1
|
Kaito Y, Imai Y. Evolution of natural killer cell-targeted therapy for acute myeloid leukemia. Int J Hematol 2024; 120:34-43. [PMID: 38693419 DOI: 10.1007/s12185-024-03778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/04/2024] [Accepted: 04/14/2024] [Indexed: 05/03/2024]
Abstract
In hematologic oncology, acute myeloid leukemia (AML) presents a significant challenge due to its complex genetic landscape and resistance to conventional therapies. Despite advances in treatment, including intensive chemotherapy and hematopoietic stem cell transplantation (HSCT), the prognosis for many patients with AML remains poor. Recently, immunotherapy has emerged as a promising approach to improve outcomes by augmenting existing treatments. Natural killer (NK) cells, a subset of innate lymphoid cells, have garnered attention for their potent cytotoxic capabilities against AML cells. In this review, we discuss the role of NK cells in AML immunosurveillance, their dysregulation in patients with AML, and various therapeutic strategies leveraging NK cells in AML treatment. We explore the challenges and prospects associated with NK cell therapy, including approaches to enhance NK cell function, overcome immune evasion mechanisms, and optimize treatment efficacy. Finally, we emphasize the importance of further research to validate and refine patient-first NK cell-based immunotherapies for AML.
Collapse
Affiliation(s)
- Yuta Kaito
- Department of Hematology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo, 113-8602, Japan.
| | - Yoichi Imai
- Department of Hematology and Oncology, Dokkyo Medical University, Tochigi, Japan
| |
Collapse
|
2
|
Shabrish S, Chandrakasan S, Madkaikar M. Editorial: NK cell defects: diagnosis and treatment. Front Immunol 2023; 14:1323793. [PMID: 38022628 PMCID: PMC10644773 DOI: 10.3389/fimmu.2023.1323793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Snehal Shabrish
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Shanmuganathan Chandrakasan
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, United States
| | - Manisha Madkaikar
- Department of Pediatric Immunology & Leukocyte Biology, Indian Council of Medical Research - National Institute of Immunohaematology, King Edward Memorial (KEM) Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
3
|
D’Silva SZ, Singh M, Pinto AS. NK cell defects: implication in acute myeloid leukemia. Front Immunol 2023; 14:1112059. [PMID: 37228595 PMCID: PMC10203541 DOI: 10.3389/fimmu.2023.1112059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Acute Myeloid Leukemia (AML) is a complex disease with rapid progression and poor/unsatisfactory outcomes. In the past few years, the focus has been on developing newer therapies for AML; however, relapse remains a significant problem. Natural Killer cells have strong anti-tumor potential against AML. This NK-mediated cytotoxicity is often restricted by cellular defects caused by disease-associated mechanisms, which can lead to disease progression. A stark feature of AML is the low/no expression of the cognate HLA ligands for the activating KIR receptors, due to which these tumor cells evade NK-mediated lysis. Recently, different Natural Killer cell therapies have been implicated in treating AML, such as the adoptive NK cell transfer, Chimeric antigen receptor-modified NK (CAR-NK) cell therapy, antibodies, cytokine, and drug treatment. However, the data available is scarce, and the outcomes vary between different transplant settings and different types of leukemia. Moreover, remission achieved by some of these therapies is only for a short time. In this mini-review, we will discuss the role of NK cell defects in AML progression, particularly the expression of different cell surface markers, the available NK cell therapies, and the results from various preclinical and clinical trials.
