen, and oleoylethanolamide (OEA), on TRPV1 has also been addressed.
Collapse
Affiliation(s)
- Shtaywy S. Abdalla
- Department of Biological Sciences, School of Science, The University of Jordan, Amman, Jordan,*Correspondence: Shtaywy S. Abdalla,
| | - Amani A. Harb
- Department of Basic Sciences, Faculty of Arts and Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Ihab M. Almasri
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Gaza, Palestine
| | - Yasser K. Bustanji
- Department of Biopharmaceuticals and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| |
Collapse
|
4
|
Yin G, Liang H, Sun W, Zhang S, Feng Y, Liang P, Chen S, Liu X, Pan W, Zhang F. Shuangyu Tiaozhi decoction alleviates non-alcoholic fatty liver disease by improving lipid deposition, insulin resistance, and inflammation in vitro and in vivo. Front Pharmacol 2022; 13:1016745. [PMID: 36506575 PMCID: PMC9727266 DOI: 10.3389/fphar.2022.1016745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide. Our previous studies have found that Shuangyu Tiaozhi Decoction (SYTZD) could produce an improvement in NAFLD-related indicators, but the underlying mechanism associated with this improvement remains unclear. The study aimed to investigate the potential mechanism of SYTZD against NAFLD through network pharmacology and experimental verification. The components of SYTZD and SYTZD drug containing serum were analyzed using ultra-performance liquid chromatography to quadrupole/time-of-flight mass spectrometry (UPLC-Q/TOF-MS). Active components and targets of SYTZD were screened by the traditional Chinese medical systems pharmacology (TCMSP) and encyclopedia of traditional Chinese medicine (ETCM) databases. NAFLD-related targets were collected from the GeneCards and DisGeNET databases. The component-disease targets were mapped to identify the common targets of SYTZD against NAFLD. Protein-protein interaction (PPI) network of the common targets was constructed for selecting the core targets. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the core targets was performed using the database for annotation, visualization, and integrated discovery (DAVID) database. Furthermore, animal and cell models were constructed for validating the predictions of network pharmacology. Lipid accumulation, liver histopathology, insulin resistance, and core gene expression were measured by oil red O staining, hematoxylin and eosin staining, insulin tolerance test, real-time quantitative polymerase chain reaction, and Western blotting, respectively. Two components and 22 targets of SYTZD against NAFLD were identified by UPLC-Q/TOF-MS and relevant databases. PPI analysis found that ESR1, FASN, mTOR, HIF-1α, VEGFA, and GSK-3β might be the core targets of SYTZD against NAFLD, which were mainly enriched in the thyroid hormone pathway, insulin resistance pathway, HIF-1 pathway, mTOR pathway, and AMPK pathway. Experimental results revealed that SYTZD might exert multiple anti-NAFLD mechanisms, including improvements in lipid deposition, inflammation, and insulin resistance. SYTZD treatment led to decreases in the lipid profiles, hepatic enzyme levels, inflammatory cytokines, and homeostatic model assessment for insulin resistance (HOMA-IR). SYTZD treatment affected relative mRNA and protein levels associated with various pathways. Our findings reveal that SYTZD could alleviate NAFLD through a multi-component, multi-target, and multi-pathway mechanism of action.
