1
|
Lv J, Hu Y, Li L, He Y, Wang J, Guo N, Fang Y, Chen Q, Cai C, Tong J, Tang L, Wang Z. Targeting FABP4 in elderly mice rejuvenates liver metabolism and ameliorates aging-associated metabolic disorders. Metabolism 2023; 142:155528. [PMID: 36842611 DOI: 10.1016/j.metabol.2023.155528] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 02/28/2023]
Abstract
INTRODUCTION Aging is characterized by progressive metabolic dyshomeostasis that increases morbidity and mortality. Solutions for optimizing healthy aging are challenged by lacking appropriate biomarkers. Moreover, druggable targets to rejuvenate the aging-associated metabolic phenotypes remain unavailable. METHODS Proteomics analysis was performed in a cohort of young and elderly adults. Circulating levels of insulin-like growth factor 1 (IGF-1) and fatty acid binding protein 4 (FABP4) were evaluated by ELISA. FABP4 was silenced in elderly mice by adeno-associated virus. Metabolic activities were measured by metabolic cages. Cognitive function was evaluated by Morris water maze. Glucose and lipid metabolism were evaluated by biochemistry assays with blood samples. RNA-seq in mouse liver was performed for transcriptome analysis. RESULTS Among 9 aging-sensitive proteins shared by both male and female, FABP4 was identified as a reliable aging biomarker in both human and mouse. Silencing FABP4 in elderly mice significantly rejuvenated the aging-associated decline in metabolic activities. FABP4 knockdown reversed the aging-associated metabolic disorders by promoting degradation of cholesterol and fatty acids, while suppressing gluconeogenesis. Transcriptome analysis revealed a restoration of the pro-aging gene reprogramming towards inflammation and metabolic disorders in the liver after FABP4 knockdown. FABP4 overexpression promoted human LO2 cell senescence. Moreover, administration of an FABP4 inhibitor BMS309403 delivered metabolic benefits in elderly mice. CONCLUSION Our findings demonstrate FABP4 as a reliable aging biomarker as well as a practicable target to improve healthy aging in the elderly.
Collapse
Affiliation(s)
- Jian Lv
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yimeng Hu
- Department of Endocrinology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China; Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuan He
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jingjing Wang
- School of Martial Arts, Wuhan Sports University, Wuhan 430079, China
| | - Ningning Guo
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Fang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qin Chen
- School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Cheguo Cai
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Jingjing Tong
- School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | - Lixu Tang
- School of Martial Arts, Wuhan Sports University, Wuhan 430079, China.
| | - Zhihua Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Lin H, Ye Y, Wan M, Qiu P, Xia R, Zheng G. Effect of Baduanjin exercise on cerebral blood flow and cognitive frailty in the community older adults with cognitive frailty: A randomized controlled trial. J Exerc Sci Fit 2023; 21:131-137. [PMID: 36606263 PMCID: PMC9791406 DOI: 10.1016/j.jesf.2022.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Objectives Regular Baduanjin exercise training has been shown to be beneficial to the physical and cognitive health of older adults, but the underlying mechanisms remain to be investigated. This study examined the influence of Baduanjin on cerebral hemodynamics in community-dwelling older adults with cognitive frailty. Design Randomized controlled trial. Methods A total of 102 eligible participants were randomly allocated into the Baduanjin exercise intervention group (BEG) or usual physical activity control group (CG) for 24 weeks. Cerebral hemodynamic parameters of bilateral middle/anterior cerebral artery and basilar artery, cognitive ability and physical frailty were assessed using Transcranial Doppler (TCD), Montreal Cognitive Assessment (MoCA) and Edmonton Frailty Scale (EFS) at baseline and 24 weeks post-intervention. Results After 24 weeks intervention, the changes in peak systolic velocity (PSV), mean blood flow velocity (MBFV), and end diastolic velocity (EDV) in the right middle cerebral artery and basilar artery were better in the BEG than in the CG; the increase in MoCA scores and the decrease in EFS scores were significantly higher in the BEG than in the CG. Moreover, the interaction of exercise and time on those variables showed obvious significance. Conclusions The 24 weeks Baduanjin exercise training had a positive beneficial effect on cerebral blood flow in community-dwelling older adults with cognitive frailty. This may be a potential mechanism by which Baduanjin exercise improves the cognitive frailty in older adults. Trial registration Chinese Clinical Trial Registry, ChiCTR1800020341. Date of registration December 25, 2018, http://www.chictr.org.cn/showproj.aspx?proj=29846.
