1
|
Zhu H, Zhu D, Li Y, Li Y, Song X, Mo J, Liu L, Liu Z, Wang S, Yao Y, Yan H, Wu K, Wang W, Yin J, Lin M, Li J. Rapid detection of mutations in the suspected piperaquine resistance gene E415G-exo in Plasmodium falciparum exonuclease via AS‒PCR and RAA with CRISPR/Cas12a. Int J Parasitol Drugs Drug Resist 2024; 26:100568. [PMID: 39476461 PMCID: PMC11550206 DOI: 10.1016/j.ijpddr.2024.100568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/02/2024] [Accepted: 10/25/2024] [Indexed: 11/13/2024]
Abstract
Malaria remains a major public health concern. The rapid spread of resistance to antimalarial drugs is a major challenge for malaria eradication. Timely and accurate molecular monitoring based on practical detection methods is a critical step toward malaria control and elimination. In this study, two rapid detection techniques, allele-specific PCR (AS‒PCR) and recombinase-aided amplification (RAA) combined with CRISPR/Cas12a, were established, optimized and assessed to detect single nucleotide polymorphisms in the Plasmodium falciparum exonuclease (Pfexo) gene related to suspected piperaquine resistance. Moreover, phosphorothioate and artificial mismatches were introduced into the allele-specific primers for AS‒PCR, and crRNA-mismatched bases were introduced into the RAA‒CRISPR/Cas12a assay because crRNAs designed according to conventional rules fail to discriminate genotypes. As a result, the detection limits of the AS‒PCR and RAA‒CRISPR/Cas12a assays were 104 copies/μL and 103 copies/μL, respectively. The detection threshold for dried blood spots was 100‒150 parasites/μL, with no cross-reactivity against other genotypes. The average cost of AS‒PCR is approximately $1 per test and takes 2-3 h, whereas that of the RAA‒CRISPR/Cas12a system is approximately $7 per test and takes 1 h or less. Therefore, we provide more options for testing single nucleotide polymorphisms in the Pfexo gene, considering economic conditions and the availability of instruments, equipment, and reagents, which can contribute to the molecular monitoring of antimalarial resistance.
Collapse
Affiliation(s)
- Huiyin Zhu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China; School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China; Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, China.
| | - Daiqian Zhu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.
| | - Yuting Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.
| | - Yun Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.
| | - Xiaonan Song
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.
| | - Jinyu Mo
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.
| | - Long Liu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.
| | - Zhixin Liu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.
| | - Siqi Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.
| | - Yi Yao
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, China.
| | - He Yan
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.
| | - Kai Wu
- Wuhan Center for Disease Control and Prevention, Wuhan, China.
| | - Wei Wang
- Key Laboratory of National Health Commission on Technology for Parasitic Diseases Prevention and Control, Jiangsu Provincial Key Laboratory on Parasites and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China.
| | - Jianhai Yin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.
| | - Min Lin
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China.
| | - Jian Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China; School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.
| |
Collapse
|
2
|
Gil JP, Fançony C. Plasmodium falciparum Multidrug Resistance Proteins ( pfMRPs). Front Pharmacol 2021; 12:759422. [PMID: 34790129 PMCID: PMC8591188 DOI: 10.3389/fphar.2021.759422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/05/2021] [Indexed: 12/19/2022] Open
Abstract
The capacity of the lethal Plasmodium falciparum parasite to develop resistance against anti-malarial drugs represents a central challenge in the global control and elimination of malaria. Historically, the action of drug transporters is known to play a pivotal role in the capacity of the parasite to evade drug action. MRPs (Multidrug Resistance Protein) are known in many phylogenetically diverse groups to be related to drug resistance by being able to handle a large range of substrates, including important endogenous substances as glutathione and its conjugates. P. falciparum MRPs are associated with in vivo and in vitro altered drug response, and might be important factors for the development of multi-drug resistance phenotypes, a latent possibility in the present, and future, combination therapy environment. Information on P. falciparum MRPs is scattered in the literature, with no specialized review available. We herein address this issue by reviewing the present state of knowledge.