Collapse
Affiliation(s)
- Guoliang Yin
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongyi Liang
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenxiu Sun
- Department of Nursing, Taishan Vocational College of Nursing, Taian, China
| | - Shizhao Zhang
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanan Feng
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pengpeng Liang
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Suwen Chen
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangyi Liu
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenchao Pan
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Fengxia Zhang,
| |
Collapse
|
5
|
Sandoval-Rodriguez A, Torre A, Armendariz-Borunda J. Editorial: Liver Fibrosis and MAFLD: From Molecular Aspects to Novel Pharmacological Strategies. Front Med (Lausanne) 2022; 9:892495. [PMID: 35573018 PMCID: PMC9096889 DOI: 10.3389/fmed.2022.892495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ana Sandoval-Rodriguez
- Institute of Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, Mexico
| | - Aldo Torre
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Juan Armendariz-Borunda
- Institute of Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, Mexico.,Tecnologico de Monterrey, School of Medicine and Health Sciences, Monterrey, Mexico
| |
Collapse
|
6
|
Ji Y, Liang Y, Mak JC, Ip MS. Obstructive sleep apnea, intermittent hypoxia and non-alcoholic fatty liver disease. Sleep Med 2022; 95:16-28. [DOI: 10.1016/j.sleep.2022.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022]
|
7
|
Wang Y, Zhang W, Xia F, Wan H, Chen C, Chen Y, Wang N, Lu Y. Moderation effect of economic status in the association between early life famine exposure and MAFLD in adulthood. Liver Int 2022; 42:299-308. [PMID: 34687278 DOI: 10.1111/liv.15088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The double burden of malnutrition (DBM) in China resulted in high prevalence of diet-related non-communicable diseases. The aim of this study was to analyse the moderation of economic status in the association between early famine exposure and metabolic dysfunction associated with fatty liver disease (MAFLD) in adulthood. METHODS 10 190 participants in the SPECT-China study enrolled from 2014 to 2016 were included in this study. Participants with fetal famine exposure (birth year 1959-1962) or early-childhood famine exposure (birth year 1955-1958) formed the exposure group. The associations with MAFLD were assessed via regression analyses. RESULTS In men, economic status could not moderate the association between early life famine and MAFLD after adjusting for age, excess alcohol drinking, current smokers, famine severity, waist circumference, diabetes, hypertension, and dyslipidemia (P for interaction = .52). However, in women and in the total population, economic status could moderate the association between early life famine and MAFLD after adjusting for the above confounders (P for interaction = .01). In the total population and in women, early life famine exposure was associated with MAFLD in both low economic status and high economic status. However, in men, early life famine exposure was not associated with MAFLD in low economic status, while in high economic status, early-childhood famine exposure was associated with MAFLD. CONCLUSIONS Economic status could moderate the association between early life famine exposure and MAFLD in total population and in women.
Collapse
Affiliation(s)
- Yuying Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Wen Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Fangzhen Xia
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Heng Wan
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Identifying Obstructive Sleep Apnea Syndrome-Associated Genes and Pathways through Weighted Gene Coexpression Network Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3993509. [PMID: 35132330 PMCID: PMC8817882 DOI: 10.1155/2022/3993509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022]
Abstract
Background Obstructive sleep apnea syndrome (OSAS) is the most common type of sleep apnea disorder. The disease seriously affects the patient's respiratory system. At present, the prognosis of the disease is poor and there is a lack of effective treatments. Therefore, it is urgent to explore its pathogenesis and treatment methods. Method We downloaded a set of expression profile data from GSE75097 related to OSAS based on the Gene Expression Omnibus (GEO) database and selected the representative differentially expressed genes (DEGs) from the sample of the GSE75097 dataset. WGCNA was used to find genes related to OSAS and obtain coexpression modules. The Gene Ontology (GO) function and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were used to analyze genes from key modules. Finally, Cytoscape software was used to construct a protein-protein interaction (PPI) network and analyze the hub genes. Result We obtained a total of 7565 DEGs. Through WGCNA, we got four coexpression modules and the modules most related to OSAS were green-yellow, magenta, purple, and turquoise, and we screened out eight hub genes (DDX46, RNF115, COPA, FBXO4, PA2G4, NHP2L1, CDC20, and PCNA). GO and KEGG analyses indicated that the key modules were mainly enriched in tRNA modification, nucleobase metabolic process, DNA ligation, regulation of cellular component movement, basal transcription factors, Huntington disease, and vitamin digestion and absorption. Conclusion These pathways and hub genes can facilitate understanding the molecular mechanism of OSAS and provide a meaningful reference for finding biological targets of OSAS treatment.
