1
|
Cheng ZX, Zhang J. Exploring the Role of Gut-Lung Interactions in COPD Pathogenesis: A Comprehensive Review on Microbiota Characteristics and Inflammation Modulation. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2024; 11:311-325. [PMID: 38563747 PMCID: PMC11216226 DOI: 10.15326/jcopdf.2023.0442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a paramount contributor to global morbidity and mortality. Over the past decade, the concept of the "gut-lung axis" has emerged, offering a lens through which to examine the intricate interplay between the host, microbiome, and respiratory diseases, including COPD. An expanding body of evidence underscores that the composition of both the gastrointestinal and respiratory microbiome deviates in COPD patients compared to healthy individuals, leading to distinct host immune responses and clinical manifestations. The objective of this review is to provide a concise overview of the role both gut and respiratory microbiome play in the development of COPD. This was accomplished by compiling current literature on the microbiome profile in stable and exacerbated cases of COPD, as well as exploring the biological mechanisms through a discussion of relevant experiments conducted on murine models. Hallmark characteristics of the microbial profile in COPD encompass reduced Prevotella species in the respiratory microbiome, culminating in a loss of anti-inflammatory protection, and diminished Bacteroidetes in the gut microbiome, leading to a decrease in protective short-chain fatty acids. The proliferation of Proteobacteria, particularly the Haemophilus species, Moraxellaspecies, and Pseudomonas species contribute to COPD pathologies via recognition of proinflammatory lipopolysaccharide via Toll-like receptors. As a consequence, deteriorated pulmonary function, enhanced severity, increased onset of exacerbations, and elevated mortality were observed.
Collapse
Affiliation(s)
- Zi-Xuan Cheng
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai, China
- *PhD candidate
| | - Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai, China
| |
Collapse
|
2
|
Zhou L, Deng Y, Liu K, Liu H, Liu W. The use of antibiotics in the early stage of acute exacerbation of chronic obstructive pulmonary disease in patients without obvious signs of infection: a multicenter, randomized, parallel-controlled study. Front Pharmacol 2024; 15:1380939. [PMID: 38799157 PMCID: PMC11116691 DOI: 10.3389/fphar.2024.1380939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/26/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease with high prevalence and mortality. In some acute exacerbations of COPD (AECOPD) in patients with no obvious signs of infection, early antibiotic treatment seems to clinically improve the disease, but more studies are needed to determine the prognostic impact of antibiotic treatment in AECOPD patients with no obvious signs of infection. Purpose To clarify the impact of antibiotic treatment on the short-term and long-term prognoses of AECOPD patients without obvious signs of infection. Methods The impact of the two treatment methods on the prognosis of patients was compared at 30, 90, 180, and 360 days after discharge. A multicenter, randomized, parallel-controlled clinical trial was conducted in a department of respiratory and critical care medicine in Central China. All patients met the inclusion criteria for AECOPD, and the patients were randomly assigned to the antibiotic group or the nonantibiotic group at a 1:1 ratio. Patients in the antibiotic group were given moxifloxacin 400 mg/day intravenously for 7 days. Patients in the nonantibiotic group were intravenously injected with the same amount of normal saline as the amount of moxifloxacin given to those in the antibiotic group for 7 days. Results There were 406 patients in the antibiotic group and 410 patients in the nonantibiotic group. During the short-term and long-term follow-ups, the acute exacerbation frequency, intensive care unit (ICU) treatment rate, mortality, and mMRC and CAT scores were not significantly different between the two groups (p > 0.05). At the 180- and 360-day follow-ups, the forced expiratory volume in 1 s (FEV1%) and peak expiratory flow (PEF) were not significantly different between the two groups (p > 0.05). The 30-day readmission rate was significantly lower in the antibiotic group than in the nonantibiotic group (p < 0.05). The time from discharge to the first acute exacerbation was not significantly different between the two groups (p > 0.05). The length of the first hospital stay after discharge was significantly lower in the antibiotic group (5.84 days) than in the nonantibiotic group (6.75 days) (p < 0.05). At the 30-day follow-up, the acute exacerbation frequency, age, C-reactive protein (CRP) level, and sputum viscosity were significantly greater in the nonantibiotic group than in the antibiotic group (p < 0.05). In addition, according to the receiver operating characteristic (ROC) analysis, the frequency of acute exacerbations at the 30-day follow-up was significantly greater in COPD patients aged >62.5 years, with a CRP level >12.56 mg/L or with a sputum viscosity >III, in the nonantibiotic group than in those in the antibiotic group, suggesting that the short-term prognosis was poor. Conclusion Patients who are >62.5 years of age, have a CRP concentration >12.56 mg/L, or have a sputum viscosity >III without obvious signs of infection should be treated with antibiotics to improve their short-term prognosis. Clinical Trial Registration (https://www.chictr.org.cn), (ChiCTR1800018921).
