1
|
Ma Y, Jiang J, Han Y, Chen Y, Diao Z, Huang T, Feng L, Chang L, Wang D, Zhang Y, Li J, Zhang R. Comparison of analytical sensitivity of DNA-based and RNA-based nucleic acid amplification tests for reproductive tract infection pathogens: implications for clinical applications. Microbiol Spectr 2023; 11:e0149723. [PMID: 37606383 PMCID: PMC10581061 DOI: 10.1128/spectrum.01497-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/01/2023] [Indexed: 08/23/2023] Open
Abstract
Currently, DNA-based nucleic acid amplification tests (NAATs) and RNA-based NAATs are employed to detect reproductive tract infection (RTI) pathogens including Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG), and Ureaplasma urealyticum (UU). Although evaluations of DNA-based NAATs have already existed, the comparison of the two methods is scarce. Thus, we compared the limits of detection (LODs) of DNA-based and RNA-based NAATs on the same experimental conditions. Inactivated culture supernatants of CT, NG, and UU with determined pathogen DNA and RNA load were used to evaluate LODs of seven DNA kits and one RNA kit. The LODs of the seven DNA kits for CT, NG, and UU ranged between 38-1,480, 94-20,011, and 132-2,011 copies/mL, respectively. As for RNA kits, they could detect samples at RNA concentrations of 3,116, 2,509, and 2,896 copies/mL, respectively. The RNA concentrations of CT, NG, and UU were 40, 885, and 42 times that of corresponding pathogen DNA concentrations in the employed supernatants, so RNA kits could detect pathogen DNA concentrations as low as 78 copies/mL, 3 copies/mL, and 69 copies/mL, respectively, but the level of pathogen load that the RNA tests could detect was primarily dependent on the infectious phase and transcriptional level of RNA. Thus, a schematic of bacterial dynamics during the period of reproductive tract infections was provided, which suggests that in terms of the analytical sensitivity of pathogen detection, RNA tests are more suitable for detecting active infection and recovery phase, while DNA tests are more suitable for detection in the early stage of infection. IMPORTANCE Reproductive tract infections have considerable effects on the health of humans. CT, NG , and UU are common pathogens. Although evaluation of DNA-based tests has already existed, the comparison between DNA-based and RNA-based tests is rare. Therefore, this study compared the limits of detection of the two tests on the same experimental conditions. Results suggested that most DNA-based NAATs could detect CT, NG, and UU at DNA concentrations lower than 1,000 copies/mL, while RNA-based NAATs could detect bacteria at RNA concentrations around 3,000 copies/mL. Considering the copy number of RNA per bacterium is dynamic through the growth cycle, further comparison is combined with a schematic of bacterial dynamics. Results suggested that in terms of the analytical sensitivity of pathogen detection, RNA tests are more suitable for detecting active infection and recovery phase, while DNA tests are more suitable for detection in the early stage of infection.
Collapse
Affiliation(s)
- Yu Ma
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Jian Jiang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Yanxi Han
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Yuqing Chen
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Zhenli Diao
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Tao Huang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Lei Feng
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Lu Chang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Duo Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Yuanfeng Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Rui Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| |
Collapse
|
2
|
Feng J, Cui X, Du B, Zhao H, Feng Y, Cui J, Yan C, Gan L, Fan Z, Fu T, Xu Z, Yu Z, Zhang R, Du S, Tian Z, Zhang Q, Xue G, Yuan J. Detection and Quantification of Klebsiella pneumoniae in Fecal Samples Using Digital Droplet PCR in Comparison with Real-Time PCR. Microbiol Spectr 2023; 11:e0424922. [PMID: 37306605 PMCID: PMC10433836 DOI: 10.1128/spectrum.04249-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
This study aimed to develop a rapid and sensitive droplet digital PCR (ddPCR) assay for the specific detection of Klebsiella pneumoniae in fecal samples, and to evaluate its application in the clinic by comparison with real-time PCR assay and conventional microbial culture. Specific primers and a probe targeting the K. pneumoniae hemolysin (khe) gene were designed. Thirteen other pathogens were used to evaluate the specificity of the primers and probe. A recombinant plasmid containing the khe gene was constructed and used to assess the sensitivity, repeatability, and reproducibility of the ddPCR. Clinical fecal samples (n = 103) were collected and tested by the ddPCR, real-time PCR, and conventional microbial culture methods. The detection limit of ddPCR for K. pneumoniae was 1.1 copies/μL, about a 10-fold increase in sensitivity compared with real-time PCR. The ddPCR was negative for the 13 pathogens other than K. pneumoniae, confirming its high specificity. Clinical fecal samples gave a higher rate of positivity in the K. pneumoniae ddPCR assay than in analysis by real-time PCR or conventional culture. ddPCR also showed less inhibition by the inhibitor in fecal sample than real-time PCR. Thus, we established a sensitive and effective ddPCR-based assay method for K. pneumoniae. It could be a useful tool for K. pneumoniae detection in feces and may serve as a reliable method to identify causal pathogens and help guide treatment decisions. IMPORTANCE Klebsiella pneumoniae can cause a range of illnesses and has a high colonization rate in the human gut, making it crucial to develop an efficient method for detecting K. pneumoniae in fecal samples.
Collapse
Affiliation(s)
- Junxia Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Xiaohu Cui
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Bing Du
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Hanqing Zhao
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Yanling Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Jinghua Cui
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Chao Yan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Lin Gan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Zheng Fan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Tongtong Fu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Ziying Xu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Zihui Yu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Rui Zhang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Shuheng Du
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Ziyan Tian
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Qun Zhang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Guanhua Xue
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Jing Yuan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
4
|
Xiao F, Qu Q, Zou M, Su F, Wu H, Sun Y, Zhou M, Zhao F, Yao Y, Abudushalamu G, Chen Y, Zhang C, Fan X, Wu G. Detection of Ureaplasma urealyticum by Catalytic Hairpin Assembly Combined with a Lateral Flow Immunoassay Strip. ACS OMEGA 2022; 7:33830-33836. [PMID: 36188314 PMCID: PMC9520684 DOI: 10.1021/acsomega.2c02457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Ureaplasma urealyticum is a common genital mycoplasma in men and women, which can cause reproductive tract infection and infertility, and is also related to adverse pregnancy outcomes and neonatal diseases. Pathogen culture and polymerase chain reaction (PCR) are the main methods for the diagnosis of U. urealyticum. However, pathogen culture takes too long, and PCR requires professional personnel and sophisticated instruments. Here, we report a simple, convenient, sensitive, and specific detection method, which combines catalytic hairpin assembly with a lateral flow immunoassay strip. Only a water bath and a fluorescence reader are needed to detect the results in 30 min. We can realize the point-of-care testing of U. urealyticum by this method. To verify this method, we selected 10 clinical samples for testing, and the test results were exactly the same as the clinical report.
Collapse
Affiliation(s)
- Feng Xiao
- Diagnostics
Department, Medical School of Southeast
University, Nanjing 210009, People’s Republic of China
| | - Qingrong Qu
- Department
of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Mingyuan Zou
- Diagnostics
Department, Medical School of Southeast
University, Nanjing 210009, People’s Republic of China
| | - Feiya Su
- Diagnostics
Department, Medical School of Southeast
University, Nanjing 210009, People’s Republic of China
| | - Huina Wu
- Diagnostics
Department, Medical School of Southeast
University, Nanjing 210009, People’s Republic of China
| | - Yan Sun
- Diagnostics
Department, Medical School of Southeast
University, Nanjing 210009, People’s Republic of China
| | - Meiling Zhou
- Diagnostics
Department, Medical School of Southeast
University, Nanjing 210009, People’s Republic of China
| | - Fengfeng Zhao
- Diagnostics
Department, Medical School of Southeast
University, Nanjing 210009, People’s Republic of China
- Zhongda
Hospital, Center of Clinical Laboratory Medicine, Medical School, Southeast University, Nanjing 210009, People’s Republic of China
| | - Yuming Yao
- Diagnostics
Department, Medical School of Southeast
University, Nanjing 210009, People’s Republic of China
| | - Gulinaizhaer Abudushalamu
- Diagnostics
Department, Medical School of Southeast
University, Nanjing 210009, People’s Republic of China
| | - Yaya Chen
- Diagnostics
Department, Medical School of Southeast
University, Nanjing 210009, People’s Republic of China
| | - Chen Zhang
- Zhongda
Hospital, Center of Clinical Laboratory Medicine, Medical School, