1
|
Wang S, Xu M, Lin X, Xiong P, Liu Y, Xu A, Chen M, Ji S, Tao Z. Detection of human noroviruses in sewage by next generation sequencing in Shandong Province, 2019-2021. Virol J 2025; 22:18. [PMID: 39871378 PMCID: PMC11773704 DOI: 10.1186/s12985-025-02638-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/20/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Human noroviruses are the major cause of acute gastroenteritis and exhibit considerable genetic diversity. Next generation sequencing (NGS) analysis based on environmental surveillance has been proved to be an effective method in norovirus surveillance. METHODS Between January 2019 and December 2021, 36 sewage samples were collected and analyzed using real-time quantitative PCR to detect noroviruses. Partial VP1 region was amplified and subjected to NGS analysis to assess the abundance and genetic characterization of various norovirus genotypes across different samples. RESULTS A total of 23 norovirus genotypes were identified, including 9 genotypes of GI, 13 genotypes of GII and 1 genotype of GIX. The most frequently detected genotypes were GI.5 (86.11%), GII.2 (86.11%), GII.4 (63.89%), GII.17 (58.33%), and GII.13 (55.56%). Additionally, some rare genotypes, such as GI.7, GII.5, GII.9, and GII.16, which had not been previously reported in Shandong, were identified. No significant differences were observed in genotypic diversity or viral copy numbers in sewage samples when comparing pre- and post-COVID-19 periods. A total of 379 partial VP1 sequences were obtained, with the means sequence identity within a genotype of Shandong sequences ranging from 92.69 to 98.37% and a coefficient of variation ranging from 1.46 to 6.73%. Phylogenetic analysis indicated that local noroviruses within each genotype comprised multiple co-circulating lineages. CONCLUSIONS Our data demonstrate that sewage contains noroviruses with considerable high diversities. NGS based environmental surveillance greatly improves the understanding of norovirus circulation and should be encouraged.
Collapse
Affiliation(s)
- Suting Wang
- Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Mingyi Xu
- Shandong Academy of Occupational Health and Occupational Medicine, Jinan, 250062, China
| | - Xiaojuan Lin
- Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Ping Xiong
- Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Yao Liu
- Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Aiqiang Xu
- Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Meng Chen
- Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Shengxiang Ji
- Linyi Center for Disease Control and Prevention, Linyi, 276007, China.
| | - Zexin Tao
- Shandong Center for Disease Control and Prevention, Jinan, 250014, China.
| |
Collapse
|
2
|
Rajeevan A, Sakthivel M, Menon N, Kc S, Sudersanan H, Nagarajan R, Raju M, Murali S, Girish Kumar CP, Balakrishnan A, Raveendran R, Perumbil D, Antherjanam D, Joseph Xavier Kallupurackal S, Balakrishnan B, Krishna N, Samuel S, Kaur P, Murehkar MV. Norovirus outbreaks due to contaminated drinking water and probable person-to-person transmission, Kerala, India, 2021. J Infect Public Health 2024; 17:102568. [PMID: 39486387 DOI: 10.1016/j.jiph.2024.102568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND In July 2021, the Alappuzha district in Kerala, India, reported an unexpected number of acute gastroenteritis (772) cases (Outbreak A). On October 10, 2021, a university in Wayanad, Kerala, reported 25 acute gastroenteritis cases (Outbreak B). We described both the outbreaks and determined the agent, source and risk factors. METHODS We defined a suspected case as the occurrence of vomiting or at least three episodes of loose stools within 24 h and a confirmed case as those with stool samples/rectal swabs positive for norovirus. We did a matched case-control study in Outbreak A and a retrospective cohort study in Outbreak B. We calculated the adjusted odds ratio (aOR) in outbreak A, relative risk (aRR) in outbreak B and population attributable fraction (PAF). We tested stool and water samples for bacteria and viruses. RESULTS We identified Group II norovirus in stool samples in both outbreaks and 4/5 water samples in Outbreak A. Suspected norovirus infection was associated with drinking inadequately boiled water from the municipal water supply in outbreak A [aOR: 4.5; 95 % C.I: 1.2-15.8; PAF: 0.23] and well water in hostels in outbreak B [aRR: 2.2; 95 % C.I: 1.2-3.9; PAF: 0.15]. In Outbreak A, groundwater from tube wells was mixed in the municipal water supply overhead tanks without chlorination. CONCLUSION The gastroenteritis outbreaks were caused by Group II norovirus due to the consumption of inadequately boiled contaminated groundwater (outbreak A) and well water (outbreak B). We recommended superchlorination of overhead tanks and wells and boiled water for drinking.
