1
|
Sobczak JM, Barkovska I, Balke I, Rothen DA, Mohsen MO, Skrastina D, Ogrina A, Martina B, Jansons J, Bogans J, Vogel M, Bachmann MF, Zeltins A. Identifying Key Drivers of Efficient B Cell Responses: On the Role of T Help, Antigen-Organization, and Toll-like Receptor Stimulation for Generating a Neutralizing Anti-Dengue Virus Response. Vaccines (Basel) 2024; 12:661. [PMID: 38932390 PMCID: PMC11209419 DOI: 10.3390/vaccines12060661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
T help (Th), stimulation of toll-like receptors (pathogen-associated molecular patterns, PAMPs), and antigen organization and repetitiveness (pathogen-associated structural patterns, PASPs) were shown numerous times to be important in driving B-cell and antibody responses. In this study, we dissected the individual contributions of these parameters using newly developed "Immune-tag" technology. As model antigens, we used eGFP and the third domain of the dengue virus 1 envelope protein (DV1 EDIII), the major target of virus-neutralizing antibodies. The respective proteins were expressed alone or genetically fused to the N-terminal fragment of the cucumber mosaic virus (CMV) capsid protein-nCMV, rendering the antigens oligomeric. In a step-by-step manner, RNA was attached as a PAMP, and/or a universal Th-cell epitope was genetically added for additional Th. Finally, a PASP was added to the constructs by displaying the antigens highly organized and repetitively on the surface of CMV-derived virus-like particles (CuMV VLPs). Sera from immunized mice demonstrated that each component contributed stepwise to the immunogenicity of both proteins. All components combined in the CuMV VLP platform induced by far the highest antibody responses. In addition, the DV1 EDIII induced high levels of DENV-1-neutralizing antibodies only if displayed on VLPs. Thus, combining multiple cues typically associated with viruses results in optimal antibody responses.
Collapse
Affiliation(s)
- Jan M. Sobczak
- Department of Immunology, University Clinic of Rheumatology and Immunology, Inselspital, CH-3010 Bern, Switzerland; (D.A.R.); (M.O.M.); (M.V.); (M.F.B.)
- Department of BioMedical Research, University of Bern, CH-3008 Bern, Switzerland
| | - Irena Barkovska
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Ina Balke
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Dominik A. Rothen
- Department of Immunology, University Clinic of Rheumatology and Immunology, Inselspital, CH-3010 Bern, Switzerland; (D.A.R.); (M.O.M.); (M.V.); (M.F.B.)
- Department of BioMedical Research, University of Bern, CH-3008 Bern, Switzerland
| | - Mona O. Mohsen
- Department of Immunology, University Clinic of Rheumatology and Immunology, Inselspital, CH-3010 Bern, Switzerland; (D.A.R.); (M.O.M.); (M.V.); (M.F.B.)
- Department of BioMedical Research, University of Bern, CH-3008 Bern, Switzerland
| | - Dace Skrastina
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Anete Ogrina
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Byron Martina
- Artemis Bioservices, 2629 JD Delft, The Netherlands;
- Protinhi Therapeutics, 6534 AT Nijmegen, The Netherlands
| | - Juris Jansons
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Janis Bogans
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Monique Vogel
- Department of Immunology, University Clinic of Rheumatology and Immunology, Inselspital, CH-3010 Bern, Switzerland; (D.A.R.); (M.O.M.); (M.V.); (M.F.B.)
- Department of BioMedical Research, University of Bern, CH-3008 Bern, Switzerland
| | - Martin F. Bachmann
- Department of Immunology, University Clinic of Rheumatology and Immunology, Inselspital, CH-3010 Bern, Switzerland; (D.A.R.); (M.O.M.); (M.V.); (M.F.B.)