Collapse
Affiliation(s)
- José Pedro Gil
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal.,Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Nova University of Lisbon, Lisbon, Portugal
| | - Cláudia Fançony
- Centro de Investigação em Saúde de Angola (CISA)/Instituto Nacional de Investigação em Saúde (INIS), Caxito, Angola
| |
Collapse
|
3
|
Current Epidemiological Characteristics of Imported Malaria, Vector Control Status and Malaria Elimination Prospects in the Gulf Cooperation Council (GCC) Countries. Microorganisms 2021; 9:microorganisms9071431. [PMID: 34361867 PMCID: PMC8307262 DOI: 10.3390/microorganisms9071431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 11/23/2022] Open
Abstract
Malaria is the most common vector-borne parasitic infection causing significant human morbidity and mortality in nearly 90 tropical/sub-tropical countries worldwide. Significant differences exist in the incidence of malaria cases, dominant Plasmodium species, drug-resistant strains and mortality rates in different countries. Six Gulf Cooperation Council (GCC) countries (Bahrain, Kuwait, Qatar, Oman, Saudi Arabia and United Arab Emirates, UAE) in the Middle East region with similar climates, population demographics and economic prosperity are aiming to achieve malaria elimination. In this narrative review, all studies indexed in PubMed describing epidemiological characteristics of indigenous and imported malaria cases, vector control status and how malaria infections can be controlled to achieve malaria elimination in GCC countries were reviewed and discussed. These studies have shown that indigenous malaria cases are absent in Bahrain, Kuwait, Qatar and UAE and have progressively declined in Oman and Saudi Arabia. However, imported malaria cases continue to occur as GCC countries have large expatriate populations originating from malaria-endemic countries. Various malaria control and prevention strategies adopted by GCC countries including more stringent measures to reduce the likelihood of importing malaria cases by prior screening of newly arriving expatriates and vector elimination programs are likely to lead to malaria elimination in this region.
Collapse
|
4
|
Kamaliddin C, Sutherland CJ, Houze S, Cottrell G, Briand V, Mogollon DC, Pillai DR. The role of ultra-sensitive molecular methods for detecting malaria - the broader perspective. Clin Infect Dis 2021; 73:e1387-e1390. [PMID: 33693719 DOI: 10.1093/cid/ciab221] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
Ultra-sensitive molecular diagnostics are lowering the limit of detection for malaria parasites in the blood and providing insights not captured by conventional tool such as microscopy and rapid antigen tests. Low-level malaria infections identified by molecular tools may influence clinical outcomes, transmission events, and elimination efforts. While many ultra-sensitive molecular methods require well-equipped laboratories, technologies such as loop-mediated isothermal amplification (LAMP) or recombinase polymerase amplification (RPA) provide more portable and analytically sensitive solutions. These tools may benefit asymptomatic patient screening, antenatal care, and elimination campaigns. We review the recent evidence, offer our perspective on the impact of these new tests and identify future research priorities.