Collapse
Affiliation(s)
- Amjith Rajeevan
- District Nodal officer Ardram mission, Pathanamthitta, Health services, Kerala, India
| | | | - Nikhilesh Menon
- State Nodal Officer Lab Network, Health services, Kerala, India
| | - Sachin Kc
- District Nodal officer Ardram mission, Kannur, Health services, Kerala, India
| | - Harisree Sudersanan
- Assistant Professor, Microbiology, Govt TD Medical college, Alappuzha, Kerala, India
| | - Ramya Nagarajan
- Scientist-B, ICMR-National Institute of Epidemiology, Chennai, Tamil Nadu, India
| | - Mohankumar Raju
- Consultant, ICMR-National Institute of Epidemiology, Chennai, Tamil Nadu, India
| | - Sharan Murali
- Scientist-B, ICMR-National Institute of Epidemiology, Chennai, Tamil Nadu, India
| | | | | | | | - Dineesh Perumbil
- District surveillance officer, Wayanad, Health services, Kerala, India
| | | | | | | | | | | | - Prabhdeep Kaur
- Scientist-F, ICMR-National Institute of Epidemiology, Chennai, Tamil Nadu, India.
| | - Manoj Vasant Murehkar
- Scientist-G & Director, ICMR-National Institute of Epidemiology, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Xiong H, Ma F, Tang D, Liu D. Measures for preventing norovirus outbreaks on campus in economically underdeveloped areas and countries: evidence from rural areas in Western China. Front Public Health 2024; 12:1406133. [PMID: 38894991 PMCID: PMC11183813 DOI: 10.3389/fpubh.2024.1406133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Background The outbreak of norovirus represents a significant public health emergency within densely populated, impoverished, and underdeveloped areas and countries. Our objective is to conduct an epidemiology study of a norovirus outbreak that occurred in a kindergarten located in rural western China. We aim to raise awareness and garner increased attention towards the prevention and control of norovirus, particularly in economically underdeveloped regions. Methods Retrospective on-site epidemiological investigation results, including data on school layout, case symptoms, onset time, disposal methods and sample testing results, questionnaire surveys, and case-control study were conducted in a kindergarten to analyze the underlying causes of the norovirus outbreak. Results A total of 15 cases were identified, with an attack rate of 44.12% (15/34). Among them, 10 cases were diagnosed through laboratory tests, and 5 cases were diagnosed clinically. Vomiting (100%, 15/15) and diarrhea (93.33%, 14/15) were the most common symptoms in the outbreak. Case control study revealed that cases who had close contact (<1 m) with the patient's vomitus (OR = 5.500) and those who had close contact with similar patients (OR = 8.000) had significantly higher ORs compared to the control participants. The current study demonstrated that improper handling of vomitus is positively associated with norovirus outbreak. The absence of standardized disinfection protocols heightens the risk of norovirus outbreaks. Conclusion To our knowledge, this study represents the first investigation into a norovirus outbreak in rural areas of western China. We aspire that amidst rapid economic development, a greater emphasis will be placed on the prevention and control of infectious diseases in economically underdeveloped areas and countries.
Collapse
Affiliation(s)
- Huali Xiong
- Department of Public Health, Health Commission of Rongchang District, Chongqing, China
- Center for Mental Health of Rongchang District, Chongqing, China
| | - Fengxun Ma
- Department of Public Health, The People's Hospital of Rongchang District, Chongqing, China
| | - Dayi Tang
- First Clinical College, Mudanjiang Medical College, Mudanjiang, Heilongjiang, China
| | - Daiqiang Liu
- Department of Hospital Information, The People's Hospital of Rongchang District, Chongqing, China
| |
Collapse
|
4
|
Sun Y, Yuan Y, Mao H, Su L, Ge Q, Gao J, Xu C, Gong L. Molecular Epidemiology of Human Norovirus Variants from Outbreaks in Zhejiang Province, China, during 2021. Adv Virol 2024; 2024:7972494. [PMID: 38846347 PMCID: PMC11156503 DOI: 10.1155/2024/7972494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 06/09/2024] Open
Abstract
Background Noroviruses are the most frequent cause of epidemic acute viral gastroenteritis in China. Objectives The aim of this study was to determine the molecular epidemiological characteristics of norovirus outbreaks and the molecular genetic features of norovirus in Zhejiang Province during 2021. Methods First, the local Centers for Disease Control and Prevention in the outbreak area conducted on-site epidemiologic investigations and collected samples from ill patients for initial testing. The general epidemiologic characteristics of the demographic information are presented through descriptive analysis. Positive samples were sent to the Microbiology Laboratory of Zhejiang Provincial Center for Disease Control and Prevention for further verification. The presence of norovirus genogroups I (GI) and II (GII), along with sapovirus, was detected. Subsequently, the specimens positive for norovirus were sequenced for genotyping purposes. Furthermore, the whole genomes of positive samples were sequenced, enabling the characterization of both nucleotide and amino acid differences within the virus. Finally, phylogenetic trees were constructed to further analyze and understand the genetic relationships among the detected viruses. Result 227 norovirus outbreaks were reported in Zhejiang Province, China, during 2021. Schools were the main setting while January was the peak month for outbreaks. A total of 17 diverse genotypes of norovirus were identified in 2021, and GII.P16-GII.2 was the most frequent genotype (30.19%). Seven genomes (five GI.P4-GI.5 and two GII.P16-GII.2) were obtained. Although GI.P4-GI.5 is considered to be a rare genotype of norovirus, the prevalence might have been underestimated. Capsid microvariation of GII.2 displayed histo-blood group antigen binding patterns compared to the GII.2 prototype, although VP1 sequences were considered to have a minimal impact on antigenicity. Conclusion This study revealed the diversity of norovirus strains' genotypes circulating in Zhejiang Province in 2021. Continued molecular surveillance of noroviruses should be strengthened in our further efforts to the development of vaccines.
