1
|
Barkovskii AL, Brown C. Environmental Drivers of the Divergence of Harveyi Clade Pathogens with Distinctive Virulence Gene Profiles. Microorganisms 2024; 12:2234. [PMID: 39597623 PMCID: PMC11596038 DOI: 10.3390/microorganisms12112234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Fish and shellfish pathogens of the Harveyi clade of the Vibrio genus cause significant losses to aquaculture yields and profits, with some of them also causing infections in humans. The present study aimed to evaluate the presence of Harveyi clade fish and shellfish pathogens and their possible diversification in response to environmental drivers in southeastern USA waters. The presence and abundance of potential pathogens were evaluated via the detection and quantitation of six Harveyi-clade-specific virulence genes (toxR, luxR, srp, vhha, vhh, and vhp; VGs) in environmental DNA with clade-specific primers. The environmental DNA was obtained from water and sediments collected from three Georgia (USA) cultured clam and wild oyster grounds. In sediments, the VG concentrations were, on average, three orders of magnitude higher than those in water. The most and least frequently detected VGs were vhp and toxR, respectively. In water, the VGs split into two groups based on their seasonal trends. The first group, composed of luxR, vhp, vhha, and vhh, peaked in August and remained at lower concentrations throughout the duration of the study. The second group, composed of toxR and srp, peaked in June and disappeared between July and December. The first group revealed a high adaptation of their carriers to an increase in temperature, tolerance to a wide range of pH, and a positive correlation with salinity up to 25 ppt. The second group of VGs demonstrated a lower adaptation of their carriers to temperature and negative correlations with pH, salinity, potential water density, conductivity, and dissolved solids but a positive correlation with turbidity. No such trends were observed in sediments. These data reveal the role of VGs in the adaptability of the Harveyi clade pathogens to environmental parameters, causing their diversification and possibly their stratification into different ecological niches due to changes in water temperature, acidity, salinity, and turbidity. This diversification and stratification may lead to further speciation and the emergence of new pathogens of this clade. Our data urge further monitoring of the presence and diversification of Harveyi clade pathogens in a global warming scenario.
Collapse
Affiliation(s)
- Andrei L. Barkovskii
- Department of Biological and Environmental Science, Georgia College and State University, Milledgeville, GA 30161, USA
| | | |
Collapse
|
2
|
Zaghi I, Tebano G, Vanino E, Vandi G, Cricca M, Sambri V, Fantini M, Di Antonio F, Terzitta M, Russo E, Cristini F, Bassi P, Biagetti C, Tatarelli P. Non-cholera Vibrio spp. invasive infections in the summer following May 2023 flood disaster in Romagna, Italy: a case series. Eur J Clin Microbiol Infect Dis 2024; 43:1469-1474. [PMID: 38735888 DOI: 10.1007/s10096-024-04842-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
Non-cholera Vibrio spp. includes ubiquitous organisms living in aquatic environments. Their occurrence is associated with global warming and meteorological disasters. In May 2023 the Romagna region, Italy, was affected by severe floods. In the following 15 weeks we observed 5 patients with invasive infections caused by V. vulnificus (3/5) and V. harveyi (2/5). All patients (median age 77 years) had medical comorbidities and shared exposure to seawater. Two patients needed surgery; 2 died. In conclusion, we observed an increased burden of Vibrio spp. invasive infections after May 2023 floods, affecting old patients with predisposing medical conditions.
Collapse
Affiliation(s)
- I Zaghi
- Infectious Diseases Unit, Ravenna Hospital, Ravenna, Italy.
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy.
| | - G Tebano
- Infectious Diseases Unit, Ravenna Hospital, Ravenna, Italy
| | - E Vanino
- Infectious Diseases Unit, Ravenna Hospital, Ravenna, Italy
| | - G Vandi
- Infectious Diseases Unit, Rimini Hospital, Rimini, Italy
| | - M Cricca
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
- Department of Medical and Surgical Sciences (DIMEC)-Alma Mater Studiorum, University of Bologna, 40138, Bologna, Italy
| | - V Sambri
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
- Department of Medical and Surgical Sciences (DIMEC)-Alma Mater Studiorum, University of Bologna, 40138, Bologna, Italy
| | - M Fantini
- Clinical and Organizational Research Unit, Romagna AUSL, Ravenna, Italy
| | - F Di Antonio
- Anesthesia and Intensive Care Unit, Ravenna Hospital, Ravenna, Italy
| | - M Terzitta
- Anesthesia and Intensive Care Unit, Ravenna Hospital, Ravenna, Italy
| | - E Russo
- Department of Surgery and Trauma, Anesthesia and Intensive Care Unit, Maurizio Bufalini Hospital, Cesena, AUSL Della Romagna, Italy
| | - F Cristini
- Infectious Diseases Unit, Forlì and Cesena Hospitals, Forlì and Cesena, Italy
| | - P Bassi
- Infectious Diseases Unit, Ravenna Hospital, Ravenna, Italy
| | - C Biagetti
- Infectious Diseases Unit, Rimini Hospital, Rimini, Italy
| | - P Tatarelli
- Infectious Diseases Unit, Ravenna Hospital, Ravenna, Italy
| |
Collapse
|
3
|
Spiro J, Wisniewski P, Schwartz J, Smith AG, Burger S, Tilley DH, Maves RC. Doxycycline Prophylaxis for Skin and Soft Tissue Infections in Naval Special Warfare Trainees, United States 1. Emerg Infect Dis 2024; 30:89-95. [PMID: 38146981 PMCID: PMC10756378 DOI: 10.3201/eid3001.230890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023] Open
Abstract
In 2015, several severe cases of skin and soft tissue infection (SSTI) among US Naval Special Warfare trainees prompted the introduction of doxycycline prophylaxis during the highest-risk portion of training, Hell Week. We performed a retrospective analysis of the effect of this intervention on SSTI incidence and resulting hospital admissions during 2013-2020. In total, 3,371 trainees underwent Hell Week training during the study period; 284 SSTIs were diagnosed overall, 29 of which led to hospitalization. After doxycycline prophylaxis was introduced, admission rates for SSTI decreased from 1.37 to 0.64 admissions/100 trainees (p = 0.036). Overall SSTI rates remained stable at 7.42 to 8.86 SSTIs/100 trainees (p = 0.185). Hospitalization rates per diagnosed SSTI decreased from 18.4% to 7.2% (p = 0.009). Average length of hospitalization decreased from 9.01 days to 4.33 days (p = 0.034). Doxycycline prophylaxis was associated with decreased frequency and severity of hospitalization for SSTIs among this population.
