1
|
Wu XX, Tang SJ, Yao SH, Zhou YQ, Xiao LL, Cheng LF, Liu FM, Wu NP, Yao HP, Li LJ. The viral distribution and pathological characteristics of BALB/c mice infected with highly pathogenic Influenza H7N9 virus. Virol J 2021; 18:237. [PMID: 34844617 PMCID: PMC8628282 DOI: 10.1186/s12985-021-01709-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/21/2021] [Indexed: 11/16/2022] Open
Abstract
Background The highly pathogenic Influenza H7N9 virus is believed to cause multiple organ infections. However, there have been few systematic animal experiments demonstrating the virus distribution after H7N9 virus infection. The present study was carried out to investigate the viral distribution and pathological changes in the main organs of mice after experimental infection with highly pathogenic H7N9 virus. Methods Infection of mice with A/Guangdong/GZ8H002/2017(H7N9) virus was achieved via nasal inoculation. Mice were killed at 2, 3, and 7 days post infection. The other mice were used to observe their illness status and weight changes. Reverse transcription polymerase chain reaction and viral isolation were used to analyse the characteristics of viral invasion. The pathological changes of the main organs were observed using haematoxylin and eosin staining and immunohistochemistry. Results The weight of H7N9 virus-infected mice increased slightly in the first two days. However, the weight of the mice decreased sharply in the following days, by up to 20%. All the mice had died by the 8th day post infection and showed multiple organ injury. The emergence of viremia in mice was synchronous with lung infection. On the third day post infection, except in the brain, the virus could be isolated from all organs (lung, heart, kidney, liver, and spleen). On the seventh day post infection, the virus could be detected in all six organs. Brain infection was detected in all mice, and the viral titre in the heart, kidney, and spleen infection was high. Conclusion Acute diffuse lung injury was the initial pathogenesis in highly pathogenic H7N9 virus infection. In addition to lung infection and viremia, the highly pathogenic H7N9 virus could cause multiple organ infection and injury.
Collapse
Affiliation(s)
- Xiao-Xin Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qing Chun Road, Hangzhou, 310003, Zhejiang, China
| | - Song-Jia Tang
- Plastic and Aesthetic Surgery Department, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Shu-Hao Yao
- Department of Stomatology, Wenzhou Medical University Renji College, Wenzhou, 325035, Zhejiang, China
| | - Yu-Qin Zhou
- Department of Respiratory Medicine, The Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Lan-Lan Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qing Chun Road, Hangzhou, 310003, Zhejiang, China
| | - Lin-Fang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qing Chun Road, Hangzhou, 310003, Zhejiang, China
| | - Fu-Ming Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qing Chun Road, Hangzhou, 310003, Zhejiang, China
| | - Nan-Ping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qing Chun Road, Hangzhou, 310003, Zhejiang, China
| | - Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qing Chun Road, Hangzhou, 310003, Zhejiang, China.
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qing Chun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
2
|
Abstract
In early 2013, human infections caused by a novel H7N9 avian influenza virus (AIV) were first reported in China; these infections caused severe disease and death. The virus was initially low pathogenic to poultry, enabling it to spread widely in different provinces, especially in live poultry markets. Importantly, the H7N9 low pathogenic AIVs (LPAIVs) evolved into highly pathogenic AIVs (HPAIVs) in the beginning of 2017, causing a greater threat to human health and devastating losses to the poultry industry. Fortunately, nationwide vaccination of chickens with an H5/H7 bivalent inactivated avian influenza vaccine since September 2017 has successfully controlled H7N9 avian influenza infections in poultry and, importantly, has also prevented human infections. In this review, we summarize the biological properties of the H7N9 viruses, specifically their genetic evolution, adaptation, pathogenesis, receptor binding, transmission, drug resistance, and antigenic variation, as well as the prevention and control measures. The information obtained from investigating and managing the H7N9 viruses could improve our ability to understand other novel AIVs and formulate effective measures to control their threat to humans and animals.
Collapse
Affiliation(s)
- Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
3
|
Yu WQ, Ji NF, Ding MD, Gu CJ, Ma Y, Wu ZZ, Wang YL, Wu CJ, Dai GH, Chen Y, Jin RR, Tan YB, Yang Z, Zhou DM, Xian JC, Xu HT, Huang M. Characteristics of H7N9 avian influenza pneumonia: a retrospective analysis of 17 cases. Intern Med J 2021; 50:1115-1123. [PMID: 31707755 DOI: 10.1111/imj.14685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND H7N9 avian influenza is an infection of public health concern, in part because of its high mortality rate and pandemic potential. AIMS To describe the clinical features of H7N9 avian influenza and the response to treatment. METHODS Clinical, radiological and histopathological data, and treatment-related of H7N9-infected patients hospitalised during 2014-2017 were extracted and analysed. RESULTS A total of 17 H7N9 patients (three females; mean age, 58.4 ± 13.7 years) was identified; of these six died. All patients presented with fever and productive cough; four patients had haemoptysis and 13 had chest distress and/or shortness of breath. Early subnormal white blood cell count and elevation of serum liver enzymes were common. Multilobar patchy shadows, rapid progression to ground-glass opacities, air bronchograms and consolidation were the most common imaging findings. Histopathological examination of lung tissue of three patients who died showed severe alveolar epithelial cell damage, with inflammatory exudation into the alveolar space and hyaline membrane formation; widened alveolar septae, prominent inflammatory cell infiltration; and hyperplasia of pneumocytes. Viral inclusions were found in the lung tissue of two patients. All patients received antiviral drugs (oseltamivir ± peramivir). Four patients carried the rs12252-C/C interferon-induced transmembrane protein-3 (IFITM3) genotype, while the others had the C/T genotype. CONCLUSIONS H7N9 virus infection causes human influenza-like symptoms, but may rapidly progress to severe pneumonia and even death. Clinicians should be alert to the possibility of H7N9 infection in high-risk patients. The presence of the IFITM3 rs12252-C genotype may predict severe illness.