Collapse
Affiliation(s)
- Yi Sun
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Yongjuan Yuan
- Jia Shan Center for Disease Control and Prevention, Jiaxing, Zhejiang, China
| | - Haiyan Mao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Lingxuan Su
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Qiong Ge
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Jian Gao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Changping Xu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Liming Gong
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Li T, Peng J, Li Q, Li B, Yuan Y, Yang C, Yang D, Tang W, Qi L. Investigation of two norovirus outbreaks linked to drinking water contaminated with multiple GII strains in a rural county-Chongqing, China, 2021. Front Public Health 2023; 11:1259584. [PMID: 38162601 PMCID: PMC10756231 DOI: 10.3389/fpubh.2023.1259584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Backgrounds Norovirus is leading cause of non-bacterial gastroenteritis outbreaks globally, characterized by different strains prevalent in different countries and regions. Methods Cases were defined as individuals experiencing diarrhea ≥3 times/24 h, and/or vomiting ≥2 times/24 h in two villages between January 28 and February 9, 2021. Investigations were conducted to identify causes. Cases were interviewed using a standardized in-person form to collect data on potential risk factors. A retrospective cohort study was conducted to investigate the role of the spring water supply as the outbreak source. Residents from neighboring villages with different water sources served as the unexposed population. Stool specimens, rectal swabs, and water samples were tested using quantitative real-time Polymerase Chain Reaction, with subsequent sequencing performed on pathogen-positive specimens. Results Village-specific attack rates were 21.93% (123/561) and 26.99% (88/326), respectively. Evidence from both epidemiological and laboratory tests was consistent. Drinking spring water was statistically associated with the two outbreaks (RR = 41.8 and 79.2, respectively). In both outbreaks, stool specimens, rectal swabs, and water samples tested positive for norovirus. Specifically, GII.2 (P16) and GII.17 (P17) were identified in outbreak A, and GII.4 Sydney (P16) and GII.1 (P16) in outbreak B. Conclusion These two independent gastroenteritis outbreaks share similarities, both being linked to norovirus GII strains. The contaminated spring drinking water was identified as the probable source and was promptly closed and subjected to disinfection procedures. These findings reinforce the importance of implementing sanitation and environmental disinfection measures in rural areas, especially during the periods of increased rainfall.
Collapse
Affiliation(s)
- Tingting Li
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
- Chongqing Municipal Key Laboratory for High Pathogenic Microbes, Chongqing, China
| | - Jingyao Peng
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
- Chongqing Municipal Key Laboratory for High Pathogenic Microbes, Chongqing, China
| | - Qin Li
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
- Chongqing Municipal Key Laboratory for High Pathogenic Microbes, Chongqing, China
| | - Baisong Li
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
- Chongqing Municipal Key Laboratory for High Pathogenic Microbes, Chongqing, China
| | - Yi Yuan
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
- Chongqing Municipal Key Laboratory for High Pathogenic Microbes, Chongqing, China
| | - Chuan Yang
- Xiushan County Center for Disease Control and Prevention, Chongqing, China
| | - Di Yang
- Xiushan County Center for Disease Control and Prevention, Chongqing, China
| | - Wenge Tang
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
- Chongqing Municipal Key Laboratory for High Pathogenic Microbes, Chongqing, China
| | - Li Qi
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
- Chongqing Municipal Key Laboratory for High Pathogenic Microbes, Chongqing, China
| |
Collapse
|
6
|
Chadwick PR, Trainor E, Marsden GL, Mills S, Chadwick C, O'Brien SJ, Evans CM, Mullender C, Strazds P, Turner S, Weston V, Toleman MS, de Barros C, Kontkowski G, Bak A. Guidelines for the management of norovirus outbreaks in acute and community health and social care settings. J Hosp Infect 2023:S0195-6701(23)00043-9. [PMID: 36796728 DOI: 10.1016/j.jhin.2023.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 02/17/2023]
Affiliation(s)
| | - Eamonn Trainor
- Northern Care Alliance NHS Foundation Trust, Greater Manchester, UK.