Collapse
|
4
|
Sacheli R, Philippe C, Meex C, Mzougui S, Melin P, Hayette MP. Occurrence of Vibrio spp. in Selected Recreational Water Bodies in Belgium during 2021 Bathing Season. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6932. [PMID: 37887670 PMCID: PMC10606296 DOI: 10.3390/ijerph20206932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
In recent years, a global increase in the number of reports of human vibriosis involving V. cholerae non-O1/O139 (NOVC) and other Vibrio spp. has been observed. In this context, the Belgian National Reference Center for Vibrio conducted an assessment of the presence of Vibrio spp. in recreational waters. Water sampling was performed monthly in different lakes in Wallonia and Flanders, including the North Sea. The collected water was then filtrated and cultured, and Vibrio spp. was quantified according to the Most Probable Number (MPN). Presumptive colonies were confirmed via MALDI-TOF, and PCR for virulence genes was applied if justified. No Vibrio spp. was found in the analyzed water bodies in Wallonia. However, NOVC was isolated from three different lakes in Flanders and from coastal water. In addition, V. alginolyticus and V. parahaemolyticus were also detected in coastal water. No clear impact of the pH and temperature was observed on Vibrio spp. occurrence. Our study demonstrates the presence of Vibrio spp. in different bathing water bodies, mostly in the north of Belgium, and supports the recommendation to include Vibrio spp. as a water quality indicator for bathing water quality assessment to ensure the safety of water recreational users in Belgium.
Collapse
Affiliation(s)
- Rosalie Sacheli
- Department of Clinical Microbiology, Belgian National Reference Center Vibrio cholerae and Vibrio parahaemolyticus, Center for Interdisciplinary Research on Medicines (CIRM), University Hospital of Liege, 4000 Liège, Belgium; (C.P.); (C.M.); (S.M.); (P.M.); (M.-P.H.)
| | | | | | | | | | | |
Collapse
|
5
|
Mavhungu M, Digban TO, Nwodo UU. Incidence and Virulence Factor Profiling of Vibrio Species: A Study on Hospital and Community Wastewater Effluents. Microorganisms 2023; 11:2449. [PMID: 37894107 PMCID: PMC10609040 DOI: 10.3390/microorganisms11102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
This study aimed to determine the incidence and virulence factor profiling of Vibrio species from hospital wastewater (HWW) and community wastewater effluents. Wastewater samples from selected sites were collected, processed, and analysed presumptively by the culture dependent methods and molecular techniques. A total of 270 isolates were confirmed as Vibrio genus delineating into V. cholerae (27%), V. parahaemolyticus (9.1%), V. vulnificus (4.1%), and V. fluvialis (3%). The remainder (>50%) may account for other Vibrio species not identified in the study. The four Vibrio species were isolated from secondary hospital wastewater effluent (SHWE), while V. cholerae was the sole specie isolated from Limbede community wastewater effluent (LCWE) and none of the four Vibrio species was recovered from tertiary hospital wastewater effluent (THWE). However, several virulence genes were identified among V. cholerae isolates from SHWE: ToxR (88%), hylA (81%), tcpA (64%), VPI (58%), ctx (44%), and ompU (34%). Virulence genes factors among V. cholerae isolates from LCWE were: ToxR (78%), ctx (67%), tcpA (44%), and hylA (44%). Two different genes (vfh and hupO) were identified in all confirmed V. fluvialis isolates. Among V. vulnificus, vcgA (50%) and vcgB (67%) were detected. In V. parahaemolyticus, tdh (56%) and tlh (100%) were also identified. This finding reveals that the studied aquatic niches pose serious potential health risk with Vibrio species harbouring virulence signatures. The distribution of virulence genes is valuable for ecological site quality, as well as epidemiological marker in the control and management of diseases caused by Vibrio species. Regular monitoring of HWW and communal wastewater effluent would allow relevant establishments to forecast, detect, and mitigate any public health threats in advance.
Collapse
Affiliation(s)
- Mashudu Mavhungu
- Patho-Biocatalysis Group, Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa (T.O.D.)
- Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Tennison O. Digban
- Patho-Biocatalysis Group, Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa (T.O.D.)
- Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Uchechukwu U. Nwodo
- Patho-Biocatalysis Group, Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa (T.O.D.)
- Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
6
|
Serna-Duque JA, Espinosa-Ruiz C, Esteban MÁ. Hepcidin and piscidin modulation and antibacterial response in gilthead seabream (Sparus aurata) infected with Vibrio harveyi. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108899. [PMID: 37353061 DOI: 10.1016/j.fsi.2023.108899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Abstract
Vibriosis is an infectious disease that generates large economic losses in Mediterranean aquaculture. Vibrio harveyi is one of the marine bacteria causing this disease, it is widespread in the Mediterranean Sea and causes ulcers on the skin of the fish it infects. In addition, the skin is a route of entry and colonization of this pathogen. In this study, one group of fish was injected intraperitoneally with phosphate buffered saline (control group) and another with V. harveyi (infected group). At 4 h after injection, samples of skin mucus, blood, skin, head kidney, liver, and spleen were collected to study the immune response generated. Liver histology showed notable alterations in hepatocyte morphology, such as increased vacuolization. Bactericidal activity was measured in skin mucus and serum against V. harveyi and V. anguillarum, different changes in this activity were recorded depending on the bacteria target and sample (skin mucus or serum) used. Gene expression of genes encoding hepcidins and piscidins (antimicrobial peptides) was performed in the mentioned organs. The results indicated a different expression according to the type of AMP and the tissue studied. Hepcidin appeared involved in all tissues studied while piscidins were in the spleen. In this study we have integrated hepcidin-piscidin modulation with the effects of infection on skin mucosa, serum and hepatocyte morphology. Knowing the changes produced in all these parameters improves the understanding of the infection in the first hours in sea bream and could have applications in the diagnosis or treatment of vibriosis in fish farms.
Collapse
Affiliation(s)
- Jhon A Serna-Duque
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Cristóbal Espinosa-Ruiz
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - M Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
7
|
Lai X, Wu H, Guo W, Li X, Wang J, Duan Y, Zhang P, Huang Z, Li Y, Dong G, Dan X, Mo Z. Vibrio harveyi co-infected with Cryptocaryon irritans to orange-spotted groupers Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2023:108879. [PMID: 37271326 DOI: 10.1016/j.fsi.2023.108879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/06/2023]
Abstract
The orange-spotted grouper (Epinephelus coioides) is a high economic value aquacultural fish in China, however, it often suffers from the outbreak of parasitic ciliate Cryptocaryon irritans as well as bacterium Vibrio harveyi which bring great loss in grouper farming. In the present study, we established a high dose C. irritans local-infected model which caused the mortality of groupers which showed low vitality and histopathological analysis demonstrated inflammatory response and degeneration in infected skin, gill and liver. In addition, gene expression of inflammatory cytokines was detected to assist the estimate of inflammatory response. Furthermore, we also found that the activity of Na+/K+ ATPase in gill was decreased in groupers infected C. irritans and the concentration of Na+/Cl- in blood were varied. Base on the morbidity symptom occurring in noninfected organs, we hypothesized that the result of morbidity and mortality were due to secondary bacterial infection post parasitism of C. irritans. Moreover, four strains of bacteria were isolated from the infected site skin and liver of local-infected groupers which were identified as V. harveyi in accordance of phenotypic traits, biochemical characterization and molecular analysis of 16S rDNA genes, housekeeping genes (gyrB and cpn60) and species-specific gene Vhhp2. Regression tests of injecting the isolated strain V. harveyi has showed high pathogenicity to groupers. In conclusion, these findings provide the evidence of coinfections with C. irritans and V. harveyi in orange-spotted grouper.