Collapse
|
9
|
Kotlyarov S, Bulgakov A. Lipid Metabolism Disorders in the Comorbid Course of Nonalcoholic Fatty Liver Disease and Chronic Obstructive Pulmonary Disease. Cells 2021; 10:2978. [PMID: 34831201 PMCID: PMC8616072 DOI: 10.3390/cells10112978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/30/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently among the most common liver diseases. Unfavorable data on the epidemiology of metabolic syndrome and obesity have increased the attention of clinicians and researchers to the problem of NAFLD. The research results allow us to emphasize the systemicity and multifactoriality of the pathogenesis of liver parenchyma lesion. At the same time, many aspects of its classification, etiology, and pathogenesis remain controversial. Local and systemic metabolic disorders are also a part of the pathogenesis of chronic obstructive pulmonary disease and can influence its course. The present article analyzes the metabolic pathways mediating the links of impaired lipid metabolism in NAFLD and chronic obstructive pulmonary disease (COPD). Free fatty acids, cholesterol, and ceramides are involved in key metabolic and inflammatory pathways underlying the pathogenesis of both diseases. Moreover, inflammation and lipid metabolism demonstrate close links in the comorbid course of NAFLD and COPD.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia;
| | | |
Collapse
|
10
|
Holzner LMW, Murray AJ. Hypoxia-Inducible Factors as Key Players in the Pathogenesis of Non-alcoholic Fatty Liver Disease and Non-alcoholic Steatohepatitis. Front Med (Lausanne) 2021; 8:753268. [PMID: 34692739 PMCID: PMC8526542 DOI: 10.3389/fmed.2021.753268] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/10/2021] [Indexed: 12/20/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its more severe form non-alcoholic steatohepatitis (NASH) are a major public health concern with high and increasing global prevalence, and a significant disease burden owing to its progression to more severe forms of liver disease and the associated risk of cardiovascular disease. Treatment options, however, remain scarce, and a better understanding of the pathological and physiological processes involved could enable the development of new therapeutic strategies. One process implicated in the pathology of NAFLD and NASH is cellular oxygen sensing, coordinated largely by the hypoxia-inducible factor (HIF) family of transcription factors. Activation of HIFs has been demonstrated in patients and mouse models of NAFLD and NASH and studies of activation and inhibition of HIFs using pharmacological and genetic tools point toward important roles for these transcription factors in modulating central aspects of the disease. HIFs appear to act in several cell types in the liver to worsen steatosis, inflammation, and fibrosis, but may nevertheless improve insulin sensitivity. Moreover, in liver and other tissues, HIF activation alters mitochondrial respiratory function and metabolism, having an impact on energetic and redox homeostasis. This article aims to provide an overview of current understanding of the roles of HIFs in NAFLD, highlighting areas where further research is needed.
Collapse
Affiliation(s)
- Lorenz M W Holzner
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Longo M, Paolini E, Meroni M, Dongiovanni P. Remodeling of Mitochondrial Plasticity: The Key Switch from NAFLD/NASH to HCC. Int J Mol Sci 2021; 22:4173. [PMID: 33920670 PMCID: PMC8073183 DOI: 10.3390/ijms22084173] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and the third-leading cause of cancer-related mortality. Currently, the global burden of nonalcoholic fatty liver disease (NAFLD) has dramatically overcome both viral and alcohol hepatitis, thus becoming the main cause of HCC incidence. NAFLD pathogenesis is severely influenced by lifestyle and genetic predisposition. Mitochondria are highly dynamic organelles that may adapt in response to environment, genetics and epigenetics in the liver ("mitochondrial plasticity"). Mounting evidence highlights that mitochondrial dysfunction due to loss of mitochondrial flexibility may arise before overt NAFLD, and from the early stages of liver injury. Mitochondrial failure promotes not only hepatocellular damage, but also release signals (mito-DAMPs), which trigger inflammation and fibrosis, generating an adverse microenvironment in which several hepatocytes select anti-apoptotic programs and mutations that may allow survival and proliferation. Furthermore, one of the key events in malignant hepatocytes is represented by the remodeling of glucidic-lipidic metabolism combined with the reprogramming of mitochondrial functions, optimized to deal with energy demand. In sum, this review will discuss how mitochondrial defects may be translated into causative explanations of NAFLD-driven HCC, emphasizing future directions for research and for the development of potential preventive or curative strategies.
Collapse
Affiliation(s)
- Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.L.); (E.P.); (M.M.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via Francesco Sforza 35, 20122 Milano, Italy
| | - Erika Paolini
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.L.); (E.P.); (M.M.)
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.L.); (E.P.); (M.M.)
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.L.); (E.P.); (M.M.)
| |
Collapse
|