Collapse
Affiliation(s)
- Selma Z. D’Silva
- Transplant Immunology and Immunogenetics Lab, Advanced Centre for Treatment, Education and Research in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Meenakshi Singh
- Transplant Immunology and Immunogenetics Lab, Advanced Centre for Treatment, Education and Research in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Andrea S. Pinto
- Transplant Immunology and Immunogenetics Lab, Advanced Centre for Treatment, Education and Research in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| |
Collapse
|
4
|
Roshan Zamir M, Ariafar A, Ghaderi A, Amirzargar A. The impact of killer cell immunoglobulin-like receptor (KIR) genes and human leukocyte antigen (HLA) class I ligands on predisposition or protection against prostate cancer. Immunobiology 2023; 228:152319. [PMID: 36599262 DOI: 10.1016/j.imbio.2022.152319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/02/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
Natural killer (NK) cell development largely depends on killer cell immunoglobulin-like receptors (KIRs) and human leukocyte antigen (HLA) class I ligands. In the current study, we investigated the role of KIR genes, HLA ligands, and KIR-HLA combinations in vulnerability or protection against prostate cancer (PC). To analyze the frequency of 16 KIR genes and 5 HLA ligands, polymerase chain reaction with sequence-specific primers (PCR-SSP) was conducted in 150 PC patients and 200 healthy controls (CNs). KIR2DL5 (p = 0.0346, OR = 0.606, CI = 0.3916-0.9336), KIR2DS5 (p = 0.0227, OR = 0.587, CI = 0.3793-0.9139), HLA-B Bw4Thr80 (p = 0.0401, OR = 0.3552, CI = 0.1466-0.9059), HLA Bw4 (p = 0.0190, OR = 0.4744, CI = 0.2656-0.8521), and T4 gene cluster (including KIR2DS5-2DL5-3DS1-2DS1 genes) (p = 0.0194, OR = 0.5575, CI = 0.3449-0.8938) had a lower frequency in the PC patients compared to the control group. Moreover, a lower frequency of the genotypes contacting activating KIR (aKIR) > inhibitory KIR (iKIR) (p = 0.0298, OR = 0.5291, CI = 0.3056-0.9174) and iKIR + HLA < aKIR + HLA (p = 0.0183, OR = 0.2197, CI = 0.0672-0.7001) in PC patients compared to the CNs implies a protective role for aKIR genes. In the case of KIR-HLA interactions, we detected a significant association between KIR3DS1+ + HLA-A Bw4+ (p = 0.0113, OR = 0.5093, CI = 0.3124-0.8416) and KIR3DL1- + HLA-A Bw4+ (p = 0.0306, OR = 0.1153, CI = 0.0106-0.6537) combinations and resistance to prostate cancer. In contrast, the presence of KIR3DL1 in the absence of HLA-A Bw4 (p = 0.0040, OR = 2.00, CI = 1.264-3.111), HLA Bw4 (p = 0.0296, OR = 2.066, CI = 1.094-3.906), and HLA-Bw4Thr80 (p = 0.0071, OR = 2.505, CI = 1.319-4.703) genes probably predisposes to prostate cancer. Carrying the CxT4 genotype in PC patients was positively associated with lower tumor grades (Gleason score ≤ 6) (p = 0.0331, OR = 3.290, and CI = 1.181-8.395). Altogether, our data suggest a protective role for aKIRs, HLA-B Bw4Thr80, and HLA Bw4 ligands as well as a predisposing role for certain KIR-HLA combinations in prostate cancer. The findings of this study offer new insight into the population's risk assessment for prostate cancer in men. Additionally, predicting immunotherapy response based on KIR-HLA combinations aids in implementing the most effective therapeutic approach in the early stages of the disease.