Collapse
Affiliation(s)
- Ling Zhou
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Deng
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kui Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Liu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Kou Z, Liu K, Qiao Z, Wang Y, Li Y, Li Y, Yu X, Han W. The alterations of oral, airway and intestine microbiota in chronic obstructive pulmonary disease: a systematic review and meta-analysis. Front Immunol 2024; 15:1407439. [PMID: 38779669 PMCID: PMC11109405 DOI: 10.3389/fimmu.2024.1407439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Background Increasing evidence indicates the microbial ecology of chronic obstructive pulmonary disease (COPD) is intricately associated with the disease's status and severity, and distinct microbial ecological variations exist between COPD and healthy control (HC). This systematic review and meta-analysis aimed to summarize microbial diversity indices and taxa relative abundance of oral, airway, and intestine microbiota of different stages of COPD and HC to make comparisons. Methods A comprehensive systematic literature search was conducted in PubMed, Embase, the Web of Science, and the Cochrane Library databases to identify relevant English articles on the oral, airway, and intestine microbiota in COPD published between 2003 and 8 May 2023. Information on microbial diversity indices and taxa relative abundance of oral, airway, and intestine microbiota was collected for comparison between different stages of COPD and HC. Results A total of 20 studies were included in this review, involving a total of 337 HC participants, 511 COPD patients, and 154 AECOPD patients. We observed that no significant differences in alpha diversity between the participant groups, but beta diversity was significantly different in half of the included studies. Compared to HC, Prevotella, Streptococcus, Actinomyces, and Veillonella of oral microbiota in SCOPD were reduced at the genus level. Most studies supported that Haemophilus, Lactobacillus, and Pseudomonas were increased, but Veillonella, Prevotella, Actinomyces, Porphyromonas, and Atopobium were decreased at the genus level in the airway microbiota of SCOPD. However, the abundance of Haemophilus, Lactobacillus and Pseudomonas genera exhibited an increase, whereas Actinomyces and Porphyromonas showed a decrease in the airway microbiota of AECOPD compared to HC. And Lachnospira of intestine microbiota in SCOPD was reduced at the genus level. Conclusion The majority of published research findings supported that COPD exhibited decreased alpha diversity compared to HC. However, our meta-analysis does not confirm it. In order to further investigate the characteristics and mechanisms of microbiome in the oral-airway- intestine axis of COPD patients, larger-scale and more rigorous studies are needed. Systematic review registration PROSPERO (https://www.crd.york.ac.uk/prospero/), identifier CRD42023418726.
Collapse
Affiliation(s)
- Ziwei Kou
- Department of Medicine, Qingdao University, Qingdao, China
| | - Kai Liu
- Department of Rehabilitation Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Zhengtong Qiao
- School of Rehabilitation Medical, Binzhou Medical University, Yantai, China
| | - Yaoyao Wang
- Department of Medicine, Qingdao University, Qingdao, China
| | - Yanmiao Li
- Department of Medicine, Qingdao University, Qingdao, China
| | - Yinan Li
- Department of Medicine, Qingdao University, Qingdao, China
| | - Xinjuan Yu
- Clinical Research Center, Qingdao Key Laboratory of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Wei Han
- Department of Respiratory and Critical Medicine, Qingdao Key Laboratory of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
4
|
Chen X, Dai L, Ma JZ, Chu XX, Dai L, Liu JM, Guo SW, Ru XW, Zhuang XS. Clinical study of NFNC in the treatment of acute exacerbation chronic obstructive pulmonary disease patients with respiratory failure. World J Clin Cases 2023; 11:7770-7777. [DOI: 10.12998/wjcc.v11.i32.7770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/09/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Most patients with acute exacerbation chronic obstructive pulmonary disease (AECOPD) have respiratory failure that necessitates active correction and the improvement of oxygenation is particularly important during treatment. High flow nasal cannula (HFNC) oxygen therapy is a non-invasive respiratory aid that is widely used in the clinic that improves oxygenation state, reduces dead space ventilation and breathing effort, protects the loss of cilia in the airways, and improves patient comfort.
AIM To compare HFNC and non-invasive positive pressure ventilation in the treatment of patients with AECOPD.
METHODS Eighty AECOPD patients were included in the study. The patients were in the intensive care department of our hospital from October 2019 to October 2021. The patients were divided into the control and treatment groups according to the different treatment methods with 40 patients in each group. Differences in patient comfort, blood gas analysis and infection indices were analyzed between the two groups.
RESULTS After treatment, symptoms including nasal, throat and chest discomfort were significantly lower in the treatment group compared to the control group on the 3rd and 5th days (P < 0.05). Before treatment, the PaO2, PaO2/FiO2, PaCO2, and SaO2 in the two groups of patients were not significantly different (P > 0.05). After treatment, the same indicators were significantly improved in both patient groups but had improved more in the treatment group compared to the control group (P < 0.05). After treatment, the white blood cell count, and the levels of C-reactive protein and calcitonin in patients in the treatment group were significantly higher compared to patients in the control group (P < 0.05).
CONCLUSION HFNC treatment can improve the ventilation of AECOPD patients whilst also improving patient comfort, and reducing complications. HFNC is a clinically valuable technique for the treatment of AECOPD.