Collapse
Key Words
- ACA, anterior cerebral artery
- BA, basilar artery
- Baduanjin
- CBF, cerebral blood flow
- CF, cognitive frailty
- Cerebral blood flow
- Cognitive frailty
- EDV, end diastolic velocity
- EFS, Edmonton frailty scale
- GDS, global deterioration scale
- ITT, intention-to-treat
- MBFV, mean of blood flow velocity
- MCA, middle cerebral artery
- Mechanisms
- MoCA, Montreal cognitive assessment
- PSV, peak systolic velocity
- Randomized controlled trial
- TCD, transcranial doppler
Collapse
Affiliation(s)
- Huiying Lin
- College of Nursing and Health Management, Shanghai University of Health & Medicine Sciences, Pudong New District, Shanghai, China,College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Shangjie University Town, Fuzhou, China
| | - Yu Ye
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Shangjie University Town, Fuzhou, China
| | - Mingyue Wan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Shangjie University Town, Fuzhou, China
| | - Pingting Qiu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Shangjie University Town, Fuzhou, China
| | - Rui Xia
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Shangjie University Town, Fuzhou, China
| | - Guohua Zheng
- College of Nursing and Health Management, Shanghai University of Health & Medicine Sciences, Pudong New District, Shanghai, China,Corresponding author.
| |
Collapse
|
3
|
Lyu S, Chen Z, Cui M, Wei Q, Li Y, Fang H, Liu M, Liu L, Fu J, Zhang J. Effectiveness of an online/offline mixed-mode Tai Chi cardiac rehabilitation program on microcirculation in patients with coronary artery disease: A randomized controlled study. Clin Hemorheol Microcirc 2023; 85:385-393. [PMID: 37781795 DOI: 10.3233/ch-231894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
OBJECTIVE We explored the effectiveness of an online/offline mixed-mode Tai Chi cardiac rehabilitation program on the microcirculation of patients with coronary artery disease (CAD). DESIGN Prospective, randomized controlled study. SETTING It was conducted in a tertiary hospital. SUBJECTS Twenty-six patients who met the diagnostic criteria for coronary artery disease were recruited. INTERVENTIONS Patients were randomized divided into a 12-week Tai Chi cardiac rehabilitation program(TCCRP) or a conventional exercise rehabilitation program(CERP) in a 1:1 fashion, 4 weeks of in-hospital rehabilitation and 8 weeks of online rehabilitation at home (a total of 12 weeks of intervention). MAIN OUTCOME MEASURES Nailfold microcirculation (Morphological integrals, Blood flow integrals, Periphery capillary loop integrals, Overall integrals). MAIN OUTCOME MEASURES Twenty patients completed the study. The Morphological integrals (baseline: 2.875±1.171 vs 12weeks: 1.863±0.414, t = 2.432, P = 0.045 < 0.05) and Overall integrals (baseline: 5.563±2.001 vs 12weeks: 3.688±1.167, t = 3.358, P = 0.012 < 0.05) decreased significantly in the TCCRP, The nailfold microcirculation integra decreased not significantly in the CERP (P > 0.05). The nailfold microcirculation integra was not significantly different between the two groups after the intervention (P > 0.05). CONCLUSIONS The TCCRP improved the microcirculation of patients with CAD.