Collapse
Affiliation(s)
- Wen-Qing Yu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Infectious Diseases, Taizhou People's Hospital, Taizhou, China
| | - Ning-Fei Ji
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming-Dong Ding
- Department of Infectious Diseases, Taizhou People's Hospital, Taizhou, China
| | - Cheng-Jing Gu
- Department of Pharmacy, Taizhou People's Hospital, Taizhou, China
| | - Yuan Ma
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhen-Zhen Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan-Li Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao-Jie Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Gui-Hong Dai
- Department of Pathology, Taizhou People's Hospital, Taizhou, China
| | - Yan Chen
- Department of Pathology, Taizhou People's Hospital, Taizhou, China
| | - Rong-Rong Jin
- Department of Pathology, Taizhou People's Hospital, Taizhou, China
| | - Yi-Bin Tan
- Department of Nuclear Medicine, Taizhou People's Hospital, Taizhou, China
| | - Zhu Yang
- Department of Medical Microbiology and Immunology, Wannan Medical College, Wuhu, China
| | - Da-Ming Zhou
- Department of Infectious Diseases, Taizhou People's Hospital, Taizhou, China
| | - Jian-Chun Xian
- Department of Infectious Diseases, Taizhou People's Hospital, Taizhou, China
| | - Hong-Tao Xu
- Department of Infectious Diseases, Taizhou People's Hospital, Taizhou, China
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Henning J, Hesterberg UW, Zenal F, Schoonman L, Brum E, McGrane J. Risk factors for H5 avian influenza virus prevalence on urban live bird markets in Jakarta, Indonesia-Evaluation of long-term environmental surveillance data. PLoS One 2019; 14:e0216984. [PMID: 31125350 PMCID: PMC6534305 DOI: 10.1371/journal.pone.0216984] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/02/2019] [Indexed: 11/19/2022] Open
Abstract
In the re-emergence of Highly Pathogenic Avian Influenza (HPAI), live bird markets have been identified to play a critical role. In this repeated cross-sectional study, we combined surveillance data collected monthly on Jakarta's live bird markets over a five-year period, with risk factors related to the structure and management of live bird markets, the trading and slaughtering of birds at these markets, and environmental and demographic conditions in the areas where the markets were located. Over the study period 36.7% (95% CI: 35.1, 38.3) of samples (N = 1315) tested HPAI H5 virus positive. Using General Estimation Equation approaches to account for repeated observations over time, we explored the association between HPAI H5 virus prevalence and potential risk factors. Markets where only live birds and carcasses were sold, but no slaughtering was conducted at or at the vicinity of the markets, had a significantly reduced chance of being positive for H5 virus (OR = 0.2, 95% CI 0.1-0.5). Also, markets, that used display tables for poultry carcasses made from wood, had reduced odds of being H5 virus positive (OR = 0.7, 95% CI 0.5-1.0), while having at least one duck sample included in the pool of samples collected at the market increased the chance of being H5 virus positive (OR = 5.7, 95% CI 3.6-9.2). Markets where parent stock was traded, were more at risk of being H5 virus positive compared to markets where broilers were traded. Finally, the human population density in the district, the average distance between markets and origins of poultry sold at markets and the total rainfall per month were all positively associated with higher H5 virus prevalence. In summary, our results highlight that a combination of factors related to trading and marketing processes and environmental pressures need to be considered to reduce H5 virus infection risk for customers at urban live bird markets. In particular, the relocation of slaughter areas to well-managed separate locations should be considered.