Collapse
Affiliation(s)
- Xiang Chen
- Pulmonary and Critical Care Medicine, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan 430000, Hubei Province, China
| | - Ling Dai
- Department of Intensive Care Second Unit, Wuhan No. 1 Hospital, Wuhan 430000, Hubei Province, China
| | - Jin-Zhu Ma
- Department of Intensive Care Medicine, Lixin County People's Hospital, Bozhou 236700, Anhui Province, China
| | - Xin-Xu Chu
- Department of Intensive Care Medicine, Lixin County People's Hospital, Bozhou 236700, Anhui Province, China
| | - Liang Dai
- Department of Intensive Care Medicine, Lixin County People's Hospital, Bozhou 236700, Anhui Province, China
| | - Jian-Ming Liu
- Department of Intensive Care Medicine, Lixin County People's Hospital, Bozhou 236700, Anhui Province, China
| | - Si-Wei Guo
- Department of Intensive Care Medicine, Lixin County People's Hospital, Bozhou 236700, Anhui Province, China
| | - Xin-Wei Ru
- Department of Intensive Care Medicine, Lixin County People's Hospital, Bozhou 236700, Anhui Province, China
| | - Xue-Shi Zhuang
- Department of Intensive Care Medicine, Lixin County People's Hospital, Bozhou 236700, Anhui Province, China
| |
Collapse
|
5
|
Zhang Z, Zhang C, Zhong Y, Yang S, Deng F, Li Y, Chai J. The spatial dissimilarities and connections of the microbiota in the upper and lower respiratory tract of beef cattle. Front Cell Infect Microbiol 2023; 13:1269726. [PMID: 38029262 PMCID: PMC10660669 DOI: 10.3389/fcimb.2023.1269726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Bovine respiratory disease (BRD) causes morbidity and mortality in cattle. The critical roles of the respiratory microbiota in BRD have been widely studied. The nasopharynx was the most popular sampling niche for BRD pathogen studies. The oral cavity and other niches within the respiratory tract, such as nostrils and lung, are less assessed. In this study, oropharyngeal swabs (OS), nasal swabs (NS), nasopharyngeal swabs (NP), and bronchoalveolar lavage (BAL) were collected from calves located in four countries and analyzed for investigation of the dissimilarities and connections of the respiratory microbiota. The results showed that the microbial diversity, structure, and composition in the upper and lower respiratory tract in beef cattle from China, the USA, Canada, and Italy were significantly different. The microbial taxa for each sampling niche were specific and associated with their local physiology and geography. The signature microbiota for OS, NS, NP, and BAL were identified using the LEfSe algorithm. Although the spatial dissimilarities among the respiratory niches existed, the microbial connections were observed in beef cattle regardless of geography. Notably, the nostril and nasopharynx had more similar microbiomes compared to lung communities. The major bacterial immigration patterns in the bovine respiratory tract were estimated and some of them were associated with geography. In addition, the contribution of oral microbiota to the nasal and lung ecosystems was confirmed. Lastly, microbial interactions were characterized to reveal the correlation between the commercial microbiota and BRD-associated pathogens. In conclusion, shared airway microbiota among niches and geography provides the possibility to investigate the common knowledge for bovine respiratory health and diseases. In spite of the dissimilarities of the respiratory microbiota in cattle, the spatial connections among these sampling niches not only allow us to deeply understand the airway ecosystem but also benefit the research and development of probiotics for BRD.
Collapse
Affiliation(s)
- Zhihao Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| | - Chengqian Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| | - Yikai Zhong
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| | - Shuli Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| | - Feilong Deng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, United States
| | - Ying Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| | - Jianmin Chai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
6
|
Mao X, Li Y, Shi P, Zhu Z, Sun J, Xue Y, Wan Z, Yang D, Ma T, Wang J, Zhu R. Analysis of sputum microbial flora in chronic obstructive pulmonary disease patients with different phenotypes during acute exacerbations. Microb Pathog 2023; 184:106335. [PMID: 37673353 DOI: 10.1016/j.micpath.2023.106335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Increasing studies have shown that the imbalance of the respiratory microbial flora is related to the occurrence of COPD, the severity and frequency of exacerbations and mortality.However, it remains unclear how the sputum microbial flora differs during exacerbations in COPD patients manifesting emphysema phenotype, chronic bronchitis with emphysema phenotype and asthma-COPD overlap phenotype. METHODS Sputum samples were obtained from 29 COPD patients experiencing acute exacerbations who had not received antibiotics or systemic corticosteroids within the past four weeks.Patients were divided into three groups;emphysema phenotype(E);chronic bronchitis with emphysema phenotype(B+E) and asthma-COPD overlap phenotype(ACO).We utilized metagenomic Next Generation Sequencing (mNGS) technology to analyze the sputum microbial flora in COPD patients with different phenotypes during exacerbations. RESULTS There was no significant difference in alpha diversity and beta diversity among three groups.The microbial flora composition was similar in all three groups during exacerbations except for a significant increase in Streptococcus mitis in ACO.Through network analysis,we found Candidatus Saccharibacteria oral taxon TM7x and Fusobacterium necrophorum were the core nodes of the co-occurrence network in ACO and E respectively.They were positively correlated with some species and play a synergistic role.In B+E,Haemophilus pittmaniae and Klebsiella pneumoniae had a synergistic effect.Besides,some species among the three groups play a synergistic or antagonistic role.Through Spearman analysis,we found the relative abundance of Streptococcus mitis was negatively correlated with the number of hospitalizations in the past year(r = -0.410,P = 0.027).We also observed that the relative abundance of Prevotella and Prevotella melaninogenica was negatively correlated with age(r = -0.534,P = 0.003;r = -0.567,P = 0.001),while the relative abundance of Streptococcus oralis and Actinomyces odontolyticus was positively correlated with age(r = 0.570,P = 0.001;r = 0.480,P = 0.008).In addition,the relative abundance of Prevotella melaninogenica was negatively correlated with peripheral blood neutrophil ratio and neutrophil to lymphocyte ratio(r = -0.479,P = 0.009;r = -0.555,P = 0.002),while the relative abundance of Streptococcus sanguinis was positively correlated with peripheral blood neutrophil ratio and neutrophil to lymphocyte ratio (r = 0.450,P = 0.014;r = 0.501,P = 0.006).There was also a significant positive correlation between Oribacterium and blood eosinophil counts(r = 0.491,P = 0.007). CONCLUSION Overall,we analyzed the sputum microbiota of COPD patients with different phenotypes and its relationship with clinical indicators, and explored the relationships between microbiota and inflammation in COPD.We hope to alter the prognosis of patients by inhibiting specific bacterial taxa related to inflammation and using guide individualized treatment in the future research.