Collapse
Affiliation(s)
- Xueli Lai
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Huicheng Wu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wenjie Guo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiong Li
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jiule Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yafei Duan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Peng Zhang
- Guangdong Chimelong Group, Co., Ltd, Guangzhou, 511430 China
| | - Zelin Huang
- Chimelong Ocean Kindom, Co., Ltd, Zhuhai, 519031, China
| | - Yanwei Li
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Guixin Dong
- Guangdong Chimelong Group, Co., Ltd, Guangzhou, 511430 China; Guangdong South China Rare Wild Animal Species Conservation Center, Zhuhai, 519031, China.
| | - Xueming Dan
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Zequan Mo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Dupke S, Buchholz U, Fastner J, Förster C, Frank C, Lewin A, Rickerts V, Selinka HC. Impact of climate change on waterborne infections and intoxications. JOURNAL OF HEALTH MONITORING 2023; 8:62-77. [PMID: 37342430 PMCID: PMC10278370 DOI: 10.25646/11402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/21/2022] [Indexed: 06/22/2023]
Abstract
Progressive climate change holds the potential for increasing human health risks from waterborne infections and intoxications, e. g. through an increase in pathogen concentrations in water bodies, through the establishment of new pathogens or through possible changes in pathogen properties. This paper presents some examples of potential impacts of climate change in Germany. Non-cholera Vibrio occur naturally in seawater, but can proliferate significantly in shallow water at elevated temperatures. In the case of Legionella, climate change could lead to temporary or longer-term increased incidences of legionellosis due to the combination of warm and wet weather. Higher temperatures in piped cold water or lower temperatures in piped hot water may also create conditions conducive to higher Legionella concentrations. In nutrient-rich water bodies, increased concentrations of toxigenic cyanobacteria may occur as temperatures rise. Heavy rainfall following storms or prolonged periods of heat and drought can lead to increased levels of human pathogenic viruses being washed into water bodies. Rising temperatures also pose a potential threat to human health through pathogens causing mycoses and facultatively pathogenic micro-organisms: increased infection rates with non-tuberculous mycobacteria or fungi have been documented after extreme weather events.
Collapse
Affiliation(s)
- Susann Dupke
- Robert Koch Institute Centre for Biological Threats and Special PathogensBerlin, Germany
| | - Udo Buchholz
- Robert Koch Institute Department of Infectious Disease Epidemiology Berlin, Germany
| | - Jutta Fastner
- German Environment Agency Department of Drinking Water and Swimming Pool Water Hygiene Berlin, Germany
| | - Christina Förster
- German Environment Agency Department of Drinking Water and Swimming Pool Water Hygiene Bad Elster, Germany
| | - Christina Frank
- Robert Koch Institute Department of Infectious Disease Epidemiology Berlin, Germany
| | - Astrid Lewin
- Robert Koch Institute Department of Infectious Diseases Berlin, Germany
| | - Volker Rickerts
- Robert Koch Institute Department of Infectious Diseases Berlin, Germany
| | | |
Collapse
|
9
|
Chen Q, Ma B, Xu M, Xu H, Yan Z, Wang F, Wang Y, Huang Z, Yin S, Zhao Y, Wang L, Wu H, Liu X. Comparative proteomics study of exosomes in Vibrio harveyi and Vibrio anguillarum. Microb Pathog 2023:106174. [PMID: 37244489 DOI: 10.1016/j.micpath.2023.106174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
Exosomes are a class of extracellular vesicles released by bacteria and contain diverse biomolecules. In this study, we isolated exosomes from Vibrio harveyi and Vibrio anguillarum, which are both serious pathogens in mariculture, using a supercentrifugation method, and the proteins in the exosomes of these two vibrios were analyzed by LC-MS/MS proteomics. Exosome proteins released by V. harveyi and V. anguillarum were different; they not only contained virulence factors (such as lipase and phospholipase in V. harveyi, metalloprotease and hemolysin in V. anguillarum), but also participated in the important life activities of bacteria (such as fatty acid biosynthesis, biosynthesis of antibiotics, carbon metabolism). Subsequently, to verify whether the exosomes participated in bacterial toxicity, after Ruditapes philippinarum was challenged with V. harveyi and V. anguillarum, the corresponding genes of virulence factors from exosomes screened by proteomics were tested by quantitative real-time PCR. All the genes detected were upregulated which suggested that exosomes were involved in vibrio toxicity. The results could provide an effective proteome database for decoding the pathogenic mechanism of vibrios from the exosome perspective.
Collapse
Affiliation(s)
- Qian Chen
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Bangguo Ma
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Mingzhe Xu
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Huiwen Xu
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Zimiao Yan
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Fei Wang
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Yiran Wang
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Zitong Huang
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Shuchang Yin
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Yancui Zhao
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Lei Wang
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Hongyan Wu
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Xiaoli Liu
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, PR China.
| |
Collapse
|
10
|
Mancini ME, Alessiani A, Donatiello A, Didonna A, D’Attoli L, Faleo S, Occhiochiuso G, Carella F, Di Taranto P, Pace L, Rondinone V, Damato AM, Coppola R, Pedarra C, Goffredo E. Systematic Survey of Vibrio spp. and Salmonella spp. in Bivalve Shellfish in Apulia Region (Italy): Prevalence and Antimicrobial Resistance. Microorganisms 2023; 11:microorganisms11020450. [PMID: 36838415 PMCID: PMC9966029 DOI: 10.3390/microorganisms11020450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
The emergence of antimicrobial resistance (AMR) is increasingly common across the globe and aquatic ecosystems could be considered a reservoir of antibiotic-resistant bacteria. This study aimed to determine prevalence and antibiotic susceptibility of the potential pathogenic bacteria Salmonella spp. and Vibrio spp. in bivalve molluscs intended for human consumption, collected over a period of 19 months along the northern coast of Apulia region. The AMR profile was also determined in non-pathogenic Vibrio species, common natural inhabitants of seawater and a useful indicator for the surveillance of AMR in the environment. The current study presents data on the AMR of 5 Salmonella and 126 Vibrio isolates by broth microdilution MIC. Multidrug resistance (MDR) was observed in one S. Typhimurium strain towards sulfamethoxazole, trimethoprim, tetracycline, gentamicin, and ampicillin and in 41.3% of the Vibrio strains, mostly towards sulphonamides, penicillin, and cephems. All Vibrio isolates were sensitive to azithromycin, chloramphenicol, tetracycline, amoxicillin/clavulanic acid, gentamicin, streptomycin, amikacin, and levofloxacin. The AMR phenomenon in the investigated area is not highly worrying but not entirely negligible; therefore, in-depth continuous monitoring is suggested. Results concerning the antibiotic agents without available specific clinical breakpoints could be useful to upgrade the MIC distribution for Vibrio spp. but, also, the establishment of interpretative criteria for environmental species is necessary to obtain a more complete view of this issue.