Collapse
Affiliation(s)
- Joerg Henning
- School of Veterinary Science, University of Queensland, Gatton, Queensland, Australia
| | - Uta Walburga Hesterberg
- Emergency Centre for Transboundary Animal Diseases (ECTAD), Food and Agriculture Organization of the United Nations (FAO), Jakarta, Java, Indonesia
- Emergency Centre for Transboundary Animal Diseases (ECTAD), Food and Agriculture Organization of the United Nations (FAO), Dhaka, Bangladesh
| | - Farida Zenal
- Emergency Centre for Transboundary Animal Diseases (ECTAD), Food and Agriculture Organization of the United Nations (FAO), Jakarta, Java, Indonesia
| | - Luuk Schoonman
- Emergency Centre for Transboundary Animal Diseases (ECTAD), Food and Agriculture Organization of the United Nations (FAO), Jakarta, Java, Indonesia
| | - Eric Brum
- Emergency Centre for Transboundary Animal Diseases (ECTAD), Food and Agriculture Organization of the United Nations (FAO), Jakarta, Java, Indonesia
- Emergency Centre for Transboundary Animal Diseases (ECTAD), Food and Agriculture Organization of the United Nations (FAO), Dhaka, Bangladesh
| | - James McGrane
- Emergency Centre for Transboundary Animal Diseases (ECTAD), Food and Agriculture Organization of the United Nations (FAO), Jakarta, Java, Indonesia
| |
Collapse
|
5
|
Zhang W, Zhao K, Jin J, He J, Zhou W, Wu J, Tang R, Ma W, Ding C, Liu W, Zhang L, Gao R. A hospital cluster combined with a family cluster of avian influenza H7N9 infection in Anhui Province, China. J Infect 2019; 79:49-55. [PMID: 31100362 PMCID: PMC7112695 DOI: 10.1016/j.jinf.2019.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/07/2019] [Accepted: 05/10/2019] [Indexed: 12/09/2022]
Abstract
We reported a hospital cluster combined with family cluster of H7N9 infection. A poultry farm was the initially infectious source of the H7N9 virus infection. Airborne transmission may result in the hospital cluster.
Objectives To identify human-to-human transmission of H7N9 avian influenza virus, we investigated a hospital cluster combined with family cluster in this study. Methods We obtained and analyzed clinical, epidemiological and virological data from the three patients. RT-PCR, viral culture and sequencing were conducted for determination of causative pathogen. Results The index case presented developed pneumonia with fever after exposure to chicken in a poultry farm. Case A presented pneumonia with high fever on day 3 after she shared a hospital room with the index case. Case B, the father of the index case, presented pneumonia with high fever on day 15 after he took care of the index case. H7N9 virus circulated in the local farm to which the index case was exposed. Full genomic sequence of virus showed 99.8–100% identity shared between the index case and case A or case B. Compared to the earliest virus of Anhui, a total of 29 amino acid variation sites were observed in the 8 segments. Conclusions A hospital cluster combined with family cluster of H7N9 avian influenza infection was identified. Air transmission resulted in the hospital cluster possibly. A poultry farm was the initially infectious source of the cluster.
Collapse
Affiliation(s)
- Wenyan Zhang
- Hefei Center for Disease Control and Prevention, Heifei, Anhui Province, 230061, China
| | - Kefu Zhao
- Hefei Center for Disease Control and Prevention, Heifei, Anhui Province, 230061, China
| | - Jing Jin
- Hefei Center for Disease Control and Prevention, Heifei, Anhui Province, 230061, China
| | - Jun He
- Anhui Provincial Center for Disease Control and Prevention, Heifei, Anhui Province, 230601, China
| | - Wei Zhou
- Hefei Center for Disease Control and Prevention, Heifei, Anhui Province, 230061, China
| | - Jinju Wu
- Hefei Center for Disease Control and Prevention, Heifei, Anhui Province, 230061, China
| | - Renshu Tang
- Hefei Center for Disease Control and Prevention, Heifei, Anhui Province, 230061, China
| | - Wenbo Ma
- Lujiang County People's Hospital, Heifei, Anhui Province, 231501, China
| | - Caiyu Ding
- The Second Hospital of Anhui Medical University, Heifei, Anhui Province, 230601, China
| | - Wei Liu
- Hefei Center for Disease Control and Prevention, Heifei, Anhui Province, 230061, China
| | - Lei Zhang
- Hefei Center for Disease Control and Prevention, Heifei, Anhui Province, 230061, China
| | - Rongbao Gao
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory of Medical Virology and Viral Diseases, National Health Commission of People's Republic of China, Beijing, 102206, China.
| |
Collapse
|
6
|
Gun L, Haixian P, Yumiao R, Han T, Jingqi L, Liguang Z. Codon usage characteristics of PB2 gene in influenza A H7N9 virus from different host species. INFECTION GENETICS AND EVOLUTION 2018; 65:430-435. [PMID: 30179716 DOI: 10.1016/j.meegid.2018.08.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 08/02/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022]
Abstract
The influenza A H7N9 virus is a highly contagious virus which can only infect poultry before early 2013. But after that time, it widely caused human infections in China and brought Southeast Asia great threaten in the public health area. The coding gene for polymerase basic protein 2 (PB2) in influenza A H7N9 virus encodes the PB2 protein, which is a part of the RNA polymerase. The enzyme lacks a correction function during its own replication process, so the mutation frequency of the influenza A H7N9 virus gene is high and the PB2 gene is also included. To investigate the codon usages characteristics of PB2 gene, gene sequences of 12 kinds of poultry are downloaded form the gene bank (NCBI) and their codon usage characteristics such as the effective number of codons (ENC), the evolutionary relationship of the sequences, the codon adaptation index (CAI), the correspondence analysis (COA), the relative synonymous codon usage (RSCU) and their PR2-bias are compared and studied. The value of these reults showed that there is a low codon usage bias in the PB2 gene. Then, the differences between the codon usages of PB2 gene from 12 kinds of poultry are compared and their potential applications are discussed. These results could lay a foundation for other further study on the evolution of H7N9.