Collapse
Affiliation(s)
- Xiaoyan Mao
- Department of Intensive Care Unit, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, Jiangsu, 223002, China
| | - Yao Li
- Department of Respiratory and Critical Care Medicine, The Huaian Clinial College of Xuzhou Medical University, Huaian, Jiangsu, 223300, China
| | - Pengfei Shi
- Department of Respiratory and Critical Care Medicine, The Huaian Clinial College of Xuzhou Medical University, Huaian, Jiangsu, 223300, China
| | - Ziwei Zhu
- Department of Respiratory and Critical Care Medicine, The Huaian Clinial College of Xuzhou Medical University, Huaian, Jiangsu, 223300, China
| | - Juan Sun
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, 223300, China
| | - Yu Xue
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, 223300, China
| | - Zongren Wan
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, 223300, China
| | - Dan Yang
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, 223300, China
| | - Ting Ma
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, 223300, China
| | - Jipeng Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, 223300, China
| | - Rong Zhu
- Department of Respiratory and Critical Care Medicine, The Huaian Clinial College of Xuzhou Medical University, Huaian, Jiangsu, 223300, China.
| |
Collapse
|
7
|
Nichols DP, Morgan SJ, Skalland M, Vo AT, Van Dalfsen JM, Singh SB, Ni W, Hoffman LR, McGeer K, Heltshe SL, Clancy JP, Rowe SM, Jorth P, Singh PK. Pharmacologic improvement of CFTR function rapidly decreases sputum pathogen density, but lung infections generally persist. J Clin Invest 2023; 133:e167957. [PMID: 36976651 PMCID: PMC10178839 DOI: 10.1172/jci167957] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
BackgroundLung infections are among the most consequential manifestations of cystic fibrosis (CF) and are associated with reduced lung function and shortened survival. Drugs called CF transmembrane conductance regulator (CFTR) modulators improve activity of dysfunctional CFTR channels, which is the physiological defect causing CF. However, it is unclear how improved CFTR activity affects CF lung infections.MethodsWe performed a prospective, multicenter, observational study to measure the effect of the newest and most effective CFTR modulator, elexacaftor/tezacaftor/ivacaftor (ETI), on CF lung infections. We studied sputum from 236 people with CF during their first 6 months of ETI using bacterial cultures, PCR, and sequencing.ResultsMean sputum densities of Staphylococcus aureus, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Achromobacter spp., and Burkholderia spp. decreased by 2-3 log10 CFU/mL after 1 month of ETI. However, most participants remained culture positive for the pathogens cultured from their sputum before starting ETI. In those becoming culture negative after ETI, the pathogens present before treatment were often still detectable by PCR months after sputum converted to culture negative. Sequence-based analyses confirmed large reductions in CF pathogen genera, but other bacteria detected in sputum were largely unchanged. ETI treatment increased average sputum bacterial diversity and produced consistent shifts in sputum bacterial composition. However, these changes were caused by ETI-mediated decreases in CF pathogen abundance rather than changes in other bacteria.ConclusionsTreatment with the most effective CFTR modulator currently available produced large and rapid reductions in traditional CF pathogens in sputum, but most participants remain infected with the pathogens present before modulator treatment.Trial RegistrationClinicalTrials.gov NCT04038047.FundingThe Cystic Fibrosis Foundation and the NIH.