- Department of BioMedical Research, University of Bern, CH-3008 Bern, Switzerland
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford OX3 7BN, UK
| | - Andris Zeltins
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| |
Collapse
|
2
|
Ronsard L, Yousif AS, Nait Mohamed FA, Feldman J, Okonkwo V, McCarthy C, Schnabel J, Caradonna T, Barnes RM, Rohrer D, Lonberg N, Schmidt A, Lingwood D. Engaging an HIV vaccine target through the acquisition of low B cell affinity. Nat Commun 2023; 14:5249. [PMID: 37640732 PMCID: PMC10462694 DOI: 10.1038/s41467-023-40918-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
Low affinity is common for germline B cell receptors (BCR) seeding development of broadly neutralizing antibodies (bnAbs) that engage hypervariable viruses, including HIV. Antibody affinity selection is also non-homogenizing, insuring the survival of low affinity B cell clones. To explore whether this provides a natural window for expanding human B cell lineages against conserved vaccine targets, we deploy transgenic mice mimicking human antibody diversity and somatic hypermutation (SHM) and immunize with simple monomeric HIV glycoprotein envelope immunogens. We report an immunization regimen that focuses B cell memory upon the conserved CD4 binding site (CD4bs) through both conventional affinity maturation and reproducible expansion of low affinity BCR clones with public patterns in SHM. In the latter instance, SHM facilitates target acquisition by decreasing binding strength. This suggests that permissive B cell selection enables the discovery of antibody epitopes, in this case an HIV bnAb site.
Collapse
Affiliation(s)
- Larance Ronsard
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA, 02139, USA
| | - Ashraf S Yousif
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA, 02139, USA
| | - Faez Amokrane Nait Mohamed
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA, 02139, USA
| | - Jared Feldman
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA, 02139, USA
| | - Vintus Okonkwo
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA, 02139, USA
| | - Caitlin McCarthy
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA, 02139, USA
| | - Julia Schnabel
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA, 02139, USA
| | - Timothy Caradonna
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA, 02139, USA
| | - Ralston M Barnes
- Bristol-Myers Squibb, 700 Bay Rd, Redwood City, CA, 94063-2478, USA
| | - Daniel Rohrer
- Bristol-Myers Squibb, 700 Bay Rd, Redwood City, CA, 94063-2478, USA
| | - Nils Lonberg
- Bristol-Myers Squibb, 700 Bay Rd, Redwood City, CA, 94063-2478, USA
| | - Aaron Schmidt
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA, 02139, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Daniel Lingwood
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA, 02139, USA.
| |
Collapse
|
4
|
Lapidus S, Liu F, Casanovas-Massana A, Dai Y, Huck JD, Lucas C, Klein J, Filler RB, Strine MS, Sy M, Deme AB, Badiane AS, Dieye B, Ndiaye IM, Diedhiou Y, Mbaye AM, Diagne CT, Vigan-Womas I, Mbengue A, Sadio BD, Diagne MM, Moore AJ, Mangou K, Diallo F, Sene SD, Pouye MN, Faye R, Diouf B, Nery N, Costa F, Reis MG, Muenker MC, Hodson DZ, Mbarga Y, Katz BZ, Andrews JR, Campbell M, Srivathsan A, Kamath K, Baum-Jones E, Faye O, Sall AA, Vélez JCQ, Cappello M, Wilson M, Ben-Mamoun C, Tedder R, McClure M, Cherepanov P, Somé FA, Dabiré RK, Moukoko CEE, Ouédraogo JB, Boum Y, Shon J, Ndiaye D, Wisnewski A, Parikh S, Iwasaki A, Wilen CB, Ko AI, Ring AM, Bei AK. Plasmodium infection is associated with cross-reactive antibodies to carbohydrate epitopes on the SARS-CoV-2 Spike protein. Sci Rep 2022; 12:22175. [PMID: 36550362 PMCID: PMC9778468 DOI: 10.1038/s41598-022-26709-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Sero-surveillance can monitor and project disease burden and risk. However, SARS-CoV-2 antibody test results can produce false positive results, limiting their efficacy as a sero-surveillance tool. False positive SARS-CoV-2 antibody results are associated with malaria exposure, and understanding this association is essential to interpret sero-surveillance results from malaria-endemic countries. Here, pre-pandemic samples from eight malaria endemic and non-endemic countries and four continents were tested by ELISA to measure SARS-CoV-2 Spike S1 subunit reactivity. Individuals with acute malaria infection generated substantial SARS-CoV-2 reactivity. Cross-reactivity was not associated with reactivity to other human coronaviruses or other SARS-CoV-2 proteins, as measured by peptide and protein arrays. ELISAs with deglycosylated and desialated Spike S1 subunits revealed that cross-reactive antibodies target sialic acid on N-linked glycans of the Spike protein. The functional activity of cross-reactive antibodies measured by neutralization assays showed that cross-reactive antibodies did not neutralize SARS-CoV-2 in vitro. Since routine use of glycosylated or sialated assays could result in false positive SARS-CoV-2 antibody results in malaria endemic regions, which could overestimate exposure and population-level immunity, we explored methods to increase specificity by reducing cross-reactivity. Overestimating population-level exposure to SARS-CoV-2 could lead to underestimates of risk of continued COVID-19 transmission in sub-Saharan Africa.