Collapse
Affiliation(s)
- Li Gun
- Department of Biomedical Engineering, School of Electronics and Information Engineering, Xi'an Technological University, Xi'an, Shaanxi Province, China.
| | - Pan Haixian
- Department of Biomedical Engineering, School of Electronics and Information Engineering, Xi'an Technological University, Xi'an, Shaanxi Province, China
| | - Ren Yumiao
- Department of Biomedical Engineering, School of Electronics and Information Engineering, Xi'an Technological University, Xi'an, Shaanxi Province, China
| | - Tian Han
- Department of Biomedical Engineering, School of Electronics and Information Engineering, Xi'an Technological University, Xi'an, Shaanxi Province, China
| | - Lu Jingqi
- Department of Biomedical Engineering, School of Electronics and Information Engineering, Xi'an Technological University, Xi'an, Shaanxi Province, China
| | - Zhang Liguang
- Department of Biomedical Engineering, School of Electronics and Information Engineering, Xi'an Technological University, Xi'an, Shaanxi Province, China
| |
Collapse
|
7
|
Wang J, Su N, Dong Z, Liu C, Cui P, Huang JA, Chen C, Zhu Y, Chen L. The fifth influenza A(H7N9) epidemic: A family cluster of infection in Suzhou city of China, 2016. Int J Infect Dis 2018; 74:128-135. [PMID: 29738825 DOI: 10.1016/j.ijid.2018.04.4322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Influenza A(H7N9) virus is known for its high pathogenicity in human. A family cluster of influenza A(H7N9) virus infection was identified in Suzhou, China. This study aimed to investigate the possibility of human-to-human transmission of the virus and examine the virologic features of this family cluster. METHODS The clinical and epidemiologic data of two patients in the family cluster of influenza A(H7N9) virus infection were collected. Viral RNA in samples derived from the two patients, their close contacts, and the environments with likely influenza A(H7N9) virus transmission were tested by real-time reverse transcriptase polymerase chain reaction (rRT-PCR) assay. Hemagglutination inhibition (HI) assay was used to detect virus-specific antibodies. Genetic sequencing and phylogenetic analysis were also performed. RESULTS The index patient (Case 1), a 66-year old man, was virologically diagnosed with influenza A(H7N9) virus infection 12days after experiencing influenza-like symptoms, then died of multi-organ failure. His 39-year old daughter (Case 2), denying any other exposure to influenza A(H7N9) virus, became infected with influenza A(H7N9) virus following taking care of her father during his illness. Sequencing viral genomes isolated from the two patients showed nearly identical nucleotide sequence, and genetically resembled the viral genome isolated from a chicken in the wet market where the index patient once visited. All three influenza A(H7N9) viruses shared S138A, G186V, Q226L mutations in HA (H3) protein and a single basic amino acid (PEIPKGR↓G) at the cleavage site. CONCLUSIONS Human-to-human transmission of influenza A(H7N9) virus most likely occurred in this household. The three-amino-acid mutations in HA protein were discovered in this study, which might have increased the binding affinity of influenza A(H7N9) virus to the receptor on trachea epithelial cells to facilitate viral transmission among humans.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Nan Su
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Zefeng Dong
- Suzhou Center for Disease Control and Prevention, Suzhou, Jiangsu Province, China.
| | - Cheng Liu
- Suzhou Center for Disease Control and Prevention, Suzhou, Jiangsu Province, China.
| | - Pengwei Cui
- Suzhou Center for Disease Control and Prevention, Suzhou, Jiangsu Province, China.
| | - Jian-An Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Cheng Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Yehan Zhu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Liling Chen
- Suzhou Center for Disease Control and Prevention, Suzhou, Jiangsu Province, China.
| |
Collapse
|
8
|
Dong W, Yang K, Xu Q, Liu L, Chen J. Spatio-temporal pattern analysis for evaluation of the spread of human infections with avian influenza A(H7N9) virus in China, 2013-2014. BMC Infect Dis 2017; 17:704. [PMID: 29065855 PMCID: PMC5655814 DOI: 10.1186/s12879-017-2781-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/03/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND A large number (n = 460) of A(H7N9) human infections have been reported in China from March 2013 through December 2014, and H7N9 outbreaks in humans became an emerging issue for China health, which have caused numerous disease outbreaks in domestic poultry and wild bird populations, and threatened human health severely. The aims of this study were to investigate the directional trend of the epidemic and to identify the significant presence of spatial-temporal clustering of influenza A(H7N9) human cases between March 2013 and December 2014. METHODS Three distinct epidemic phases of A(H7N9) human infections were identified in this study. In each phase, standard deviational ellipse analysis was conducted to examine the directional trend of disease spreading, and retrospective space-time permutation scan statistic was then used to identify the spatio-temporal cluster patterns of H7N9 outbreaks in humans. RESULTS The ever-changing location and the increasing size of the three identified standard deviational ellipses showed that the epidemic moved from east to southeast coast, and hence to some central regions, with a future epidemiological trend of continue dispersing to more central regions of China, and a few new human cases might also appear in parts of the western China. Furthermore, A(H7N9) human infections were clustering in space and time in the first two phases with five significant spatio-temporal clusters (p < 0.05), but there was no significant cluster identified in phase III. CONCLUSIONS There was a new epidemiologic pattern that the decrease in significant spatio-temporal cluster of A(H7N9) human infections was accompanied with an obvious spatial expansion of the outbreaks during the study period, and identification of the spatio-temporal patterns of the epidemic can provide valuable insights for better understanding the spreading dynamics of the disease in China.