| | - Gemma L Marsden
- Healthcare Infection Society, London, UK; Royal College of General Practitioners, London, UK
| | - Samuel Mills
- British Infection Association, Seafield, West Lothian, UK; Oxford University NHS Foundation Trust, Oxford, UK
| | | | | | - Cariad M Evans
- Sheffield Teaching Hospital NHS Foundation Trust, Sheffield, UK
| | | | - Pixy Strazds
- Infection Prevention Society, London, UK; St Andrew's Healthcare, Northampton, UK
| | - Sarah Turner
- Infection Prevention Society, London, UK; Stockport Council, Stockport, UK
| | - Valya Weston
- Healthcare Infection Society, London, UK; Infection Prevention Society, London, UK; NHS England, London, UK
| | - Michelle S Toleman
- Healthcare Infection Society, London, UK; Cambridge University Hospitals NHS Trust, Cambridge, UK
| | | | | | - Aggie Bak
- Healthcare Infection Society, London, UK
| |
Collapse
|
7
|
Parreno V, Bai M, Liu F, Jing J, Olney E, Li G, Wen K, Yang X, Castellucc TB, Kocher JF, Zhou X, Yuan L. Probiotic as Adjuvant Significantly Improves Protection of the Lanzhou Trivalent Rotavirus Vaccine against Heterologous Challenge in a Gnotobiotic Pig Model of Human Rotavirus Infection and Disease. Vaccines (Basel) 2022; 10:vaccines10091529. [PMID: 36146607 PMCID: PMC9506166 DOI: 10.3390/vaccines10091529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 11/25/2022] Open
Abstract
This preclinical study in the gnotobiotic (Gn) pig model of human rotavirus (HRV) infection and disease evaluates the effect of probiotic Lactobacillus rhamnosus GG (LGG) as a mucosal adjuvant on the immunogenicity and cross-protective efficacy of the Lanzhou live oral trivalent (G2, G3, G4) vaccine (TLV, aka LLR3). Gn pigs were immunized with three doses of TLV with or without concurrent administration of nine doses of LGG around the time of the first dose of the TLV vaccination, and were challenged orally with the virulent heterotypic Wa G1P[8] HRV. Three doses of TLV were highly immunogenic and conferred partial protection against the heterotypic HRV infection. LGG significantly enhanced the intestinal and systemic immune responses and improved the effectiveness of protection against the heterotypic HRV challenge-induced diarrhea and virus shedding. In conclusion, we demonstrated the immune-stimulating effects of probiotic LGG as a vaccine adjuvant and generated detailed knowledge regarding the cross-reactive and type-specific antibody and effector B and T cell immune responses induced by the TLV. Due to the low cost, ease of distribution and administration, and favorable safety profiles, LGG as an adjuvant has the potential to play a critical role in improving rotavirus vaccine efficacy and making the vaccines more cost-effective.
Collapse
Affiliation(s)
- Viviana Parreno
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- INCUINTA, Institutot de Virología e Innovaciones Tecnológicas (IVIT), Instituto Nacional de Tecnología Agropecuaria (INTA)-CONICET, Ciudad Autónoma de Buenos Aires C1033AAE, Argentina
| | - Muqun Bai
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Lanzhou Institute of Biological Products, Lanzhou 730046, China
| | - Fangning Liu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Jiqiang Jing
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Department of Animal Medicine, Shandong Vocational College of Animal Husbandry and Veterinary Medicine, Weifang 261071, China
| | - Erika Olney
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Guohua Li
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Ke Wen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Xingdong Yang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Tammy Bui Castellucc
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Jacob F. Kocher
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Xu Zhou
- Lanzhou Institute of Biological Products, Lanzhou 730046, China
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Correspondence: ; Tel.: +86-540-231-9053
| |
Collapse
|
8
|
Navarro-Lleó N, Santiso-Bellón C, Vila-Vicent S, Carmona-Vicente N, Gozalbo-Rovira R, Cárcamo-Calvo R, Rodríguez-Díaz J, Buesa J. Recombinant Noroviruses Circulating in Spain from 2016 to 2020 and Proposal of Two Novel Genotypes within Genogroup I. Microbiol Spectr 2022; 10:e0250521. [PMID: 35862999 PMCID: PMC9430863 DOI: 10.1128/spectrum.02505-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/25/2022] [Indexed: 11/20/2022] Open
Abstract
Noroviruses are the leading cause of sporadic cases and outbreaks of viral gastroenteritis. For more than 20 years, most norovirus infections have been caused by the pandemic genotype GII.4, yet recent studies have reported the emergence of recombinant strains in many countries. In the present study, 4,950 stool samples collected between January 2016 and April 2020 in Valencia, Spain, from patients with acute gastroenteritis were analyzed to investigate the etiological agent. Norovirus was the most frequently detected enteric virus, with a positivity rate of 9.5% (471/4,950). Among 224 norovirus strains characterized, 175 belonged to genogroup II (GII) and 49 belonged to GI. Using dual genotyping based on sequencing of the open reading frame 1 (ORF1)/ORF2 junction region, we detected 25 different capsid-polymerase-type associations. The most common GII capsid genotype was GII.4 Sydney 2012, followed by GII.2, GII.3, GII.6, and GII.17. A high prevalence of recombinant strains (90.4%) was observed among GII infections between 2018 and 2020. GII.4 Sydney[P16] was the predominant genotype from 2019 to 2020. In addition, GII.P16 polymerase was found harbored within six different capsid genes. GI.4 and GI.3 were the predominant genotypes in genogroup I, in which recombinant strains were also found, such as GI.3[P10], GI.3[P13], and GI.5[P4]. Interestingly, applying the criterion of 2 times the standard deviation, we found that 12 sequences initially classified as GI.3 may represent two new tentative genotypes in genogroup I, designated GI.10 and GI.11. This study shows the extensive diversity of recombinant noroviruses circulating in Spain and highlights the role of recombination events in the spread of noroviruses. IMPORTANCE Human noroviruses are the most common cause of viral diarrhea. There are no approved vaccines to prevent their infections yet, which would be very useful to protect infants, small children, and the elderly in residential institutions. These viruses are extremely contagious and can be transmitted by contaminated food and water as well as directly from person to person. Molecular surveillance and epidemiology of norovirus infections allow the identification of the most common viral strains in different geographical areas over time. Noroviruses show wide genetic variability due to a high rate of mutations but also due to genomic recombinations, as we demonstrate in this study. We have detected 25 different viral capsid-polymerase gene associations among 224 norovirus strains characterized in Spain between January 2016 and April 2020, including two tentative new capsid genotypes in genogroup I.