Collapse
Affiliation(s)
| | - Sarah J. Morgan
- Departments of Microbiology and Medicine, University of Washington, Seattle, Washington, USA
| | - Michelle Skalland
- Therapeutics Development Network Coordinating Center, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Anh T. Vo
- Departments of Microbiology and Medicine, University of Washington, Seattle, Washington, USA
| | - Jill M. Van Dalfsen
- Therapeutics Development Network Coordinating Center, Seattle Children’s Research Institute, Seattle, Washington, USA
| | | | - Wendy Ni
- Departments of Microbiology and Medicine, University of Washington, Seattle, Washington, USA
| | | | - Kailee McGeer
- Departments of Microbiology and Medicine, University of Washington, Seattle, Washington, USA
| | - Sonya L. Heltshe
- Department of Pediatrics and
- Therapeutics Development Network Coordinating Center, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - John P. Clancy
- Department of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Steven M. Rowe
- Department of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Peter Jorth
- Departments of Pathology and Laboratory Medicine, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Pradeep K. Singh
- Departments of Microbiology and Medicine, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
8
|
Wu X, Li RF, Lin ZS, Xiao C, Liu B, Mai KL, Zhou HX, Zeng DY, Cheng S, Weng YC, Zhao J, Chen RF, Jiang HM, Chen LP, Deng LZ, Xie PF, Yang WM, Xia XS, Yang ZF. Coinfection with influenza virus and non-typeable Haemophilus influenzae aggregates inflammatory lung injury and alters gut microbiota in COPD mice. Front Microbiol 2023; 14:1137369. [PMID: 37065141 PMCID: PMC10098174 DOI: 10.3389/fmicb.2023.1137369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/15/2023] [Indexed: 04/01/2023] Open
Abstract
BackgroundAcute exacerbation of chronic obstructive pulmonary disease (AECOPD) is associated with high mortality rates. Viral and bacterial coinfection is the primary cause of AECOPD. How coinfection with these microbes influences host inflammatory response and the gut microbiota composition is not entirely understood.MethodsWe developed a mouse model of AECOPD by cigarette smoke exposure and sequential infection with influenza H1N1 virus and non-typeable Haemophilus influenzae (NTHi). Viral and bacterial titer was determined using MDCK cells and chocolate agar plates, respectively. The levels of cytokines, adhesion molecules, and inflammatory cells in the lungs were measured using Bio-Plex and flow cytometry assays. Gut microbiota was analyzed using 16S rRNA gene sequencing. Correlations between cytokines and gut microbiota were determined using Spearman’s rank correlation coefficient test.ResultsCoinfection with H1N1 and NTHi resulted in more severe lung injury, higher mortality, declined lung function in COPD mice. H1N1 enhanced NTHi growth in the lungs, but NTHi had no effect on H1N1. In addition, coinfection increased the levels of cytokines and adhesion molecules, as well as immune cells including total and M1 macrophages, neutrophils, monocytes, NK cells, and CD4 + T cells. In contrast, alveolar macrophages were depleted. Furthermore, coinfection caused a decline in the diversity of gut bacteria. Muribaculaceae, Lactobacillus, Akkermansia, Lachnospiraceae, and Rikenella were further found to be negatively correlated with cytokine levels, whereas Bacteroides was positively correlated.ConclusionCoinfection with H1N1 and NTHi causes a deterioration in COPD mice due to increased lung inflammation, which is correlated with dysbiosis of the gut microbiota.
Collapse
Affiliation(s)
- Xiao Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Run-Feng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
| | - Zheng-Shi Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chuang Xiao
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Bin Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kai-Lin Mai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - De-You Zeng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Sha Cheng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Yun-Ceng Weng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jin Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rui-Feng Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hai-Ming Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li-Ping Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ling-Zhu Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pei-Fang Xie
- The Affiliated Anning First Hospital and Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Wei-Min Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
- Wei-Min Yang,
| | - Xue-Shan Xia
- The Affiliated Anning First Hospital and Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Xue-Shan Xia,
| | - Zi-Feng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Guangzhou, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
- *Correspondence: Zi-Feng Yang,
| |
Collapse
|
9
|
Waeijen-Smit K, DiGiandomenico A, Bonnell J, Ostridge K, Gehrmann U, Sellman BR, Kenny T, van Kuijk S, Peerlings D, Spruit MA, Simons SO, Houben-Wilke S, Franssen FME. Early diagnostic BioMARKers in exacerbations of chronic obstructive pulmonary disease: protocol of the exploratory, prospective, longitudinal, single-centre, observational MARKED study. BMJ Open 2023; 13:e068787. [PMID: 36868599 PMCID: PMC9990620 DOI: 10.1136/bmjopen-2022-068787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
INTRODUCTION Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) play a pivotal role in the burden and progressive course of chronic obstructive pulmonary disease (COPD). As such, disease management is predominantly based on the prevention of these episodes of acute worsening of respiratory symptoms. However, to date, personalised prediction and early and accurate diagnosis of AECOPD remain unsuccessful. Therefore, the current study was designed to explore which frequently measured biomarkers can predict an AECOPD and/or respiratory infection in patients with COPD. Moreover, the study aims to increase our understanding of the heterogeneity of AECOPD as well as the role of microbial composition and hostmicrobiome interactions to elucidate new disease biology in COPD. METHODS AND ANALYSIS The 'Early diagnostic BioMARKers in Exacerbations of COPD' study is an exploratory, prospective, longitudinal, single-centre, observational study with 8-week follow-up enrolling up to 150 patients with COPD admitted to inpatient pulmonary rehabilitation at Ciro (Horn, the Netherlands). Respiratory symptoms, vitals, spirometry and nasopharyngeal, venous blood, spontaneous sputum and stool samples will be frequently collected for exploratory biomarker analysis, longitudinal characterisation of AECOPD (ie, clinical, functional and microbial) and to identify host-microbiome interactions. Genomic sequencing will be performed to identify mutations associated with increased risk of AECOPD and microbial infections. Predictors of time-to-first AECOPD will be modelled using Cox proportional hazards' regression. Multiomic analyses will provide a novel integration tool to generate predictive models and testable hypotheses about disease causation and predictors of disease progression. ETHICS AND DISSEMINATION This protocol was approved by the Medical Research Ethics Committees United (MEC-U), Nieuwegein, the Netherlands (NL71364.100.19). TRIAL REGISTRATION NUMBER NCT05315674.
Collapse
Affiliation(s)
- Kiki Waeijen-Smit
- Department of Research and Development, CIRO, Horn, Netherlands
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health Medicine and Life Sciences, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Antonio DiGiandomenico
- Discovery Microbiome, Vaccines and Immune Therapies, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Jessica Bonnell
- Discovery Microbiome, Vaccines and Immune Therapies, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Kristoffer Ostridge
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ulf Gehrmann
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Bret R Sellman
- Discovery Microbiome, Vaccines and Immune Therapies, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Tara Kenny
- Discovery Microbiome, Vaccines and Immune Therapies, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Sander van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht Universitair Medisch Centrum+, Maastricht, Netherlands
| | | | - Martijn A Spruit
- Department of Research and Development, CIRO, Horn, Netherlands
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health Medicine and Life Sciences, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Sami O Simons
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health Medicine and Life Sciences, Maastricht University Medical Centre+, Maastricht, Netherlands
| | | | - Frits M E Franssen
- Department of Research and Development, CIRO, Horn, Netherlands
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health Medicine and Life Sciences, Maastricht University Medical Centre+, Maastricht, Netherlands
| |
Collapse
|
10
|
The association between the respiratory tract microbiome and clinical outcomes in patients with COPD. Microbiol Res 2023; 266:127244. [DOI: 10.1016/j.micres.2022.127244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
11
|
Salama KSM, Moazen EM, Elsawy SB, Kotb SF, Mohammed EM, Tahoun SA, Ramadan MAA, Abd Elhamid SM, Bahi RHM, Mohammad EA. Bacterial Species and Inflammatory Cell Variability in Respiratory Tracts of Patients with Chronic Obstructive Pulmonary Disease Exacerbation: A Multicentric Study. Infect Drug Resist 2023; 16:2107-2115. [PMID: 37070124 PMCID: PMC10105586 DOI: 10.2147/idr.s402828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/01/2023] [Indexed: 04/19/2023] Open
Abstract
Background and Aim Acute exacerbation of chronic obstructive pulmonary disease (AECOPD) has profound effects on disease progression and patients' quality of life. Emerging evidence suggests an association between alterations in the respiratory microbiome flora species and airway inflammation in patients with AECOPD. The present study aimed to describe the inflammatory cells and bacterial microbiome distributions in respiratory tract in Egyptian patients with AECOPD. Subjects and Methods The present cross-sectional study included 208 patients with AECOPD. Sputum and broncho-alveolar lavage samples from the studied patients were submitted to microbial cultures using appropriate media. Total and differential leukocytic counts and were done via automated cell counter. Results The present study included 208 AECOPD patients. They comprised 167 males (80.3%) and 41 females (19.7%) with an age of 57.9 ± 4.9 years. AECOPD was categorized as mild, moderate and severe in 30.8%, 43.3% and 26%, respectively. Sputum samples had significantly higher TLC, neutrophil percent and eosinophil percent when compared with BAL samples. In contrast, lymphocyte percent was significantly higher in BAL samples. Sputum specimens had significantly lower frequency of positive growths (70.2% versus 86.5%, p = 0.001). Among the identified organisms, sputum specimens had significantly lower frequency of Strept. pneumoniae (14.4% versus 30.3%, p = 0.001), Klebsiella pneumoniae (19.7% versus 31.7%, p = 0.024), Haemophilus influenzae (12.5% versus 26.9%, p = 0.011), Pseudomonas aeruginosa (2.9% versus 10%, p = 0.019) and Acinetobacter spp. (1.9% versus 7.2%, p = 0.012) growths when compared with BAL samples. Conclusion The present study could identify a distinctive pattern of inflammatory cell distribution in sputum and BAL samples of AECOPD patients. The most commonly isolated organisms were Klebsiella pneumoniae and Strept. pneumoniae.
Collapse
Affiliation(s)
- Khadiga S M Salama
- Chest Diseases Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Eman M Moazen
- Chest Diseases Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Sawsan B Elsawy
- Chest Diseases Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
- Correspondence: Sawsan B Elsawy, Chest Diseases Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt, Email
| | - Sanaa F Kotb
- Chest Diseases Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Eid M Mohammed
- Chest Diseases Department Faculty of Medicine for Men’s, Al-Azhar University, Cairo, Egypt
| | - Sara A Tahoun
- Clinical Pathology Department Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Marwa A A Ramadan
- Clinical Pathology Department Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Samar M Abd Elhamid
- Clinical Pathology Department Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Rania H M Bahi
- Chest Diseases Department Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Etemad A Mohammad
- Chest Diseases Department Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|
12
|
Tiew PY, Mac Aogáin M, Chotirmall SH. The current understanding and future directions for sputum microbiome profiling in chronic obstructive pulmonary disease. Curr Opin Pulm Med 2022; 28:121-133. [PMID: 34839338 DOI: 10.1097/mcp.0000000000000850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Next-generation sequencing (NGS) has deepened our understanding of the respiratory microbiome in health and disease. The number of microbiome studies employing sputum as an airway surrogate has continued to increase over the past decade to include multiple large multicentre and longitudinal studies of the microbiome in chronic obstructive pulmonary disease (COPD). In this review, we summarize the recent advances to our understanding of the bacteriome, virome and mycobiome in COPD. RECENT FINDINGS Diverse microbiome profiles are reported in COPD. The neutrophilic Haemophilus-predominant bacteriome remains a prominent COPD phenotype, relatively stable over time and during exacerbations. Studies of the virome remain limited but reveal a potential involvement of viruses and bacteriophages particularly during COPD exacerbations and advancing disease severity. Mycobiome signatures, even in stable COPD are associated with poorer clinical outcomes including mortality. SUMMARY The sputum microbiome in COPD is being increasingly recognized for its clinical relevance, even in the stable state. Future studies integrating microbial kingdoms holistically (i.e. bacterial, viral and fungal) will provide deeper insight into its functionality including the relevance of microbial interactions and effect of treatment on microbiome-associated clinical outcomes.
Collapse
Affiliation(s)
- Pei Yee Tiew
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore
| | - Micheál Mac Aogáin
- Biochemical Genetics Laboratory, Department of Biochemistry, St. James's Hospital
- Clinical Biochemistry Unit, School of Medicine, Trinity College Dublin, Ireland
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
13
|
Wu M, Xu B. Bone Marrow Mesenchymal Stem Cell Transplantation in Combination with Nasal Continuous Positive Airway Pressure Improves Acute Exacerbation of Chronic Obstructive Pulmonary Disease (AECOPD). J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We aimed to explore the efficacy of bone marrow mesenchymal stem cell (BMSC) transplantation combined with nasal continuous positive airway pressure (nCPAP) for treating severe acute exacerbation of chronic obstructive pulmonary disease (AECOPD). SD rat AECOPD model was established
by injecting endotoxin and Staphylococcus aureus and then treated with nCPAP, BMSCs, or nCPAP combined with BMSCs (n = 20) and their conditions were evaluated with BBB score at 1 d, 3 d, 7 d, 14 d, 28 d after treatment along with analysis of apoptosis and BrdU-positive cells
as well as NF200 expression by TUNEL kit staining and levels of Th1, Th7 and Th12 before and after treatment. As revealed by BBB score and HE staining, all treatments significantly alleviated the symptom of severe APEOPD (p < 0.05), while compared with nCPAP, the combined treatment
exhibited higher efficacy. Besides, upon treatment, apoptosis and level of Th1, Th7 and Th12 was reduced but N200 absorbance value was elevated, with significant difference in combination group (p < 0.05). In conclusion, BMSC transplantation in combination with nCPAP alleviates severe
AECOPD by reducing cell apoptosis, repairing cell damage, and regulating T-cell subsets.
Collapse
Affiliation(s)
- Minna Wu
- Department of Emergency Medicine, Hangshi Central Hospital, Edong Healthcare, Huangshi, Hubei, 435000, China
| | - Bo Xu
- Department of Emergency Medicine, Hangshi Central Hospital, Edong Healthcare, Huangshi, Hubei, 435000, China
| |
Collapse
|
14
|
Su L, Qiao Y, Luo J, Huang R, Li Z, Zhang H, Zhao H, Wang J, Xiao Y. Characteristics of the sputum microbiome in COPD exacerbations and correlations between clinical indices. J Transl Med 2022; 20:76. [PMID: 35123490 PMCID: PMC8818176 DOI: 10.1186/s12967-022-03278-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/24/2022] [Indexed: 12/18/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a prevalent, progressive respiratory disease, and acute exacerbations of COPD (AECOPD) can accelerate the deterioration of the disease. Increasing evidence suggests that airway bacterial dysbiosis is associated with AECOPD. However, the exact relationship between changes in the sputum microbiome during AECOPD and clinical indices remains unclear. Methods In this study, a total of 76 sputum samples were collected from patients with AECOPD (n = 28), stable COPD (n = 23), recovery (n = 15) and healthy controls (HCs; n = 10). The sputum microbiome profile was analysed by sequencing the V3‑V4 amplicon of the 16S rRNA (ribosomal RNA) gene. Results The bacterial diversity (Shannon and Simpson’s index) was found to be significantly decreased in the AECOPD and recovery groups when compared to that in the stable COPD and HC groups. The most dominant phylum identified in the sputum samples of AECOPD patients was Proteobacteria, accounting for 30% of the microbiome. Compared to the stable COPD groups, the relative abundances of Firmicutes and Bacteroidetes were decreased, whereas those of Proteobacteria and Actinobacteria were increased in AECOPD patients. Furthermore, discriminative bacteria, such as Haemophilus, were identified as being specific taxa in AECOPD patients. Functional analysis showed that genes involved in membrane transport and signal transduction metabolism were enriched in the AECOPD group. Importantly, the proportions of Veillonella were positively correlated with lung function, and Staphylococcus was positively correlated with inflammatory indices. Conclusion Our study revealed variations in the sputum microbiome of AECOPD (based on composition and function) in a Chinese cohort and highlighted its correlation to clinical indices. These results indicated that microbial dysbiosis may contribute to disease progression and provide microbial biomarkers for the diagnosis of AECOPD. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03278-x.
Collapse
|
15
|
Goolam Mahomed T, Peters RPH, Allam M, Ismail A, Mtshali S, Goolam Mahomed A, Ueckermann V, Kock MM, Ehlers MM. Lung microbiome of stable and exacerbated COPD patients in Tshwane, South Africa. Sci Rep 2021; 11:19758. [PMID: 34611216 PMCID: PMC8492659 DOI: 10.1038/s41598-021-99127-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterised by the occurrence of exacerbations triggered by infections. The aim of this study was to determine the composition of the lung microbiome and lung virome in patients with COPD in an African setting and to compare their composition between the stable and exacerbated states. Twenty-four adult COPD patients were recruited from three hospitals. Sputum was collected and bacterial DNA was extracted. Targeted metagenomics was performed to determine the microbiome composition. Viral DNA and RNA were extracted from selected samples followed by cDNA conversion. Shotgun metagenomics sequencing was performed on pooled DNA and RNA. The most abundant phyla across all samples were Firmicutes and Proteobacteria. The following genera were most prevalent: Haemophilus and Streptococcus. There were no considerable differences for alpha and beta diversity measures between the disease states. However, a difference in the abundances between disease states was observed for: (i) Serratia (3% lower abundance in exacerbated state), (ii) Granulicatella (2.2% higher abundance in exacerbated state), (iii) Haemophilus (5.7% higher abundance in exacerbated state) and (iv) Veillonella (2.5% higher abundance in exacerbated state). Virome analysis showed a high abundance of the BeAn 58058 virus, a member of the Poxviridae family, in all six samples (90% to 94%). This study is among the first to report lung microbiome composition in COPD patients from Africa. In this small sample set, no differences in alpha or beta diversity between stable and exacerbated disease state was observed, but an unexpectedly high frequency of BeAn 58058 virus was observed. These observations highlight the need for further research of the lung microbiome of COPD patients in African settings.
Collapse
Affiliation(s)
- T Goolam Mahomed
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| | - R P H Peters
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
- Foundation for Professional Development, Research Unit, East London, South Africa
| | - M Allam
- National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - A Ismail
- National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - S Mtshali
- National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | | | - V Ueckermann
- Department of Internal Medicine, University of Pretoria, Pretoria, South Africa
| | - M M Kock
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
- Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory Service, Johannesburg, South Africa
| | - M M Ehlers
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa.
- Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory Service, Johannesburg, South Africa.
| |
Collapse
|
16
|
Cen LJ, Zhang XX, Guan WJ. Phenotyping acute exacerbation of COPD: what more can we do for hospitalised patients? ERJ Open Res 2021; 7:00362-2021. [PMID: 34350289 PMCID: PMC8326715 DOI: 10.1183/23120541.00362-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 11/05/2022] Open
Abstract
Hospitalised #AECOPD are characterised by multiple facets of aetiology. The clinical interpretation of the composite phenotypes of AECOPD and the robustness of the AECOPD phenotype need to be discussed further. https://bit.ly/3grzQEO.
Collapse
Affiliation(s)
- Lai-Jian Cen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- These authors contributed equally
| | - Xiao-xian Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- These authors contributed equally
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
17
|
Liu L, Luan Y, Xiao L, Wang N, Wang J, Cui Z. The predictive value of serum procalcitonin for non-invasive positive pressure ventilation in the patients with acute exacerbation of chronic obstructive pulmonary disease. Medicine (Baltimore) 2021; 100:e25547. [PMID: 33879703 PMCID: PMC8078461 DOI: 10.1097/md.0000000000025547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/26/2021] [Indexed: 01/04/2023] Open
Abstract
This study aimed to estimate the value of serum procalcitonin (PCT) for non-invasive positive pressure ventilation (NIPPV) prediction in the patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD).A total of 220 AECOPD patients were divided into NIPPV group (n = 121) and control group (routine treatment, n = 99) based on the routine standards and physicians' experience. Logistic regression analysis was performed to identify the independent factors for NIPPV treatment. Additionally, the predictive values of the factors were measured through receiver operation characteristic (ROC) curve.NIPPV group and control group showed significant differences in respiratory rate (RR), PaO2, PaCO2, pH, oxygenation index, erythrocyte sedimentation rate (ESR), neutrophil, CRP (C-reaction protein), and PCT (P < .05 for all). PCT, CRP, PaCO2, RR, and neutrophil were independently correlated with NIPPV treatment in AECOPD. ROC curve showed that PCT had superior predictive value, with AUC of 0.899, the sensitivity of 86%, and the specificity of 91.9%. The cut-off value of serum PCT for NIPPV prediction was 88.50 ng/l.AECOPD patients who require NIPPV treatment frequently have high levels of PCT, CRP, PaCO2, RR and neutrophil. Serum PCT may be employed as an indicator for NIPPV treatment in AECOPD patients.
Collapse
Affiliation(s)
- Linlin Liu
- Department of Respiratory and Critical Care Medicine
| | - Ying Luan
- Department of Specialist Care, Harrison International Peace Hospital, Hengshui, Hebei, China
| | - Ling Xiao
- Department of Respiratory and Critical Care Medicine
| | - Ning Wang
- Department of Respiratory and Critical Care Medicine
| | - Jing Wang
- Department of Respiratory and Critical Care Medicine
| | - Zhaobo Cui
- Department of Respiratory and Critical Care Medicine
| |
Collapse
|