Collapse
Affiliation(s)
- Wen Dong
- School of Information Science and Technology, Yunnan Normal University, Kunming, Yunnan China
- GIS Technology Engineering Research Centre for West-China Resources and Environment of Educational Ministry, Yunnan Normal University, Kunming, Yunnan China
| | - Kun Yang
- School of Information Science and Technology, Yunnan Normal University, Kunming, Yunnan China
- GIS Technology Engineering Research Centre for West-China Resources and Environment of Educational Ministry, Yunnan Normal University, Kunming, Yunnan China
| | - Quanli Xu
- School of Tourism and Geographic Science, Yunnan Normal University, Kunming, Yunnan China
- GIS Technology Engineering Research Centre for West-China Resources and Environment of Educational Ministry, Yunnan Normal University, Kunming, Yunnan China
| | - Lin Liu
- School of Information Science and Technology, Yunnan Normal University, Kunming, Yunnan China
| | - Juan Chen
- School of Information Science and Technology, Yunnan Normal University, Kunming, Yunnan China
| |
Collapse
|
9
|
Liu B, Havers FP, Zhou L, Zhong H, Wang X, Mao S, Li H, Ren R, Xiang N, Shu Y, Zhou S, Liu F, Chen E, Zhang Y, Widdowson MA, Li Q, Feng Z. Clusters of Human Infections With Avian Influenza A(H7N9) Virus in China, March 2013 to June 2015. J Infect Dis 2017; 216:S548-S554. [PMID: 28934462 DOI: 10.1093/infdis/jix098] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Multiple clusters of human infections with novel avian influenza A(H7N9) virus have occurred since the virus was first identified in spring 2013. However, in many situations it is unclear whether these clusters result from person-to-person transmission or exposure to a common infectious source. We analyzed the possibility of person-to-person transmission in each cluster and developed a framework to assess the likelihood that person-to-person transmission had occurred. We described 21 clusters with 22 infected contact cases that were identified by the Chinese Center for Disease Control and Prevention from March 2013 through June 2015. Based on detailed epidemiological information and the timing of the contact case patients' exposures to infected persons and to poultry during their potential incubation period, we graded the likelihood of person-to-person transmission as probable, possible, or unlikely. We found that person-to-person transmission probably occurred 12 times and possibly occurred 4 times; it was unlikely in 6 clusters. Probable nosocomial transmission is likely to have occurred in 2 clusters. Limited person-to-person transmission is likely to have occurred on multiple occasions since the H7N9 virus was first identified. However, these transmission events represented a small fraction of all identified cases of H7N9 human infection, and sustained person-to-person transmission was not documented.
Collapse
Affiliation(s)
- Bo Liu
- Public Health Emergency Center
| | - Fiona P Havers
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Haojie Zhong
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou
| | - Xianjun Wang
- Shandong Provincial Center for Disease Control and Prevention, Jinan
| | - Shenghua Mao
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai
| | - Hai Li
- Guangxi Provincial Center for Disease Control and Prevention, Nanning
| | | | | | - Yuelong Shu
- Institute for Viral Disease Control and Prevention
| | - Suizan Zhou
- China Office, US Centers for Disease Control and Prevention, Beijing
| | - Fuqiang Liu
- Hunan Provincial Center for Disease Control and Prevention, Changsha City
| | - Enfu Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | | | - Marc-Alain Widdowson
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Qun Li
- Public Health Emergency Center
| | - Zijian Feng
- Chinese Center for Disease Control and Prevention
| |
Collapse
|
10
|
Yu Z, Sun W, Zhang X, Cheng K, Zhao C, Gao Y, Xia X. Multiple amino acid substitutions involved in the virulence enhancement of an H3N2 avian influenza A virus isolated from wild waterfowl in mice. Vet Microbiol 2017; 207:36-43. [PMID: 28757037 DOI: 10.1016/j.vetmic.2017.05.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/23/2017] [Accepted: 05/23/2017] [Indexed: 10/19/2022]
Abstract
Frequent emergence of low pathogenic avian influenza H3N2 viruses in the wild birds has caused concern for human health. Here, we generated mouse-adapted strains of a wild waterfowl-origin low pathogenic avian influenza H3N2 virus to identify adaptive mutations that confer enhanced virulence in mammals. The mouse lethal doses (MLD50) of the adapted strains were reduced >562-fold compared to the parental virus. Mouse-adapted strains displayed enhanced replication in vitro and in vivo, and acquired the ability to replicate in extrapulmonary tissues. These observations suggest that enhanced growth characteristics and modified cell tropism may increase the virulence of H3N2 AIVs in mice. Genomic analysis revealed mutations in the PB2 (E192K and D701N), PB1 (F269S, I475V, and L598P), HA (V242E), NA (G170R), and M1 (M192V) proteins. Our results suggest that these amino acid substitutions collaboratively enhance the ability of H3N2 avian influenza A virus to replicate and cause severe disease in mammals.
Collapse
Affiliation(s)
- Zhijun Yu
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, 250023, China.
| | - Weiyang Sun
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Xinghai Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Kaihui Cheng
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250132, China
| | - Chuqi Zhao
- Department of Animal Science, Agricultural College, Yanbian University, Yanji, 133002, China
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun, 130122, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun, 130122, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
11
|
Epidemiological, clinical, and virologic features of two family clusters of avian influenza A (H7N9) virus infections in Southeast China. Sci Rep 2017; 7:1512. [PMID: 28473725 PMCID: PMC5431426 DOI: 10.1038/s41598-017-01761-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 04/19/2017] [Indexed: 01/08/2023] Open
Abstract
This study aimed to investigate the epidemiological, clinical, and virologic characteristics of avian influenza A (H7N9) confirmed cases from two family clusters in Southeast China. Epidemiological data of the H7N9 confirmed cases and their close contacts were obtained through interviews and reviews of medical records. Of the four patients in these two family clusters, two cases had mild symptoms, one had severe symptoms, and one died. Three of the four patients had a history of exposure to live poultry or contaminated environments. The complete genome sequences of the H7N9 viruses from the same family cluster were highly homologous, and the four isolated viruses from the two family clusters exhibited the virologic features of the H7N9 virus, in terms of transmissibility, pathogenicity, host adaptation, and antiviral drug resistance. In addition, our findings indicated that the A/Fujian/18/2015 viral strain contained an additional hemagglutinin G225D substitution, which preferentially binds α2,6-linked sialic acids. The results of this study demonstrate that one family cluster was infected through common exposure to live poultry or contaminated environments, and the other was more likely to be infected through the human-to-human route.
Collapse
|
12
|
Comparative Epidemiology of Human Fatal Infections with Novel, High (H5N6 and H5N1) and Low (H7N9 and H9N2) Pathogenicity Avian Influenza A Viruses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14030263. [PMID: 28273867 PMCID: PMC5369099 DOI: 10.3390/ijerph14030263] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/20/2017] [Accepted: 02/28/2017] [Indexed: 12/17/2022]
Abstract
This study aimed to assess the mortality risks for human infection with high (HPAI) and low (LPAI) pathogenicity avian influenza viruses. The HPAI case fatality rate (CFR) was far higher than the LPAI CFR [66.0% (293/444) vs. 68.75% (11/16) vs. 40.4% (265/656) vs. 0.0% (0/18) in the cases with H5N1, H5N6, H7N9, and H9N2 viruses, respectively; p < 0.001]. Similarly, the CFR of the index cases was greater than the secondary cases with H5N1 [100% (43/43) vs. 43.3% (42/97), p < 0.001]. Old age [22.5 vs. 17 years for H5N1, p = 0.018; 61 vs. 49 years for H7H9, p < 0.001], concurrent diseases [18.8% (15/80) vs. 8.33% (9/108) for H5N1, p = 0.046; 58.6% (156/266) vs. 34.8% (135/388) for H7H9, p < 0.001], delayed confirmation [13 vs. 6 days for H5N1, p < 0.001; 10 vs. 8 days for H7N9, p = 0.011] in the fatalities and survivors, were risk factors for deaths. With regard to the H5N1 clusters, exposure to poultry [67.4% (29/43) vs. 45.2% (19/42), p = 0.039] was the higher risk for the primary than the secondary deaths. In conclusion, old age, comorbidities, delayed confirmation, along with poultry exposure are the major risks contributing to fatal outcomes in human HPAI and LPAI infections.
Collapse
|
13
|
Differences in the Epidemiology of Childhood Infections with Avian Influenza A H7N9 and H5N1 Viruses. PLoS One 2016; 11:e0161925. [PMID: 27695069 PMCID: PMC5047462 DOI: 10.1371/journal.pone.0161925] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/15/2016] [Indexed: 11/19/2022] Open
Abstract
The difference between childhood infections with avian influenza viruses A(H5N1) and A(H7N9) remains an unresolved but critically important question. We compared the epidemiological characteristics of 244 H5N1 and 41 H7N9 childhood cases (<15 years old), as well as the childhood cluster cases of the two viruses. Our findings revealed a higher proportion of H5N1 than H7N9 childhood infections (31.1% vs. 6.4%, p = 0.000). However, the two groups did not differ significantly in age (median age: 5.0 vs. 5.5 y, p = 0.0651). The proportion of clustered cases was significantly greater among children infected with H5N1 than among children infected with H7N9 [46.7% (71/152) vs. 23.6% (13/55), p = 0.005], and most of the childhood cases were identified as secondary cases [46.4% (45/97) vs. 33.3% (10/30), p = 0.000]. Mild status accounted for 79.49% and 22.66%, severe status for 17.95% and 2.34%, and fatal cases for 2.56% and 75.00% of the H7N9 and H5N1 childhood infection cases (all p<0.05), respectively. The fatality rates for the total, index and secondary childhood cluster cases were 52.86% (37/70), 88.5% (23/26) and 33.33% (15/45), respectively, in the H5N1 group, whereas no fatal H7N9 childhood cluster cases were identified. In conclusion, lower severity and greater transmission were found in the H7N9 childhood cases than in the H5N1 childhood cases.