Collapse
Affiliation(s)
- Noemi Navarro-Lleó
- Department of Microbiology, School of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Cristina Santiso-Bellón
- Department of Microbiology, School of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Susana Vila-Vicent
- Department of Microbiology, School of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Noelia Carmona-Vicente
- Department of Microbiology, School of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Roberto Gozalbo-Rovira
- Department of Microbiology, School of Medicine and Dentistry, University of Valencia, Valencia, Spain
- INCLIVA, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Roberto Cárcamo-Calvo
- Department of Microbiology, School of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Jesús Rodríguez-Díaz
- Department of Microbiology, School of Medicine and Dentistry, University of Valencia, Valencia, Spain
- INCLIVA, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Javier Buesa
- Department of Microbiology, School of Medicine and Dentistry, University of Valencia, Valencia, Spain
- INCLIVA, Hospital Clínico Universitario de Valencia, Valencia, Spain
| |
Collapse
|
9
|
Yang M, Tong L, Wang S, Liu N, Zhao F, Sun Y, Sun G, Zhou D. Gut Microbiota and Transcriptomics Reveal the Effect of Human Norovirus Bioaccumulation on Oysters (Crassostrea gigas). Microbiol Spectr 2022; 10:e0016122. [PMID: 35867424 PMCID: PMC9431538 DOI: 10.1128/spectrum.00161-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/15/2022] [Indexed: 11/20/2022] Open
Abstract
Human norovirus (HuNoV) is a major foodborne pathogen that causes acute viral gastroenteritis, and oysters are one of the main carriers of HuNoV transmission. While progress has been made toward understanding the pattern of oyster-bioaccumulated HuNoV, the response of oysters to HuNoV bioaccumulation, including changes in gene expression and gut microbiota, is unclear. In this study, histo-blood group antigen (HBGA)-like molecule expression and gene regulation features and the HuNoV-microbiome interactions of oysters during HuNoV bioaccumulation were characterized. With the prolongation of bioaccumulation time, the HuNoV content and expression of type A HBGA-like molecules in oysters increased and stabilized. HuNoV also altered the expression of immunity- and glycosphingolipid biosynthesis-related genes. Prolonged bioaccumulation of HuNoV can reduce the abundance and change the composition of the oyster gut microbiota. In particular, with the extension of bioaccumulation time, the abundance of Blautia, Agathobacter, Faecalibacterium, Terrisporobacter, Bifidobacterium, Lactobacillus, and Ruminococcus decreased, while the abundance of Vibrio and Alphaproteobacteria increased. This study provides potential candidates for identifying functional genes involved in the bioaccumulation of HuNoV in oysters. More importantly, it provides the first description of the changes in gut microbiota during HuNoV bioaccumulation in oysters. IMPORTANCE The role of the oyster gut microbiota in HuNoV bioaccumulation is poorly understood. This study revealed, for the first time, the changes in gut microbiota and gene expression of oysters with HuNoV bioaccumulation. This study enriches the understanding of the impact of HuNoV bioaccumulation on oysters and provides a new direction for the study of the molecular mechanism of HuNoV bioaccumulation in oysters.
Collapse
Affiliation(s)
- Min Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lihui Tong
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shanshan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Nan Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Feng Zhao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Yong Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guohui Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Deqing Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
10
|
Ai J, Zhu Y, Fu J, Cheng X, Zhang X, Ji H, Liu W, Rui J, Xu J, Yang T, Wang Y, Liu X, Yang M, Lin S, Guo X, Bao C, Li Q, Chen T. Study of Risk Factors for Total Attack Rate and Transmission Dynamics of Norovirus Outbreaks, Jiangsu Province, China, From 2012 to 2018. Front Med (Lausanne) 2022; 8:786096. [PMID: 35071268 PMCID: PMC8777030 DOI: 10.3389/fmed.2021.786096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022] Open
Abstract
Objective: To describe the epidemiological characteristics of norovirus outbreaks in Jiangsu Province, utilize the total attack rate (TAR) and transmissibility (Runc) as the measurement indicators of the outbreak, and a statistical difference in risk factors associated with TAR and transmissibility was compared. Ultimately, this study aimed to provide scientific suggestions to develop the most appropriate prevention and control measures. Method: We collected epidemiological data from investigation reports of all norovirus outbreaks in Jiangsu Province from 2012 to 2018 and performed epidemiological descriptions, sequenced the genes of the positive specimens collected that were eligible for sequencing, created a database and calculated the TAR, constructed SEIAR and SEIARW transmission dynamic models to calculate Runc, and performed statistical analyses of risk factors associated with the TAR and Runc. Results: We collected a total of 206 reported outbreaks, of which 145 could be used to calculate transmissibility. The mean TAR in was 2.6% and the mean Runc was 12.2. The epidemiological characteristics of norovirus outbreaks showed an overall increasing trend in the number of norovirus outbreaks from 2012 to 2018; more outbreaks in southern Jiangsu than northern Jiangsu; more outbreaks in urban areas than in rural areas; outbreaks occurred mostly in autumn and winter. Most of the sites where outbreaks occurred were schools, especially primary schools. Interpersonal transmission accounted for the majority. Analysis of the genotypes of noroviruses revealed that the major genotypes of the viruses changed every 3 years, with the GII.2 [P16] type of norovirus dominating from 2016 to 2018. Statistical analysis of TAR associated with risk factors found statistical differences in all risk factors, including time (year, month, season), location (geographic location, type of settlement, type of premises), population (total number of susceptible people at the outbreak site), transmission route, and genotype (P < 0.05). Statistical analysis of transmissibility associated with risk factors revealed that only transmissibility was statistically different between sites. Conclusions: The number of norovirus outbreaks in Jiangsu Province continues to increase during the follow-up period. Our findings highlight the impact of different factors on norovirus outbreaks and identify the key points of prevention and control in Jiangsu Province.