Collapse
|
11
|
Wilt IK, Demeritte AR, Wang W, Wuest WM. Total Synthesis and Antibacterial Investigations of 1-Hydroxyboivinianin A. ChemMedChem 2022; 17:e202200363. [PMID: 36129386 DOI: 10.1002/cmdc.202200363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/19/2022] [Indexed: 01/14/2023]
Abstract
Synthetic investigations of natural products has been instrumental in the development of novel antibacterial small molecules. 1-hydroxyboivinianin A, a lactone containing phenolic bisabolane isolated from marine sediment, has reported antibacterial activity against the aquatic pathogen Vibrio harveyi. The total synthesis of 1-hydroxyboivinianin A and its enantiomer was completed in a six-step sequence in 42 % overall yield. The synthesis leveraged a key diastereoselective nucleophilic addition with chiral imidazolidinone to establish the benzylic tertiary alcohol and intramolecular Horner-Wadsworth Emmons to furnish the lactone. Both enantiomers were found to have negligible antibacterial activity against a panel of gram-positive and negative bacteria and minimal antifungal activity against phytopathogens. Investigations of a possible in vitro lactone hydrolysis to produce an inactive linear acid led to the discovery of a spontaneous cyclization, suggesting the lactone is resistant to hydrolysis and the lactone is not degrading to produce an inactive species.
Collapse
Affiliation(s)
- Ingrid K Wilt
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - Adrian R Demeritte
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - Weiwei Wang
- Corteva AgriscienceTM, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| | - William M Wuest
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| |
Collapse
|
12
|
Xu H, Zeng YH, Yin WL, Lu HB, Gong XX, Zhang N, Zhang X, Long H, Ren W, Cai XN, Huang AY, Xie ZY. Prevalence of Bacterial Coinfections with Vibrio harveyi in the Industrialized Flow-through Aquaculture Systems in Hainan Province: A Neglected High-Risk Lethal Causative Agent to Hybrid Grouper. Int J Mol Sci 2022; 23:ijms231911628. [PMID: 36232925 PMCID: PMC9570405 DOI: 10.3390/ijms231911628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Vibrio harveyi is one of the most serious bacterial pathogens to aquatic animals worldwide. Evidence is mounting that coinfections caused by multiple pathogens are common in nature and can alter the severity of diseases in marine animals. However, bacterial coinfections involving V. harveyi have received little attention in mariculture. In this study, the results of pathogen isolation indicated that bacterial coinfection was a common and overlooked risk for hybrid groupers (♀ Epinephelus polyphekadion × ♂ E. fuscoguttatus) reared in an industrialized flow-through pattern in Hainan Province. The artificial infection in hybrid groupers revealed that coinfections with V. harveyi strain GDH11385 (a serious lethal causative agent to groupers) and other isolated pathogens resulted in higher mortality (46.67%) than infection with strain GDH11385 alone (33.33%), whereas no mortality was observed in single infection with other pathogens. Furthermore, the intestine, liver and spleen of hybrid groupers are target organs for bacterial coinfections involving V. harveyi. Based on the infection patterns found in this study, we propose that V. harveyi may have a specific spatiotemporal expression pattern of virulence genes when infecting the host. Taken together, bacterial coinfection with V. harveyi is a neglected high-risk lethal causative agent to hybrid groupers in the industrialized flow-through aquaculture systems in Hainan Province.
Collapse
Affiliation(s)
- He Xu
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
- College of Marine Sciences, Hainan University, Haikou 570228, China
| | - Yan-Hua Zeng
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
| | - Wen-Liang Yin
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
- College of Marine Sciences, Hainan University, Haikou 570228, China
| | - Hong-Bin Lu
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
- College of Marine Sciences, Hainan University, Haikou 570228, China
| | - Xiao-Xiao Gong
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
- College of Marine Sciences, Hainan University, Haikou 570228, China
| | - Na Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
- College of Marine Sciences, Hainan University, Haikou 570228, China
| | - Xiang Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
- College of Marine Sciences, Hainan University, Haikou 570228, China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, China
| | - Hao Long
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
| | - Wei Ren
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
- College of Marine Sciences, Hainan University, Haikou 570228, China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, China
| | - Xiao-Ni Cai
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
- College of Marine Sciences, Hainan University, Haikou 570228, China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, China
| | - Ai-You Huang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
- College of Marine Sciences, Hainan University, Haikou 570228, China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, China
| | - Zhen-Yu Xie
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
- College of Marine Sciences, Hainan University, Haikou 570228, China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, China
- Correspondence: ; Tel.: +86-136-4866-9016
| |
Collapse
|
13
|
Sanches-Fernandes GMM, Sá-Correia I, Costa R. Vibriosis Outbreaks in Aquaculture: Addressing Environmental and Public Health Concerns and Preventive Therapies Using Gilthead Seabream Farming as a Model System. Front Microbiol 2022; 13:904815. [PMID: 35898915 PMCID: PMC9309886 DOI: 10.3389/fmicb.2022.904815] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Bacterial and viral diseases in aquaculture result in severe production and economic losses. Among pathogenic bacteria, species belonging to the Vibrio genus are one of the most common and widespread disease-causing agents. Vibrio infections play a leading role in constraining the sustainable growth of the aquaculture sector worldwide and, consequently, are the target of manifold disease prevention strategies. During the early, larval stages of development, Vibrio species are a common cause of high mortality rates in reared fish and shellfish, circumstances under which the host organisms might be highly susceptible to disease preventive or treatment strategies such as vaccines and antibiotics use, respectively. Regardless of host developmental stage, Vibrio infections may occur suddenly and can lead to the loss of the entire population reared in a given aquaculture system. Furthermore, the frequency of Vibrio-associated diseases in humans is increasing globally and has been linked to anthropic activities, in particular human-driven climate change and intensive livestock production. In this context, here we cover the current knowledge of Vibrio infections in fish aquaculture, with a focus on the model species gilthead seabream (Sparus aurata), a highly valuable reared fish in the Mediterranean climatic zone. Molecular methods currently used for fast detection and identification of Vibrio pathogens and their antibiotic resistance profiles are addressed. Targeted therapeutic approaches are critically examined. They include vaccination, phage therapy and probiotics supplementation, which bear promise in supressing vibriosis in land-based fish rearing and in mitigating possible threats to human health and the environment. This literature review suggests that antibiotic resistance is increasing among Vibrio species, with the use of probiotics constituting a promising, sustainable approach to prevent Vibrio infections in aquaculture.
Collapse
Affiliation(s)
- Gracinda M. M. Sanches-Fernandes
- Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| |
Collapse
|
14
|
Qin RX, Velin L, Yates EF, El Omrani O, McLeod E, Tudravu J, Samad L, Woodward A, McClain CD. Building sustainable and resilient surgical systems: A narrative review of opportunities to integrate climate change into national surgical planning in the Western Pacific region. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2022; 22:100407. [PMID: 35243461 PMCID: PMC8881731 DOI: 10.1016/j.lanwpc.2022.100407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Five billion people lack access to surgical care worldwide; climate change is the biggest threat to human health in the 21st century. This review studies how climate change could be integrated into national surgical planning in the Western Pacific region. We searched databases (PubMed, Web of Science, and Global Health) for articles on climate change and surgical care. Findings were categorised using the modified World Health Organisation Health System Building Blocks Framework. 220 out of 2577 records were included. Infrastructure: Operating theatres are highly resource-intensive. Their carbon footprint could be reduced by maximising equipment longevity, improving energy efficiency, and renewable energy use. Service delivery Tele-medicine, outreaches, and avoiding desflurane could reduce emissions. Robust surgical systems are required to adapt to the increasing burden of surgically treated diseases, such as injuries from natural disasters. Finance: Climate change adaptation funds could be mobilised for surgical system strengthening. Information systems: Sustainability should be a key performance indicator for surgical systems. Workforce: Surgical providers could change clinical, institutional, and societal practices. Governance: Planning in surgical care and climate change should be aligned. Climate change mitigation is essential in the regional surgical care scale-up; surgical system strengthening is also necessary for adaptation to climate change.
Collapse
Key Words
- CO2, Carbon dioxide
- Climate change
- DALY, Disability-adjusted life year
- FEMAT, Fiji Emergency Medical Assistance Team
- GHG, Greenhouse gas
- HICs, High-income countries
- HVAC, Heating, ventilation, and air conditioning
- IPCC, Intergovernmental Panel on Climate Change
- LCA, Life-cycle analysis
- LCoGS, Lancet Commission on Global Surgery
- LED, Light-emitting diode
- LMICs, Low- and middle-income countries
- NSOAP, National Surgical, Obstetric, and Anaesthesia Plan
- National health planning
- Natural disasters
- OR, Operating Room
- SOA, Surgical, obstetric, and anaesthesia
- SUD, Single-use device
- Surgical system strengthening
- WASH, Water, sanitation, and hygiene
- Western pacific
- kgCO2e, Kilograms of carbon dioxide equivalent
Collapse
Affiliation(s)
- Rennie X. Qin
- The Program in Global Surgery and Social Change, the Department of Global Health and Social Medicine, Harvard Medical School, 641 Huntington Ave, Boston, MA 02115, USA
| | - Lotta Velin
- Centre for Teaching and Research in Disaster Medicine and Traumatology (KMC), Department of Biomedical and Clinical Sciences, Linköping University, Johannes Magnus väg 11, Linköping 583 30, Sweden
| | - Elizabeth F. Yates
- Center for Surgery and Public Health, Brigham and Women's Hospital, 1620 Tremont St, Boston, MA 02120, USA
| | - Omnia El Omrani
- Faculty of Medicine, Ain Shams University, Ramsis Street, Abbassia Square, Cairo, Egypt
| | - Elizabeth McLeod
- Department of Neonatal and Paediatric Surgery, Royal Children's Hospital, 50 Flemington Rd, Melbourne, VIC 3052, Australia
| | - Jemesa Tudravu
- Ministry of Health and Medical Services of Fiji, Dinem House, 88 Amy St, Suva, Fiji
| | - Lubna Samad
- Center for Essential Surgical and Acute Care, IRD Global, 4th Floor, Woodcraft Building, Plot 3 & 3-A, Sector 47, Korangi Creek Road, Karachi, Pakistan
| | - Alistair Woodward
- School of Population Health, Faculty of Medical and Health Sciences, The University of Auckland, 22-30 Park Ave, Auckland 1023, New Zealand
| | - Craig D. McClain
- The Program in Global Surgery and Social Change, the Department of Global Health and Social Medicine, Harvard Medical School, 641 Huntington Ave, Boston, MA 02115, USA
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
15
|
Ehrhardt JD, Newsome K, Das S, McKenney M, Elkbuli A. Evaluation and Management of Watercraft-Related Injuries for Acute Care Surgeons: Towards Improving Care and Implementing Effective Public Health Prevention Policies. ANNALS OF SURGERY OPEN 2022; 3:e149. [PMID: 37600112 PMCID: PMC10431368 DOI: 10.1097/as9.0000000000000149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/15/2022] [Indexed: 11/27/2022] Open
Abstract
Boating has exposed humans to elemental hazards for centuries. What was once a lifelong craft and time-honored skillset is now, with modern technology, a popular recreational activity. Boating safety has inherent limitations and has been historically challenging to enforce. These circumstances have given way to a rising number of watercraft-associated injuries and fatalities. This review aims to investigate the diagnosis, work-up, and management of watercraft-related injuries, including blunt mechanisms, propeller wounds, water-force trauma, associated marine infections, and submersion injuries, as well as outline gaps in current public health policy on watercraft injuries, potential interventions, and available solutions. Motorboats and personal watercraft differ in size, power modality, and differential risk for injury. Accidents aboard watercraft often share commonalities with motor vehicles and motorcycles, namely: rapid deceleration, ejection, and collision with humans. The complexity of care is added by the austere environment in which many watercraft accidents occur, as well as the added morbidity of drowning and hypothermia. Wounds can also become infected by marine organisms, which require wound care and antimicrobial therapy specific to the aquatic environment in which the injury occurred. The treatment of these patients can be further exacerbated by the prolonged transportation times due to complicated water rescue. There are many measures that can prevent or abate watercraft injuries, but inconsistent regulations and enforcement may impair the success of these interventions. Further research is needed to identify possible solutions to common causes of watercraft injuries, such as inconsistent lifejacket use and bow riding.
Collapse
Affiliation(s)
- John D. Ehrhardt
- From the Department of Surgery, Kendall Regional Medical Center, Miami, Florida, USA
| | - Kevin Newsome
- Department of Surgery, Division of Trauma and Surgical Critical Care, Kendall Regional Medical Center, Miami, Florida, USA
| | - Snigdha Das
- Department of Surgery, Division of Trauma and Surgical Critical Care, Kendall Regional Medical Center, Miami, Florida, USA
| | - Mark McKenney
- From the Department of Surgery, Kendall Regional Medical Center, Miami, Florida, USA
- Department of Surgery, Division of Trauma and Surgical Critical Care, Kendall Regional Medical Center, Miami, Florida, USA
- University of South Florida, Tampa, Florida, USA
| | - Adel Elkbuli
- Department of Surgery, Division of Trauma and Surgical Critical Care, Kendall Regional Medical Center, Miami, Florida, USA
| |
Collapse
|
16
|
Yu G, Yu H, Yang Q, Wang J, Fan H, Liu G, Wang L, Bello BK, Zhao P, Zhang H, Dong J. Vibrio harveyi infections induce production of proinflammatory cytokines in murine peritoneal macrophages via activation of p38 MAPK and NF-κB pathways, but reversed by PI3K/AKT pathways. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104292. [PMID: 34656643 DOI: 10.1016/j.dci.2021.104292] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/09/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Vibrio harveyi is a zoonotic pathogen that can infect humans through wounds and cause severe inflammatory responses. Previous studies have reported that the Toll like receptors (TLR) mediated MAPK, AKT and NF-κB signaling pathways are involved in innate immune system resistance to pathogen invasion. However, the molecular mechanism of these pathways, as well as their involvement in V. harveyi infection remains elusive. This study established a V. harveyi infection model using murine peritoneal macrophages (PMs). Various techniques, including western blotting, ELISA, RT-qPCR, immunofluorescence, inhibition assays, were used to explore the roles of TLRs, MAPK, AKT and NF-κB signaling pathways in V. harveyi-induced inflammatory responses. ELISA assays showed that V. harveyi infection triggered proinflammatory cytokines secretion in PMs. RT-qPCR and inhibition assays showed that TLR2 participated in V. harveyi infection and up-regulated the proinflammatory cytokines secretion in murine PMs. Western blotting data showed that the phosphorylation of p38, JNK, AKT, and NF-κB p65 were significantly increased partly mediated by TLR2. In addition, immunofluorescence assays revealed that the NF-κB p65 translocated into nucleus in response to V. harveyi infection. The secretion of IL-1β, IL-6, IL-12, and TNF-α were considerably reduced when the p38 MAPK and NF-κB signaling pathways were blocked, whereas blocking of AKT significantly increased the expression of IL-1β, IL-6, IL-12, and TNF-α. These findings indicate that V. harveyi infection induces inflammatory responses in murine PMs via activation of p38 MAPK and NF-κB pathways, which are partly mediated by TLR2, but are inhibited by PI3K/AKT pathways.
Collapse
Affiliation(s)
- Guili Yu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Hong Yu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Qiankun Yang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jinxin Wang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Hui Fan
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Gang Liu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Lei Wang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; Department of Vascular Surgery, The First People's Hospital of Lianyungang, Lianyungang, 222002, China
| | | | - Panpan Zhao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, PR China.
| | - Honggang Zhang
- Department of Vascular Surgery, The First People's Hospital of Lianyungang, Lianyungang, 222002, China.
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
17
|
Vibrio spp.: Life Strategies, Ecology, and Risks in a Changing Environment. DIVERSITY 2022. [DOI: 10.3390/d14020097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vibrios are ubiquitous bacteria in aquatic systems, especially marine ones, and belong to the Gammaproteobacteria class, the most diverse class of Gram-negative bacteria. The main objective of this review is to update the information regarding the ecology of Vibrio species, and contribute to the discussion of their potential risk in a changing environment. As heterotrophic organisms, Vibrio spp. live freely in aquatic environments, from marine depths to the surface of the water column, and frequently may be associated with micro- and macroalgae, invertebrates, and vertebrates such as fish, or live in symbiosis. Some Vibrio spp. are pathogenic to humans and animals, and there is evidence that infections caused by vibrios are increasing in the world. This rise may be related to global changes in human behavior (increases in tourism, maritime traffic, consumption of seafood, aquaculture production, water demand, pollution), and temperature. Most likely in the future, Vibrio spp. in water and in seafood will be monitored in order to safeguard human and animal health. Regulators of the microbiological quality of water (marine and freshwater) and food for human and animal consumption, professionals involved in marine and freshwater production chains, consumers and users of aquatic resources, and health professionals will be challenged to anticipate and mitigate new risks.
Collapse
|
18
|
Hecht J, Borowiak M, Fortmeier B, Dikou S, Gierer W, Klempien I, Nekat J, Schaefer S, Strauch E. Case Report: Vibrio fluvialis isolated from a wound infection after a piercing trauma in the Baltic Sea. Access Microbiol 2022; 4:000312. [PMID: 35252751 PMCID: PMC8895609 DOI: 10.1099/acmi.0.000312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
Vibrio spp. are Gram-negative bacteria found in marine ecosystems. Non-cholera Vibrio spp. can cause gastrointestinal infections and can also lead to wound infections through exposure to contaminated seawater. Vibrio infections are increasingly documented from the Baltic Sea due to extended warm weather periods. We describe the first isolation of Vibrio fluvialis from a wound infection acquired by an impalement injury in the shallow waters of the Baltic Sea. The severe infection required amputation of the third toe. Whole genome sequencing of the isolate was performed and revealed a genome consisting of two circular chromosomes with a size of 1.57 and 3.24 Mb.
Collapse
Affiliation(s)
- Juliane Hecht
- Unfallchirurgie, Helios Hanseklinikum Stralsund, Große Parower Straße 47-53 18435, Stralsund, Germany
| | - Maria Borowiak
- German Federal Institute for Risk Assessment, BfR, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Bernhard Fortmeier
- Unfallchirurgie, Helios Hanseklinikum Stralsund, Große Parower Straße 47-53 18435, Stralsund, Germany
| | - Salah Dikou
- Unfallchirurgie, Helios Hanseklinikum Stralsund, Große Parower Straße 47-53 18435, Stralsund, Germany
| | - Wolfgang Gierer
- MVZ Limbach Vorpommern Rügen, Große Parower Str. 47-53, 18435 Stralsund, Germany
| | - Ingo Klempien
- Klinische Hygiene und Infektiologie, Helios Hanseklinikum Stralsund, Große Parower Straße 47-53 18435 Stralsund, Germany
| | - Jonas Nekat
- German Federal Institute for Risk Assessment, BfR, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Stephan Schaefer
- MVZ Limbach Vorpommern Rügen, Große Parower Str. 47-53, 18435 Stralsund, Germany
| | - Eckhard Strauch
- German Federal Institute for Risk Assessment, BfR, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
- *Correspondence: Eckhard Strauch,
| |
Collapse
|
19
|
Lattos A, Chaligiannis I, Papadopoulos D, Giantsis IA, Petridou EI, Vafeas G, Staikou A, Michaelidis B. How Safe to Eat Are Raw Bivalves? Host Pathogenic and Public Health Concern Microbes within Mussels, Oysters, and Clams in Greek Markets. Foods 2021; 10:2793. [PMID: 34829074 PMCID: PMC8623680 DOI: 10.3390/foods10112793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/07/2021] [Accepted: 11/11/2021] [Indexed: 12/27/2022] Open
Abstract
Raw-bivalves consumption is a wide trend in Mediterranean countries. Despite the unambiguous nutritional value of seafood, raw consumption of bivalves may involve risks that could pose a significant threat to consumers' health. Their filter-feeding behavior is responsible for the potential hosting of a wide variety of microorganisms, either pathogenic for the bivalves or public health threats. Under this prism, the current study was conducted in an effort to evaluate the risk of eating raw bivalves originating from the two biggest seafood markets in Thessaloniki, the largest production area of bivalves in Greece. Both microbiological and molecular methodologies were applied in order to assess the presence of various harmful microbes, including noroviruses, Bonamia, Marteilia, Esherichia coli, Salmonella, and Vibrio. Results indicated the presence of several Vibrio strains in the analyzed samples, of which the halophilic Vibrio harveyi was verified by 16S rRNA sequencing; other than this, no enteropathogenic Vibrio spp. was detected. Furthermore, although Esherichia coli was detected in several samples, it was mostly below the European Union (EU) legislation thresholds. Interestingly, the non-target Photobacterium damselae was also detected, which is associated with both wound infections in human and aquatic animals. Regarding host pathogenic microorganisms, apart from Vibrio harveyi, the protozoan parasite Marteilia refrigens was identified in oysters, highlighting the continuous infection of this bivalve in Greece. In conclusion, bivalves can be generally characterized as a safe-to-eat raw food, hosting more bivalve pathogenic microbes than those of public health concern.
Collapse
Affiliation(s)
- Athanasios Lattos
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.C.); (D.P.); (B.M.)
- Environmental Control and Research Laboratory, Region of Central Macedonia, 54625 Thessaloniki, Greece;
| | - Ilias Chaligiannis
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.C.); (D.P.); (B.M.)
- Hellenic Agricultural Organization-DEMETER, Veterinary Research Institute of Thessaloniki, Campus of Thermi, 57001 Thermi, Greece;
| | - Dimitrios Papadopoulos
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.C.); (D.P.); (B.M.)
- Environmental Control and Research Laboratory, Region of Central Macedonia, 54625 Thessaloniki, Greece;
| | - Ioannis A. Giantsis
- Environmental Control and Research Laboratory, Region of Central Macedonia, 54625 Thessaloniki, Greece;
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
| | - Evanthia I. Petridou
- Laboratory of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, School of Health Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - George Vafeas
- Hellenic Agricultural Organization-DEMETER, Veterinary Research Institute of Thessaloniki, Campus of Thermi, 57001 Thermi, Greece;
| | - Alexandra Staikou
- Environmental Control and Research Laboratory, Region of Central Macedonia, 54625 Thessaloniki, Greece;
- Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.C.); (D.P.); (B.M.)
- Environmental Control and Research Laboratory, Region of Central Macedonia, 54625 Thessaloniki, Greece;
| |
Collapse
|
20
|
Brehm TT, Berneking L, Sena Martins M, Dupke S, Jacob D, Drechsel O, Bohnert J, Becker K, Kramer A, Christner M, Aepfelbacher M, Schmiedel S, Rohde H. Heatwave-associated Vibrio infections in Germany, 2018 and 2019. ACTA ACUST UNITED AC 2021; 26. [PMID: 34651572 PMCID: PMC8518310 DOI: 10.2807/1560-7917.es.2021.26.41.2002041] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Vibrio spp. are aquatic bacteria that prefer warm seawater with moderate salinity. In humans, they can cause gastroenteritis, wound infections, and ear infections. During the summers of 2018 and 2019, unprecedented high sea surface temperatures were recorded in the German Baltic Sea. Aim We aimed to describe the clinical course and microbiological characteristics of Vibrio infections in Germany in 2018 and 2019. Methods We performed an observational retrospective multi-centre cohort study of patients diagnosed with domestically-acquired Vibrio infections in Germany in 2018 and 2019. Demographic, clinical, and microbiological data were assessed, and isolates were subjected to whole genome sequencing and antimicrobial susceptibility testing. Results Of the 63 patients with Vibrio infections, most contracted the virus between June and September, primarily in the Baltic Sea: 44 (70%) were male and the median age was 65 years (range: 2–93 years). Thirty-eight patients presented with wound infections, 16 with ear infections, six with gastroenteritis, two with pneumonia (after seawater aspiration) and one with primary septicaemia. The majority of infections were attributed to V. cholerae (non–O1/non-O139) (n = 30; 48%) or V. vulnificus (n = 22; 38%). Phylogenetic analyses of 12 available isolates showed clusters of three identical strains of V. vulnificus, which caused wound infections, suggesting that some clonal lines can spread across the Baltic Sea. Conclusions During the summers of 2018 and 2019, severe heatwaves facilitated increased numbers of Vibrio infections in Germany. Since climate change is likely to favour the proliferation of these bacteria, a further increase in Vibrio-associated diseases is expected.
Collapse
Affiliation(s)
- Thomas Theo Brehm
- Division of Infectious Diseases, I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,These authors contributed equally to this article and share first authorship
| | - Laura Berneking
- These authors contributed equally to this article and share first authorship.,Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Meike Sena Martins
- Institut für Meereskunde, Centrum für Erdsystemwissenschaften und Nachhaltigkeit, University Hamburg, Hamburg, Germany
| | - Susann Dupke
- Robert Koch Institute, ZBS 2: Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms, Berlin, Germany
| | - Daniela Jacob
- Robert Koch Institute, ZBS 2: Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms, Berlin, Germany
| | | | - Jürgen Bohnert
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Karsten Becker
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Axel Kramer
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Martin Christner
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Aepfelbacher
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Schmiedel
- Division of Infectious Diseases, I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Holger Rohde
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | -
- The members of the Study Group are listed at the end of the article
| |
Collapse
|
21
|
De Silva LADS, Wickramanayake MVKS, Heo GJ. Occurrence of Virulence and Antimicrobial Resistance Determinants in Vibrio harveyi Isolated from Marine Food Fish Cultured in Korea. Microb Drug Resist 2021; 28:255-265. [PMID: 34569863 DOI: 10.1089/mdr.2020.0618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Vibrio harveyi is a significant cause of infection in both marine animals and humans. It has been reported frequently in seafood-borne infections worldwide. This study was conducted to determine the potential health impact of the V. harveyi isolated from marine food fish cultured in Korea concerning their virulence and antimicrobial resistance. A total of 49 V. harveyi samples were isolated by biochemical tests and multiplex PCR. Phenotypic detection of virulence factors resulted DNase activity (81.63%), hemolysis (α = 75.51% and β = 12.25), gelatinase activity (71.43%), protease production (71.43%), phospholipase activity (65.31%), and lipase production (34.69%). Virulence genes, including VPI, tlh, tdh, toxR, VAC, and ctxAB, were detected in 57.14%, 44.90%, 36.73%, 22.45%, 12.24%, and 8.16% of the isolates, respectively. Resistance to ampicillin (77.55%), oxacillin (69.39%), nalidixic acid (53.06%), amoxicillin (46.94%), oxytetracycline (46.94%), colistin sulfate (34.69%), fosfomycin (34.69%), chloramphenicol (32.65%), streptomycin (32.65%), cephalothin (28.57%), oxytetracycline (26.53%), ceftriaxone (20.41%), erythromycin (14.29%), and cefoxitin (12.24%) was detected in disc diffusion assay. Most of the isolates were classified as multidrug resistant as they scored multiple antimicrobial resistance index ≥0.2. Furthermore, antimicrobial resistance genes tetB, qnrA, intI1 (Class 1 integron integrase), aac(6')-Ib, blaSHV, blaCTX-M, strA-strB, tetA, aphAI-IAB, qnrC, qnrS, and blaTEM were found in 81.63%, 67.35%, 61.22%, 46.94%, 44.90%, 44.90%, 36.73%, 18.37%, 10.20%, 10.20%, 8.16% and 6.12% of the isolates, respectively. In conclusion, the development of antimicrobial resistance among V. harveyi will ultimately reduce the efficacy of antimicrobials used for treating and can favor the development of more virulent V. harveyi strains.
Collapse
Affiliation(s)
- Liyana Arachchilage Dinithi S De Silva
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | | | - Gang-Joon Heo
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
22
|
Brehm TT, Dupke S, Hauk G, Fickenscher H, Rohde H, Berneking L. [Non-cholera Vibrio species - currently still rare but growing danger of infection in the North Sea and the Baltic Sea]. Internist (Berl) 2021; 62:876-886. [PMID: 34269833 PMCID: PMC8283098 DOI: 10.1007/s00108-021-01086-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND The abundance of non-cholera Vibrio spp. in the aquatic environment shows a positive correlation with water temperatures. Therefore, climate change has an important impact on the epidemiology of human infections with these pathogens. In recent years large outbreaks have been repeatedly observed during the summer months in temperate climate zones. OBJECTIVE To inform medical professionals about the potentially life-threatening diseases caused by non-cholera Vibrio spp. MATERIAL AND METHODS Review of the current literature on infections with non-cholera Vibrio spp. in general and on the epidemiological situation in Germany in particular. RESULTS Non-cholera Vibrio spp. predominantly cause wound and ear infections after contact with contaminated seawater and gastroenteritis after consumption of undercooked seafood. As there have not been mandatory notification systems for these pathogens in Germany up to March 2020, a high number of unreported cases must be assumed. Immunosuppressed and chronically ill patients have a much higher risk for severe courses of diseases. If an infection with non-cholera Vibrio spp. is suspected anti-infective treatment should be promptly initiated and surgical cleansing is often necessary for wound and soft tissue infections. CONCLUSION Due to the ongoing global warming an increased incidence of human infections with non-cholera Vibrio spp. must be expected in the future. Medical professionals should be aware of these bacterial pathogens and the potentially life-threatening infections in order to enable timely diagnostics and treatment.
Collapse
Affiliation(s)
- Thomas Theo Brehm
- I. Medizinische Klinik und Poliklinik, Sektion Infektiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Deutschland.
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hamburg-Lübeck-Borstel-Riems, .
| | - Susann Dupke
- Robert Koch Institut, ZBS 2: Hochpathogene mikrobielle Erreger, Berlin, Deutschland
| | - Gerhard Hauk
- Landesamt für Gesundheit und Soziales Mecklenburg-Vorpommern, Abteilung Gesundheit, Dezernat Umwelthygiene, Umweltmedizin, Rostock, Deutschland
| | - Helmut Fickenscher
- Institut für Infektionsmedizin, Christian-Albrechts-Universität zu Kiel und Universitätsklinikum Schleswig-Holstein, Kiel, Deutschland
| | - Holger Rohde
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hamburg-Lübeck-Borstel-Riems
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| | - Laura Berneking
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| |
Collapse
|
23
|
Abioye OE, Osunla AC, Okoh AI. Molecular Detection and Distribution of Six Medically Important Vibrio spp. in Selected Freshwater and Brackish Water Resources in Eastern Cape Province, South Africa. Front Microbiol 2021; 12:617703. [PMID: 34149632 PMCID: PMC8208477 DOI: 10.3389/fmicb.2021.617703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/29/2021] [Indexed: 01/22/2023] Open
Abstract
Water resources contaminated with pathogenic Vibrio species are usually a source of devastating infection outbreaks that have been a public health concern in both developed and developing countries over the decades. The present study assessed the prevalence of six medically significant Vibrio species in some water resources in Eastern Cape Province, South Africa for 12 months. We detected vibrios in all the 194 water samples analyzed using polymerase chain reaction (PCR). The prevalence of Vibrio cholerae, Vibrio mimicus, Vibrio fluvialis, Vibrio vulnificus, Vibrio alginolyticus, and Vibrio parahaemolyticus in freshwater samples was 34, 19, 9, 2, 3, and 2%, and that in brackish water samples was 44, 28, 10, 7, 46, and 51%, respectively. The population of the presumptive Vibrio spp. isolated from freshwater (628) and brackish water (342) samples that were confirmed by PCR was 79% (497/628) and 85% (291/342), respectively. Twenty-two percent of the PCR-confirmed Vibrio isolates from freshwater (n = 497) samples and 41% of the PCR-confirmed Vibrio isolates from brackish water samples (n = 291) fall among the Vibrio species of interest. The incidences of V. cholerae, V. mimicus, V. fluvialis, V. vulnificus, V. alginolyticus, and V. parahaemolyticus amidst these Vibrio spp. of interest that were recovered from freshwater samples were 75, 14, 4, 6, 1, and 1%, whereas those from brackish water samples were 24, 7, 3, 3, 47, and 18%, respectively. Our observation during the study suggests pollution as the reason for the unusual isolation of medically important vibrios in winter. Correlation analysis revealed that temperature drives the frequency of isolation, whereas salinity drives the composition of the targeted Vibrio species at our sampling sites. The finding of the study is of public health importance going by the usefulness of the water resources investigated. Although controlling and preventing most of the factors that contribute to the prevalence of medically important bacteria, such as Vibrio species, at the sampling points might be difficult, regular monitoring for creating health risk awareness will go a long way to prevent possible Vibrio-related infection outbreaks at the sampling sites and their immediate environment.
Collapse
Affiliation(s)
- Oluwatayo E Abioye
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa.,Department of Microbiology, Obafemi Awolowo University, Ife, Nigeria
| | - Ayodeji Charles Osunla
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa.,Department of Microbiology, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa.,Department of Environmental Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
24
|
Chen J, Lu Y, Ye X, Emam M, Zhang H, Wang H. Current advances in Vibrio harveyi quorum sensing as drug discovery targets. Eur J Med Chem 2020; 207:112741. [PMID: 32871343 DOI: 10.1016/j.ejmech.2020.112741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/16/2020] [Accepted: 07/26/2020] [Indexed: 12/25/2022]
Abstract
Vibrio harveyi is a marine bacterial pathogen which infects a wide range of marine organisms and results in severe loss. Antibiotics have been used for prophylaxis and treatment of V. harveyi infection. However, antibiotic resistance is a major public health threat to both human and animals. Therefore, there is an urgent need for novel antimicrobial agents with new modes of action. In V. harveyi, many virulence factors production and bioluminescence formation depend on its quorum sensing (QS) network. Therefore, the QS system has been widely investigated as an effective potential target for the treatment of V. harveyi infection. This perspective focuses on the quorum sensing inhibitors (QSIs) of V. harveyi QS systems (LuxM/N, LuxS/PQ, and CqsA/S) and evaluates medicinal chemistry strategies.
Collapse
Affiliation(s)
- Jianwei Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yaojia Lu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mahmoud Emam
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China; Phytochemistry and Plant Systematics Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Huawei Zhang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|