Collapse
|
14
|
Sha J, Chen X, Ren Y, Chen H, Wu Z, Ying D, Zhang Z, Liu S. Differences in the epidemiology and virology of mild, severe and fatal human infections with avian influenza A (H7N9) virus. Arch Virol 2016; 161:1239-59. [PMID: 26887968 PMCID: PMC7101734 DOI: 10.1007/s00705-016-2781-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/30/2016] [Indexed: 11/04/2022]
Abstract
A novel avian influenza A (H7N9) virus caused 5-10 % mild and 30.5 % fatal human infections as of December 10, 2015. In order to investigate the reason for the higher rate of fatal outcome of this infection, this study compared the molecular epidemiology and virology of avian influenza A (H7N9) viruses from mild (N = 14), severe (N = 50) and fatal (N = 35) cases, as well as from non-human hosts (N = 73). The epidemiological results showed that the average age of the people in the mild, severe and fatal groups was 27.6, 52 and 62 years old, respectively (p < 0.001). Males accounted for 42.9 % (6/14), 58.0 % (29/50), and 74.3 % (26/35) of cases in the mild, severe and fatal group respectively (p = 0.094). Median days from onset to start of antiviral treatment were 2, 5 and 7 days in the mild, severe and fatal group, respectively (p = 0.002). The median time from onset to discharge/death was 12, 40 and 19 days in the mild, severe and fatal group, respectively (p < 0.001). Analysis of whole genome sequences showed that PB2 (E627K), NA (R294K) and PA (V100A) mutations were markedly associated with an increased fatality rate, while HA (N276D) and PB2 (N559T) mutations were clearly related to mild cases. There were no differences in the genotypes, adaptation to mammalian hosts, and genetic identity between the three types of infection. In conclusion, advanced age and delayed confirmation of diagnosis and antiviral intervention were risk factors for death. Furthermore, PB2 (E627K), NA (R294K) and PA (V100A) mutations might contribute to a fatal outcome in human H7N9 infection.
Collapse
Affiliation(s)
- Jianping Sha
- Department of Gastroenterology, The 421 Hospital of Chinese People's Liberation Army, Guangzhou, People's Republic of China
| | - Xiaowen Chen
- Department of Senior Cadres, The 421 Hospital of Chinese People's Liberation Army, Guangzhou, People's Republic of China
| | - Yajin Ren
- Pharmacy Department, The 421 Hospital of Chinese People's Liberation Army, Guangzhou, People's Republic of China
| | - Haijun Chen
- Department of Infectious Diseases, Jinhua Municipal Central Hospital, Jinhua, People's Republic of China
| | - Zuqun Wu
- Department of Respiratory Medicine, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, People's Republic of China
| | - Dong Ying
- Department of Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhiruo Zhang
- School of Public Health, Shanghai Jiao Tong University, 227 South Chongqing Road, Huangpu District, Shanghai, 200025, People's Republic of China.
| | - Shelan Liu
- Department of Infectious Diseases, Zhejiang Provincial Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, People's Republic of China.
| |
Collapse
|
15
|
Fang CF, Ma MJ, Zhan BD, Lai SM, Hu Y, Yang XX, Li J, Cao GP, Zhou JJ, Zhang JM, Wang SQ, Hu XL, Li YJ, Wang XX, Cheng W, Yao HW, Li XL, Yi HM, Xu WD, Jiang JF, Gray GC, Fang LQ, Chen EF, Cao WC. Nosocomial transmission of avian influenza A (H7N9) virus in China: epidemiological investigation. BMJ 2015; 351:h5765. [PMID: 26586515 PMCID: PMC4652199 DOI: 10.1136/bmj.h5765] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
STUDY QUESTION Can avian influenza A (H7N9) virus be transmitted between unrelated individuals in a hospital setting? METHODS An epidemiological investigation looked at two patients who shared a hospital ward in February 2015, in Quzhou, Zhejiang Province, China. Samples from the patients, close contacts, and local environments were examined by real time reverse transcriptase (rRT) polymerase chain reaction (PCR) and viral culture. Haemagglutination inhibition and microneutralisation assays were used to detect specific antibodies to the viruses. Primary outcomes were clinical data, infection source tracing, phylogenetic tree analysis, and serological results. STUDY ANSWER AND LIMITATIONS A 49 year old man (index patient) became ill seven days after visiting a live poultry market. A 57 year old man (second patient), with a history of chronic obstructive pulmonary disease, developed influenza-like symptoms after sharing the same hospital ward as the index patient for five days. The second patient had not visited any poultry markets nor had any contact with poultry or birds within 15 days before the onset of illness. H7N9 virus was identified in the two patients, who both later died. Genome sequences of the virus isolated from both patients were nearly identical, and genetically similar to the virus isolated from the live poultry market. No specific antibodies were detected among 38 close contacts. Transmission between the patients remains unclear, owing to the lack of samples collected from their shared hospital ward. Although several environmental swabs were positive for H7N9 by rRT-PCR, no virus was cultured. Owing to delayed diagnosis and frequent hospital transfers, no serum samples were collected from the patients, and antibodies to H7N9 viruses could not be tested. WHAT THIS STUDY ADDS Nosocomial H7N9 transmission might be possible between two unrelated individuals. Surveillance on patients with influenza-like illness in hospitals as well as chickens in live poultry markets should be enhanced to monitor transmissibility and pathogenicity of the virus. FUNDING, COMPETING INTERESTS, DATA SHARING Funding support from the Program of International Science and Technology Cooperation of China (2013DFA30800), Basic Work on Special Program for Science and Technology Research (2013FY114600), National Natural Science Foundation of China (81402730), Special Program for Prevention and Control of Infectious Diseases in China (2013ZX10004218), US National Institutes of Health (1R01-AI108993), Zhejiang Province Major Science and Technology Program (2014C03039), and Quzhou Science and Technology Program (20111084). The authors declare no other interests and have no additional data.