Collapse
Affiliation(s)
- Jing Ai
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China.,Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Yuanzhao Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Jianguang Fu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China.,Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Xiaoqing Cheng
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China.,Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Xuefeng Zhang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China.,Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Hong Ji
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China.,Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Wendong Liu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China.,Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jia Rui
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Jingwen Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Tianlong Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yao Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Xingchun Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Meng Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Shengnan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Xiaohao Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Changjun Bao
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China.,Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Qun Li
- Public Health Emergency Center, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tianmu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
11
|
Cioffi B, Ianiro G, Iaccarino D, D'Apice F, Ferraro A, Race M, Spasiano D, Esposito E, Monini M, Serra F, Cozza D, Di Nocera F, De Maio L, Amoroso MG, De Carlo E, Fusco G. A potential risk assessment tool to monitor pathogens circulation in coastal waters. ENVIRONMENTAL RESEARCH 2021; 200:111748. [PMID: 34303676 DOI: 10.1016/j.envres.2021.111748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
The present study reports data on a 20 months campaign monitoring enteric viruses (hepatitis A, norovirus, rotavirus, astrovirus, sapovirus, and aichivirus) and bacteria (Salmonella spp.) in seawater. The aim of this work was to assess the potential correlation among the presence of viruses/bacteria and different environmental factors like seasonality, water discharge sources (treated and untreated wastewater, mixed waters and raw water) as well as influence of the Italian lockdown measure against COVID-19 pandemic. Results showed different prevalence of the investigated viruses with values equal to 16 % for norovirus GI, 15.1 % for norovirus GII, followed by 13.8 % for astrovirus, and 13.3 % for sapovirus. Rotavirus was detected in the 8.4 % of samples and aichivirus was detected with the lowest prevalence of 3.5 %. Hepatitis A virus was never identified in the monitoring campaign. Salmonella spp. was detected with a prevalence of 36.6 %. Statistical analysis displayed a high correlation for the two noroviruses simultaneous detection (NGI and NGII) while a lower correlation was found for co-presence of noroviruses with astrovirus, sapovirus or Salmonella spp. A significant decrease of enteric pathogens in seawater was observed during the restrictions period. Results on seasonality highlighted a higher viral prevalence correlated to the wet season for all the pathogens but rotavirus and aichivirus, which instead showed an opposite trend and a higher incidence in the dry season. With respect to discharge typology, some viruses displayed a higher prevalence in treated waters (astrovirus, rotavirus, sapovirus and aichivirus) while the other investigated pathogens (noroviruses and Salmonella spp.) showed a higher prevalence in mixed waters. The main observations of this work were used to define a potential monitoring strategy that could be useful for sanitary Authorities to implement surveillance plans aimed at preventing possible sanitary outbreaks and/or environmental quality deterioration.
Collapse
Affiliation(s)
- B Cioffi
- Department of Animal Health, Istituto Zooprofilattico Sperimentale Del Mezzogiorno, Portici, NA, Italy
| | - G Ianiro
- Food Safety, Nutrition and Veterinary Public Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - D Iaccarino
- Department of Animal Health, Istituto Zooprofilattico Sperimentale Del Mezzogiorno, Portici, NA, Italy
| | - F D'Apice
- Sea Unit, ARPA Campania, Naples, Italy
| | - A Ferraro
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona 4, Bari, 70125, Italy.
| | - M Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via di Biasio 43, Cassino, 03043, Italy
| | - D Spasiano
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona 4, Bari, 70125, Italy
| | - E Esposito
- Veterinary Medicine and Animal Production Department, Università Degli Studi di Napoli Federico II, Naples, Italy
| | - M Monini
- Food Safety, Nutrition and Veterinary Public Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - F Serra
- Department of Animal Health, Istituto Zooprofilattico Sperimentale Del Mezzogiorno, Portici, NA, Italy
| | - D Cozza
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale Del Mezzogiorno, Portici, NA, Italy
| | - F Di Nocera
- Department of Animal Health, Istituto Zooprofilattico Sperimentale Del Mezzogiorno, Portici, NA, Italy
| | - L De Maio
- Sea Unit, ARPA Campania, Naples, Italy
| | - M G Amoroso
- Department of Animal Health, Istituto Zooprofilattico Sperimentale Del Mezzogiorno, Portici, NA, Italy.