Collapse
Affiliation(s)
- Sarah Lapidus
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Feimei Liu
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Arnau Casanovas-Massana
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Yile Dai
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - John D Huck
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Carolina Lucas
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Jon Klein
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Renata B Filler
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Madison S Strine
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Mouhamad Sy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Awa B Deme
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Aida S Badiane
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Baba Dieye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Ibrahima Mbaye Ndiaye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Younous Diedhiou
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Amadou Moctar Mbaye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Cheikh Tidiane Diagne
- DiaTROPIX Rapid Diagnostic Tests Facility, Institut Pasteur de Dakar, Dakar, Senegal
| | - Inés Vigan-Womas
- Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Alassane Mbengue
- G4-Malaria Experimental Genetic Approaches and Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Bacary D Sadio
- Pôle Virologie, Institut Pasteur de Dakar, Dakar, Senegal
| | | | - Adam J Moore
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Khadidiatou Mangou
- G4-Malaria Experimental Genetic Approaches and Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Fatoumata Diallo
- G4-Malaria Experimental Genetic Approaches and Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Seynabou D Sene
- G4-Malaria Experimental Genetic Approaches and Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Mariama N Pouye
- G4-Malaria Experimental Genetic Approaches and Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Rokhaya Faye
- Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Babacar Diouf
- Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Nivison Nery
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, BA, Brazil
- Department of Internal Medicine, Yale Occupational and Environmental Medicine Program, Yale School of Medicine, New Haven, CT, USA
| | - Federico Costa
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, BA, Brazil
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, BA, Brazil
| | - Mitermayer G Reis
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, BA, Brazil
- Faculty of Medicine, Federal University of Bahia, Salvador, Brazil
| | - M Catherine Muenker
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Daniel Z Hodson
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | | | - Ben Z Katz
- Division of Infectious Diseases, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, USA
| | - Jason R Andrews
- Division of Infectious Diseases and Geographic Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Melissa Campbell
- Yale Center for Clinical Investigation, Yale School of Medicine, New Haven, CT, USA
| | - Ariktha Srivathsan
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | | | | | - Ousmane Faye
- Pôle Virologie, Institut Pasteur de Dakar, Dakar, Senegal
| | | | - Juan Carlos Quintero Vélez
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
- Grupo de Investigación Ciencias Veterinarias Centauro, University of Antioquia, Medellín, Colombia
- Grupo de Investigación Microbiología Básica y Aplicada, University of Antioquia, Medellín, Colombia
| | - Michael Cappello
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Michael Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Choukri Ben-Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Richard Tedder
- Department of Infectious Disease, Imperial College London, St Mary's Campus, London, W2 1PG, UK
- South London Specialist Virology Centre, Kings College Hospital NHS Foundation Trust, London, UK
| | - Myra McClure
- Department of Infectious Disease, Imperial College London, St Mary's Campus, London, W2 1PG, UK
| | - Peter Cherepanov
- Department of Infectious Disease, Imperial College London, St Mary's Campus, London, W2 1PG, UK
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
- Crick COVID19 Consortium, Francis Crick Institute, London, NW1 1AT, UK
| | - Fabrice A Somé
- Institut de Recherche en Sciences de La Santé (IRSS)/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Roch K Dabiré
- Institut de Recherche en Sciences de La Santé (IRSS)/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Carole Else Eboumbou Moukoko
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, 2701, BP, Cameroon
- Malaria Research Unit, Center Pasteur Cameroon, Yaoundé, Cameroon
| | - Jean Bosco Ouédraogo
- Institut de Recherche en Sciences de La Santé (IRSS)/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Yap Boum
- Médecins Sans Frontières, University of Yaoundé and Epicentre, Yaoundé, Cameroon
| | | | - Daouda Ndiaye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Adam Wisnewski
- Department of Internal Medicine, Yale Occupational and Environmental Medicine Program, Yale School of Medicine, New Haven, CT, USA
| | - Sunil Parikh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Akiko Iwasaki
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Craig B Wilen
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, BA, Brazil
| | - Aaron M Ring
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Amy K Bei
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA.
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal.
- G4-Malaria Experimental Genetic Approaches and Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal.
| |
Collapse
|