Collapse
Affiliation(s)
- Claire Kamaliddin
- Department of Microbiology, Immunology, and Infectious Disease, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Colin J Sutherland
- Department of Infection Biology, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel St, London, UK
| | - Sandrine Houze
- UMR261 - MERIT, IRD, Faculté de Pharmacie, Université de Paris, Paris, Île-de-France.,Centre National de Référence pour le Paludisme, Bichat-Claude Bernard Hospital, Paris, France
| | - Gilles Cottrell
- UMR261 - MERIT, IRD, Faculté de Pharmacie, Université de Paris, Paris, Île-de-France
| | - Valerie Briand
- Institut de Recherche pour le Développement (IRD), Inserm, UMR 1219, University of Bordeaux, Bordeaux, France
| | - Daniel Castaneda Mogollon
- Department of Microbiology, Immunology, and Infectious Disease, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Dylan R Pillai
- Department of Microbiology, Immunology, and Infectious Disease, Cumming School of Medicine, University of Calgary, AB, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, AB, Canada.,Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, AB, Canada
| |
Collapse
|
5
|
Current Status and the Epidemiology of Malaria in the Middle East Region and Beyond. Microorganisms 2021; 9:microorganisms9020338. [PMID: 33572053 PMCID: PMC7915327 DOI: 10.3390/microorganisms9020338] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/22/2022] Open
Abstract
Vector-borne parasitic infectious diseases are important causes of morbidity and mortality globally. Malaria is one of the most common vector-borne parasitic infection and is caused by five Plasmodium species, namely P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi. Epidemiologically, differences in the patterns of malaria cases, causative agent, disease severity, antimicrobial resistance, and mortality exist across diverse geographical regions. The world witnessed 229 million malaria cases which resulted in 409,000 deaths in 2019 alone. Although malaria cases are reported from 87 countries globally, Africa bears the brunt of these infections and deaths as nearly 94% of total malaria cases and deaths occur in this continent, particularly in sub-Saharan Africa. Most of the Middle East Region countries are malaria-free as no indigenous cases of infection have been described in recent years. However, imported cases of malaria continue to occur as some of these countries. Indeed, the six Gulf Cooperation Council (GCC) countries have large expatriate population originating from malaria endemic countries. In this review, the current status and epidemiology of malaria in the Middle East Region countries and other malaria-endemic countries that are home to a large migrant workforce being employed in Middle East Region countries are discussed.
Collapse
|
6
|
Iqbal J, Al-Awadhi M, Ahmad S. Decreasing trend of imported malaria cases but increasing influx of mixed P. falciparum and P. vivax infections in malaria-free Kuwait. PLoS One 2020; 15:e0243617. [PMID: 33306727 PMCID: PMC7732060 DOI: 10.1371/journal.pone.0243617] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/20/2020] [Indexed: 01/22/2023] Open
Abstract
Malaria still continues to be the most important parasitic disease worldwide, affecting 228 million people and causing 405,000 deaths each year. In this retrospective study during 2013 to 2018, we documented the incidence of imported malaria infection and evaluated the impact of malaria preventive measures in Kuwait, a non-endemic country. The epidemiologic and demographic data of all malaria cases was collected from the Infectious Diseases Hospital, Kuwait where all suspected cases of malaria are referred for confirmation and therapeutic intervention. The diagnosis of malaria infection was done by microscopy of Giemsa stained blood films. Selected samples were retested with BinaxNOW® Malaria rapid test and molecular assay to reconfirm the Plasmodium spp. or mixed infection. Overall, 1913 (25.9%) malaria cases were detected, 81.5% of which were among male subjects. Male subjects had higher incidence of P. vivax malaria (113; 91.1%) and mixed infection with P. falciparum and P. vivax (1245; 90.0%) compared to females who had higher rate of P. falciparum infection (52.4%). An overwhelming majority of malaria cases (1895; 99.1%) were detected among expatriates from malaria-endemic countries; India (1012; 52.9%), Pakistan (390; 20.4%), Afghanistan (94; 4.9%) and African countries (313; 16.3%). Only 18 cases involved Kuwaiti nationals, all with a history of travel to African countries. The majority of malaria cases were detected during the summer and fall months (May-October). Our data showed that the incidence rate of imported malaria cases was stable during 2013 to 2018, however, the incidence of total malaria cases showed a declining trend over the years. This study confirms that the preventive program has been successful in reducing the incidence of imported malaria infections in Kuwait. The most striking finding of this study was high incidence of mixed infection with P. falciparum and P. vivax, with almost all (97%) cases among workers from India.
Collapse
Affiliation(s)
- Jamshaid Iqbal
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
- * E-mail:
| | - Mohammad Al-Awadhi
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
| |
Collapse
|