Collapse
Affiliation(s)
- Mina Roshan Zamir
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Ariafar
- Urology-Oncology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Urology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Aliakbar Amirzargar
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Soltani S, Mostafaei S, Aslani S, Farhadi E, Mahmoudi M. Association of KIR gene polymorphisms with Type 1 Diabetes: a meta-analysis. J Diabetes Metab Disord 2021; 19:1777-1786. [PMID: 33520861 DOI: 10.1007/s40200-020-00569-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 05/20/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
Purpose Type 1 Diabetes (T1D) is a T cell-mediated disease, in which autoimmune destruction of insulin-producing β-cells in pancreatic islets occurs. In recent decades, the role of Killer cell immunoglobulin-like receptor (KIR) gene polymorphisms in susceptibility to T1D has been demonstrated in an increased number of studies. Nonetheless, inconsistency has been observed in the results of performed association studies. To comprehensively clarify the association among KIR gene polymorphisms and the risk of T1D, this meta-analysis on the previously published association studies was carried out via incorporating multiple research. Methods No publication has been recorded from Nov 2017 until July 2020 about the KIR genes and T1D. The PubMed/MEDLINE and Scopus databases were systematically searched up to November 2017 to identify investigations on the impact of the polymorphisms of KIR genes on susceptibility to T1D. The odds ratio (OR) with a 95% confidence interval (95% CI) was calculated. Funnel plot and Egger test were used to assess the publication bias. Thirteen qualified published case-control articles were found for evaluation in this meta-analysis. Results Our results show statistical significance between the genetic variations in the KIR2DL1 (OR = 0.42, 95% CI = 0.23-0.77; P = 0.005), KIR2DL2 (OR = 1.15, 95% CI = 1.00-1.32; P = 0.048), and KIR2DL5 (OR = 0.86, 95% CI = 0.75-0.98; P = 0.03) with susceptibility to T1D. Conclusions This meta-analysis study provides reliable evidence that KIR gene polymorphisms may contribute to T1D risk. KIR 2DL1 and 2DL5 genes might be considered as a protective factor for T1D, while 2DL2 seemed to be a susceptibility factor.
Collapse
Affiliation(s)
- Samaneh Soltani
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, PO-BOX: 1411713137, Kargar Ave., Tehran, Iran
| | - Shayan Mostafaei
- Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Sorkheh-Ligeh Blvd, Kermanshah, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, PO-BOX: 1411713137, Kargar Ave., Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, PO-BOX: 1411713137, Kargar Ave., Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Identification of Immunological Parameters as Predictive Biomarkers of Relapse in Patients with Chronic Myeloid Leukemia on Treatment-Free Remission. J Clin Med 2020; 10:jcm10010042. [PMID: 33375572 PMCID: PMC7795332 DOI: 10.3390/jcm10010042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/11/2020] [Accepted: 12/23/2020] [Indexed: 01/11/2023] Open
Abstract
BCR-ABL is an aberrant tyrosine kinase responsible for chronic myeloid leukemia (CML). Tyrosine kinase inhibitors (TKIs) induce a potent antileukemic response mostly based on the inhibition of BCR-ABL, but they also increase the activity of Natural Killer (NK) and CD8+ T cells. After several years, patients may interrupt treatment due to sustained, deep molecular response. By unknown reasons, half of the patients relapse during treatment interruption, whereas others maintain a potent control of the residual leukemic cells for several years. In this study, several immunological parameters related to sustained antileukemic control were analyzed. According to our results, the features more related to poor antileukemic control were as follows: low levels of cytotoxic cells such as NK, (Natural Killer T) NKT and CD8±TCRγβ+ T cells; low expression of activating receptors on the surface of NK and NKT cells; impaired synthesis of proinflammatory cytokines or proteases from NK cells; and HLA-E*0103 homozygosis and KIR haplotype BX. A Random Forest algorithm predicted 90% of the accuracy for the classification of CML patients in groups of relapse or non-relapse according to these parameters. Consequently, these features may be useful as biomarkers predictive of CML relapse in patients that are candidates to initiate treatment discontinuation.
Collapse
|
7
|
Ren GF, Zhu L, Zhuang YL, Liu YX, Huang J, Wang H, Wang Q. Association of Killer Cell Immunoglobulin-like Receptor Genotypes and Haplotypes in Dry Eye Disease Patients Treated with Restasis and Systane. Ocul Immunol Inflamm 2020; 29:877-882. [PMID: 31906768 DOI: 10.1080/09273948.2019.1698751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: whether the Killer immunoglobulin-like receptor (KIR) genotypes and haplotypes are associated with the improvement in dry eye disease (DED) patients treated with Restasis and Systane (RS) remain unclear.Methods: Polymerase chain reaction with sequence-specific primers (PCR-SSP) was used to analyze KIR genes in a Chinese Han population of 198 severe DED patients treated with RS.Results: The higher frequencies of KIR genotype M, AF, AJ and haplotype 2 and 8 (P = .001, P = .03, P = .004, P = .000 and P = .023, respectively) and the lower frequencies of genotype AG and haplotype 1 (P = .000 and P = .000, respectively) were observed in complete responders (CR) than those in null or partial responders (NPR) of DED patients treated by RS.Conclusions: The patients with KIR genotype M, AF and AJ might be of advantage to therapy with RS, which are useful for improving novel personalized precise therapy strategy in DED patients.