Collapse
Affiliation(s)
- Shaojun Lyu
- College of P.E. and Sports, Beijing Normal University, Beijing, China
| | - Zaihao Chen
- College of P.E. and Sports, Beijing Normal University, Beijing, China
| | - Meize Cui
- College of P.E. and Sports, Beijing Normal University, Beijing, China
| | - Qiuyang Wei
- Sports Department of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yameng Li
- College of P.E. and Sports, Beijing Normal University, Beijing, China
| | - Hui Fang
- College of P.E. and Sports, Beijing Normal University, Beijing, China
| | - Mingyu Liu
- College of P.E. and Sports, Beijing Normal University, Beijing, China
| | - Linli Liu
- College of P.E. and Sports, Beijing Normal University, Beijing, China
| | - Jiahao Fu
- College of P.E. and Sports, Beijing Normal University, Beijing, China
| | - Jianwei Zhang
- College of P.E. and Sports, Beijing Normal University, Beijing, China
| |
Collapse
|
4
|
Marcolini S, Frentz I, Sanchez-Catasus CA, Mondragon JD, Feltes PK, van der Hoorn A, Borra RJ, Ikram MA, Dierckx RA, De Deyn PP. Effects of interventions on cerebral perfusion in the Alzheimer's disease spectrum: A systematic review. Ageing Res Rev 2022; 79:101661. [PMID: 35671869 DOI: 10.1016/j.arr.2022.101661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/22/2022] [Accepted: 05/31/2022] [Indexed: 11/01/2022]
Abstract
Cerebral perfusion dysfunctions are seen in the early stages of Alzheimer's disease (AD). We systematically reviewed the literature to investigate the effect of pharmacological and non-pharmacological interventions on cerebral hemodynamics in randomized controlled trials involving AD patients or Mild Cognitive Impairment (MCI) due to AD. Studies involving other dementia types were excluded. Data was searched in April 2021 on MEDLINE, Embase, and Web of Science. Risk of bias was assessed using Cochrane Risk of Bias Tool. A meta-synthesis was performed separating results from MCI and AD studies. 31 studies were included and involved 310 MCI and 792 CE patients. The MCI studies (n = 8) included physical, cognitive, dietary, and pharmacological interventions. The AD studies (n = 23) included pharmacological, physical interventions, and phytotherapy. Cerebral perfusion was assessed with PET, ASL, Doppler, fNIRS, DSC-MRI, Xe-CT, and SPECT. Randomization and allocation concealment methods and subject characteristics such as AD-onset, education, and ethnicity were missing in several papers. Positive effects on hemodynamics were seen in 75 % of the MCI studies, and 52 % of the AD studies. Inserting cerebral perfusion outcome measures, together with established AD biomarkers, is fundamental to target all disease mechanisms and understand the role of cerebral perfusion in AD.
Collapse
|
5
|
Umegaki H, Sakurai T, Arai H. Active Life for Brain Health: A Narrative Review of the Mechanism Underlying the Protective Effects of Physical Activity on the Brain. Front Aging Neurosci 2021; 13:761674. [PMID: 34916925 PMCID: PMC8670095 DOI: 10.3389/fnagi.2021.761674] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
A growing body of evidence clearly indicates the beneficial effects of physical activity (PA) on cognition. The importance of PA is now being reevaluated due to the increase in sedentary behavior in older adults during the COVID-19 pandemic. Although many studies in humans have revealed that PA helps to preserve brain health, the underlying mechanisms have not yet been fully elucidated. In this review, which mainly focuses on studies in humans, we comprehensively summarize the mechanisms underlying the beneficial effects of PA or exercise on brain health, particularly cognition. The most intensively studied mechanisms of the beneficial effects of PA involve an increase in brain-derived neurotrophic factor (BDNF) and preservation of brain volume, especially that of the hippocampus. Nonetheless, the mutual associations between these two factors remain unclear. For example, although BDNF presumably affects brain volume by inhibiting neuronal death and/or increasing neurogenesis, human data on this issue are scarce. It also remains to be determined whether PA modulates amyloid and tau metabolism. However, recent advances in blood-based biomarkers are expected to help elucidate the beneficial effects of PA on the brain. Clinical data suggest that PA functionally modulates cognition independently of neurodegeneration, and the mechanisms involved include modulation of functional connectivity, neuronal compensation, neuronal resource allocation, and neuronal efficiency. However, these mechanisms are as yet not fully understood. A clear understanding of the mechanisms involved could help motivate inactive persons to change their behavior. More accumulation of evidence in this field is awaited.
Collapse
Affiliation(s)
- Hiroyuki Umegaki
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Sakurai
- Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hidenori Arai
- National Center for Geriatrics and Gerontology, Obu, Japan
| |
Collapse
|