| | - E De Carlo
- Istituto Zooprofilattico Sperimentale Del Mezzogiorno, Portici, NA, Italy
| | - G Fusco
- Department of Animal Health, Istituto Zooprofilattico Sperimentale Del Mezzogiorno, Portici, NA, Italy
| |
Collapse
|
12
|
Leung AK, Hon KL. Paediatrics: how to manage viral gastroenteritis. Drugs Context 2021; 10:dic-2020-11-7. [PMID: 33828604 PMCID: PMC8007205 DOI: 10.7573/dic.2020-11-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/06/2021] [Indexed: 01/28/2023] Open
Abstract
Background Viral gastroenteritis is the most common diarrhoeal disorder seen in general practice and emergency departments. This article aims to provide a narrative updated review on the evaluation and management of viral gastroenteritis in children. Methods A PubMed search was performed with Clinical Queries using the key term 'viral gastroenteritis'. The search strategy included clinical trials, meta-analyses, randomized controlled trials, observational studies and reviews. The search was restricted to the English literature and the paediatric population. Results Acute viral gastroenteritis is usually self-limiting. However, it can lead to dehydration and electrolyte imbalance if not properly treated. Adequate fluids containing physiological concentrations of glucose and electrolytes should be provided to compensate for gastrointestinal losses and cover maintenance needs. Oral rehydration therapy is as effective as intravenous (IV) fluid therapy for rehydration for children with mild-to-moderate dehydration. Measurements of serum electrolytes, creatinine and glucose are usually not necessary and should only be considered in a subset of children with severe dehydration who require hospitalization and IV therapy. Judicious use of ondansetron can increase the success rate of oral rehydration therapy and minimize the need for IV therapy and hospitalization. Conclusion Acute viral gastroenteritis is associated with substantial morbidity in developed countries and significant mortality in developing countries. Physicians should educate caregivers on proper personal hygiene and handwashing to prevent faecal to oral transmission of the pathogen as well as the importance of rotavirus vaccine in the prevention of rotavirus gastroenteritis. Several norovirus vaccines are currently undergoing clinical trials with promising results. It is hoped that development of an effective norovirus vaccine will further reduce the incidence of viral gastroenteritis.
Collapse
Affiliation(s)
- Alexander Kc Leung
- Department of Pediatrics, University of Calgary, and Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Kam Lun Hon
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong.,Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong
| |
Collapse
|
13
|
Houghton KA, Lomsadze A, Park S, Nascimento FS, Barratt J, Arrowood MJ, VanRoey E, Talundzic E, Borodovsky M, Qvarnstrom Y. Development of a workflow for identification of nuclear genotyping markers for Cyclospora cayetanensis. ACTA ACUST UNITED AC 2020; 27:24. [PMID: 32275020 PMCID: PMC7147239 DOI: 10.1051/parasite/2020022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/02/2020] [Indexed: 01/29/2023]
Abstract
Cyclospora cayetanensis is an intestinal parasite responsible for the diarrheal illness, cyclosporiasis. Molecular genotyping, using targeted amplicon sequencing, provides a complementary tool for outbreak investigations, especially when epidemiological data are insufficient for linking cases and identifying clusters. The goal of this study was to identify candidate genotyping markers using a novel workflow for detection of segregating single nucleotide polymorphisms (SNPs) in C. cayetanensis genomes. Four whole C. cayetanensis genomes were compared using this workflow and four candidate markers were selected for evaluation of their genotyping utility by PCR and Sanger sequencing. These four markers covered 13 SNPs and resolved parasites from 57 stool specimens, differentiating C. cayetanensis into 19 new unique genotypes.
Collapse
Affiliation(s)
- Katelyn A Houghton
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Alexandre Lomsadze
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Subin Park
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Fernanda S Nascimento
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Joel Barratt
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Michael J Arrowood
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Erik VanRoey
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Eldin Talundzic
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Mark Borodovsky
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yvonne Qvarnstrom
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
14
|
Chen L, Xu D, Wu X, Liu G, Ji L. An increasing prevalence of non-GII.4 norovirus genotypes in acute gastroenteritis outbreaks in Huzhou, China, 2014-2018. Arch Virol 2020; 165:1121-1128. [PMID: 32221714 PMCID: PMC7222896 DOI: 10.1007/s00705-020-04599-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/27/2020] [Indexed: 01/29/2023]
Abstract
Since 2014, novel non-GII.4 norovirus (NoV) genotypes continue to be reported as the main cause of outbreaks worldwide. In this study, we analyzed the epidemiological and genetic features of NoV outbreaks from July 2014 to June 2018 in Huzhou, China. A total of 450 stool samples collected from 51 AGE outbreaks were tested for NoVs by real-time RT PCR. Partial polymerase and capsid sequences of NoV-positive samples were amplified and sequenced for phylogenetic analysis. NoVs were found to be responsible of 84.3% of AGE outbreaks in Huzhou over the past 5 years. Most NoV outbreaks were reported in the cool months (November-March) and occurred in primary schools and kindergartens. Changes in the diversity of genotypes and the distribution of predominant types were observed in recent years. At least eight genotypes were identified, and 91.9% of the genotyped outbreaks were caused by non-GII.4 strains. The top three circulating genotypes during the study period were GII.2[P16], GII.3[P12], and GII.17[P17]. The predominant NoV genotypes in outbreaks have changed from GII.4 variants to GII.17[P17] in 2014-2015, GII.3[P12] in 2015-2016, and then GII.2[P16] in 2016-2018. Non-GII.4 NoVs play an increasingly important role in outbreaks in Huzhou. Continuous surveillance is needed to monitor the emergence of novel NoV strains and help control NoV outbreaks in the next epidemic season.