Collapse
Affiliation(s)
- Gui-Fang Ren
- Department of Ophthalmology, The 4th People's Hospital of Jinan, Jinan, Shandong Province, P. R. China
| | - Lin Zhu
- Quality Control Department, Doying Central Blood Station, Dongying, Shandong Province, P. R. China
| | - Yun-Long Zhuang
- Quality Control Department, Blood Center of Shandong Province, Jinan, Shandong Province, P. R. China
| | - Yun-Xia Liu
- Department of Ophthalmology, The 4th People's Hospital of Jinan, Jinan, Shandong Province, P. R. China
| | - Jing Huang
- Department of Ophthalmology, The 4th People's Hospital of Jinan, Jinan, Shandong Province, P. R. China
| | - Hui Wang
- Department of Ophthalmology, The 4th People's Hospital of Jinan, Jinan, Shandong Province, P. R. China
| | - Qun Wang
- Department of Ophthalmology, The 4th People's Hospital of Jinan, Jinan, Shandong Province, P. R. China
| |
Collapse
|
8
|
Family-based Association Study of Killer Cell Immunoglobulin-Like Receptor Genes with Leukemia. ACTA MEDICA BULGARICA 2019. [DOI: 10.2478/amb-2019-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
NK cell function is controlled by the cell expression of killer immunoglobulin-like receptors (KIRs) and their ligation with the corresponding HLA ligands. Various malignancies have been associated with certain KIRs surface cell expression and various KIR/HLA ligand combinations. Prior research using case/control study design demonstrates the role of KIR and KIR HLA ligands as genetic factor involved in tumor susceptibility. The objective of this study was to investigate the family-based association of KIRs, HLA class I ligands and KIR/ligand combinations with leukemia diagnosis in families having a leukemia diagnosed child. Sixty-seven families that met the index leukemia case criteria (acute lymphoblastic leukemia, ALL, n = 45; acute myeloid leukemia, AML, n = 13; chronic myeloid leukemia, CML, n = 9; first degree healthy relatives n = 159) were examined. Our study consisted of two phases. In Phase1 case-control study, we primarily compared patients to their healthy siblings to asses if a marker or genotype may be associated with leukemia, excluding the impact of the environment. Phase 2 consisted of a secondary family-based association study. KIR genotyping was performed by PCR-SSP method. KIR HLA ligands were defined by direct method using PCR-SSP method and/or indirect base on high resolution typing of HLA-A, -B, -C alleles. Results of phase 1 showed an increase in the frequency of KIR genotype (with a ratio = 0.57; higher frequency for inhibitory KIRs vs. activating KIRs) among leukemia patients compared to healthy siblings. Results of the phase 2 familial study observed an association between HLA-C1+/BBw4+/ABw4+ haplotype (a mediator of inhibitory signals) and leukemia. Also, we concluded that the absence of HLA-ABw4 alleles was related to leukemia development.
Collapse
|
9
|
Barani S, Hosseini SV, Ghaderi A. Activating and inhibitory killer cell immunoglobulin like receptors (KIR) genes are involved in an increased susceptibility to colorectal adenocarcinoma and protection against invasion and metastasis. Immunobiology 2019; 224:681-686. [PMID: 31248612 DOI: 10.1016/j.imbio.2019.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/21/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND A set of activating and inhibitory KIRs (aKIR, iKIR) are involved in NK cell mediated immunity. This study was carried out in order to investigate the KIRs pattern and its association with colorectal carcinoma (CRC) development and clinical outcomes. METHODS Sequence-specific primers-polymerase chain reaction (SSP-PCR) for typing of 16 KIR genes was utilized in 165 patients with colorectal adenocarcinoma with 165 age and gender matched healthy controls (CNs). RESULTS Possessing KIR2DS1, 2DS5, 3DS1, 2DS4fl, 2DL5, telomeric half KIR genes, ≥ 4 aKIR and CXT4 genotype were associated with an increased susceptibility to colorectal adenocarcinoma while KIR2DS4del and iKIR >aKIR confer resistance to CRC. On the other hand, clinical associations revealed the defensive role of telomeric KIR3DL1, 3DS1, 2DS1, 2DS4, genotypes with ≥ 4 aKIR and more inhibitory KIRs than activating ones (I > A) against metastasis and CXTX genotype in perineural invasion. CONCLUSION According to current results it appears that KIRs system play distinctive roles in development and metastasis of colorectal adenocarcinoma.
Collapse
Affiliation(s)
- Shaghik Barani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
10
|
Ay ME, Ay Öİ, Çayan FE, Tekin S, Karakaş Ü, Derici Yildirim D, Erdal ME. Genetic Predisposition to Unexplained Recurrent Pregnancy Loss: Killer Cell Immunoglobulin-Like Receptor Gene Polymorphisms as Potential Biomarkers. Genet Test Mol Biomarkers 2019; 23:57-65. [DOI: 10.1089/gtmb.2018.0082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Mustafa Ertan Ay
- Department of Medical Biology and Genetics, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Özlem İzci Ay
- Department of Medical Biology and Genetics, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Filiz Evşen Çayan
- Department of Gynecology and Obstetrics, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Sevinç Tekin
- Department of Medical Biology and Genetics, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Ümit Karakaş
- Department of Medical Biology and Genetics, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Didem Derici Yildirim
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Mehmet Emin Erdal
- Department of Medical Biology and Genetics, Faculty of Medicine, Mersin University, Mersin, Turkey
| |
Collapse
|
11
|
KIR2DS1 , 2DS5 , 3DS1 and KIR2DL5 are associated with the risk of head and neck squamous cell carcinoma in Iranians. Hum Immunol 2018; 79:218-223. [DOI: 10.1016/j.humimm.2018.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 02/02/2023]
|
12
|
Bonifant CL, Velasquez MP, Gottschalk S. Advances in immunotherapy for pediatric acute myeloid leukemia. Expert Opin Biol Ther 2017; 18:51-63. [PMID: 28945115 DOI: 10.1080/14712598.2018.1384463] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Achieving better disease control in patients diagnosed with acute myeloid leukemia (AML) has proven challenging. Overall survival has been impacted by addressing treatment related mortality with focused supportive care measures. Despite this improvement, it remains difficult to induce durable leukemia remissions despite aggressive chemotherapeutic regimens. The addition of hematopoietic stem cell transplants (HSCT) has allowed further treatment intensification and provided the benefit of graft-versus-leukemia (GVL) effect. However, HSCT carries the risk of transplant related morbidities, particularly GVHD, and anti-tumor responsiveness is still suboptimal. Thus, there is a need for alternate therapies. Immunotherapy has the potential to address this need. Areas covered: Expert opinion: The elusiveness of an ideal surface antigen target together with an immunosuppressive leukemic microenvironment add to the already difficult challenge in developing AML-targeted immunotherapies. Though many hurdles remain, recent translational discovery and progressive clinical advances anticipate exciting future developments. AREAS COVERED This review highlights promises and challenges to immune-based therapies for AML. It aims to summarize immunotherapeutic strategies trialed in AML patients to date, inclusive of: antibodies, vaccines, and cellular therapy. It emphasizes those being used in the pediatric population, but also includes adult clinical trials and translational science that may ultimately extend to pediatric patients.
Collapse
Affiliation(s)
- Challice L Bonifant
- a Department of Pediatrics and Communicable Diseases , University of Michigan , Ann Arbor , MI , USA
| | - Mireya Paulina Velasquez
- b Department of Bone Marrow Transplantation and Cellular Therapy , St. Jude Children's Research Hospital , Memphis , TN , USA
| | - Stephen Gottschalk
- b Department of Bone Marrow Transplantation and Cellular Therapy , St. Jude Children's Research Hospital , Memphis , TN , USA
| |
Collapse
|