Collapse
Affiliation(s)
- Chun-Fu Fang
- Quzhou Center for Disease Control and Prevention, Quzhou, China
| | - Mai-Juan Ma
- State Key Laboratory of Pathogen and Security, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Bing-Dong Zhan
- Quzhou Center for Disease Control and Prevention, Quzhou, China
| | - Shi-Ming Lai
- Quzhou Center for Disease Control and Prevention, Quzhou, China
| | - Yi Hu
- State Key Laboratory of Pathogen and Security, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiao-Xian Yang
- State Key Laboratory of Pathogen and Security, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jing Li
- State Key Laboratory of Pathogen and Security, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Guo-Ping Cao
- Quzhou Center for Disease Control and Prevention, Quzhou, China
| | - Jing-Jing Zhou
- State Key Laboratory of Pathogen and Security, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jian-Min Zhang
- Quzhou Center for Disease Control and Prevention, Quzhou, China
| | | | - Xiao-Long Hu
- Quzhou Center for Disease Control and Prevention, Quzhou, China
| | - Yin-Jun Li
- State Key Laboratory of Pathogen and Security, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiao-Xiao Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Wei Cheng
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Hong-Wu Yao
- State Key Laboratory of Pathogen and Security, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xin-Lou Li
- State Key Laboratory of Pathogen and Security, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Huai-Ming Yi
- Changshan County Center for Disease Control and Prevention, Changshan, China
| | | | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Security, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Gregory C Gray
- Division of Infectious Diseases, Global Health Institute, & Nicholas School of the Environment, Duke University, Duke University Medical Center, Durham, NC, USA
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Security, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - En-Fu Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Security, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| |
Collapse
|
16
|
He F, Chen EF, Li FD, Wang XY, Wang XX, Lin JF. Human infection and environmental contamination with Avian Influenza A (H7N9) Virus in Zhejiang Province, China: risk trend across the three waves of infection. BMC Public Health 2015; 15:931. [PMID: 26392274 PMCID: PMC4576372 DOI: 10.1186/s12889-015-2278-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/14/2015] [Indexed: 11/24/2022] Open
Abstract
Background The third wave of H7N9 cases in China emerged in the second half of 2014. This study was conducted to identify the risk trends of H7N9 virus in human infections and environment contamination. Methods A surveillance program for H7N9 virus has been conducted in all 90 counties in Zhejiang since March 2013. All H7N9 cases were reported by hospitals through the China Information System for Disease Control and Prevention. Sampling sites for environment specimens were randomly selected by a multi-stage sampling strategy. Poultry-related workers for serological surveillance were randomly selected from the sampling sites for environmental specimens in the first quarter of each year. rRT-PCR and viral isolation were performed to identify H7N9 virus. A hemagglutination inhibition assay was conducted to detect possible H7N9 infection among poultry-related workers. Results A total of 170 H7N9 cases were identified in Zhejiang from 20 March 2013 to 28 February 2015. The proportion of rural cases increased from 42.2 % (19/45) to 67.7 % (21/31) with progression of the three epidemics (P < 0.05). In 32 % (161/503) of towns and 16.0 % (238/1488) of surveyed premises, H7N9 virus was detected in the environment. The positive rate of environmental specimens was 6.1 % (868/14207). In addition, 912 poultry-related workers were recruited and 3.7 % (34) of them tested positive for H7N9 antibodies. Positive detection of H7N9 virus during environmental surveillance increased from the first to third wave (P < 0.05). Almost all positive rates of environmental surveillance were higher in urban than rural in the second wave (P < 0.05), however they were higher in rural area in the third wave (P < 0.05). Conclusions Our study highlights that the severity of poultry-related environmental contamination by H7N9 virus is intensifying. We strongly recommend that the local government stop illegal trading immediately and close live poultry markets in the territory. Poultry operations in slaughtering plants must be supervised rigorously. Prior to the closure of live poultry markets, daily cleaning and disinfecting of areas potentially contaminated by H7N9 virus, centralized collection and disposal of trash, designating certain days as market rest days, banning overnight poultry storage and other measures should be strictly carried out in both urban and rural areas.
Collapse
Affiliation(s)
- Fan He
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang, 310051, People's Republic of China.
| | - En-Fu Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang, 310051, People's Republic of China.
| | - Fu-Dong Li
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang, 310051, People's Republic of China.
| | - Xin-Yi Wang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang, 310051, People's Republic of China.
| | - Xiao-Xiao Wang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang, 310051, People's Republic of China.
| | - Jun-Fen Lin
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang, 310051, People's Republic of China.
| |
Collapse
|