Collapse
Affiliation(s)
- Liping Chen
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, 313000, Zhejiang, China
| | - Deshun Xu
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, 313000, Zhejiang, China
| | - Xiaofang Wu
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, 313000, Zhejiang, China
| | - Guangtao Liu
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, 313000, Zhejiang, China
| | - Lei Ji
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, 313000, Zhejiang, China.
| |
Collapse
|
15
|
Lian Y, Wu S, Luo L, Lv B, Liao Q, Li Z, Rainey JJ, Hall AJ, Ran L. Epidemiology of Norovirus Outbreaks Reported to the Public Health Emergency Event Surveillance System, China, 2014⁻2017. Viruses 2019; 11:v11040342. [PMID: 30979014 PMCID: PMC6520956 DOI: 10.3390/v11040342] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 01/18/2023] Open
Abstract
We conducted a retrospective analysis of norovirus outbreaks reported to the National Public Health Emergency Event Surveillance System (PHEESS) in China from January 1, 2014 to December 31, 2017. We reviewed all acute gastroenteritis outbreaks (n = 692) submitted to PHEESS to identify the frequency, seasonality, geographic distribution, setting, and transmission mode of outbreaks due to norovirus. A total of 616 norovirus outbreaks resulting in 30,848 cases were reported. Among these outbreaks, 571 (93%) occurred in school settings including 239 (39%) in primary schools, 136 (22%) in childcare facilities, and 121 (20%) in secondary schools. The majority of outbreaks (63%) were due to person-to-person transmission, followed by multiple modes of transmission (11%), foodborne (5%) and waterborne (3%) transmission. These findings highlight the importance of improving hand hygiene and environmental disinfection in high-risk settings. Developing a standard and quantitative outbreak reporting structure could improve the usefulness of PHEESS for monitoring norovirus outbreaks.
Collapse
Affiliation(s)
- Yiyao Lian
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing 102206, China.
| | - Shuyu Wu
- Division of Global Health Protection, Center for Global Health, U.S. Centers for Disease Control and Prevention, Beijing 100600, China.
| | - Li Luo
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing 102206, China.
| | - Bin Lv
- Xiaogan Center for Disease Control and Prevention, Xiaogan 432000, China.
| | - Qiaohong Liao
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing 102206, China.
| | - Zhongjie Li
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing 102206, China.
| | - Jeanette J Rainey
- Division of Global Health Protection, Center for Global Health, U.S. Centers for Disease Control and Prevention, Beijing 100600, China.
| | - Aron J Hall
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | - Lu Ran
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
16
|
The prevalence of non-GII.4 norovirus genotypes in acute gastroenteritis outbreaks in Jinan, China. PLoS One 2018; 13:e0209245. [PMID: 30592717 PMCID: PMC6310239 DOI: 10.1371/journal.pone.0209245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 12/03/2018] [Indexed: 01/01/2023] Open
Abstract
Noroviruses (NoVs) are the leading cause of acute viral gastroenteritis outbreaks. From June 2015 to March 2017, fifteen outbreaks of acute gastroenteritis (AGE) were reported to the Jinan Center for Disease Control and Prevention in China. To identify the circulating NoV genotypes associated with outbreaks in Jinan, China, 414 specimens from the 15 outbreaks were collected and analyzed for the causative viruses, and phylogenetic analysis was performed on the NoV-positive strains. The NoV detection rate was 57.5% (238/414), and a total of 14 outbreaks were caused by NoVs (eight by infection with genogroup II (GII), five by mixed infection with GI and GII, and one by mixed infection with GII and rotavirus (RoV)-A). A total of 75 NoV sequences were obtained from 13 NoV-positive outbreaks and classified into seven genotypes (38 GII.17, 13 GII.2, 4 GII.3, 4 GII.1, 10 GI.6, 5 GI.5 and 1 GI.3), while GII.4 was not identified. The most prevalent genotype changed yearly during the 2015–2017 period. Phylogenetic analysis demonstrated that these NoV genotypes had high homology with the strains circulating worldwide, especially strains from Asian countries and cities. Our study illustrated that multiple non-GII.4 NoV genotypes were prevalent in outbreaks of AGE in Jinan, China. Year-round surveillance of multiple NoV genotypes could help health authorities reduce the impact of NoV outbreaks on public health.
Collapse
|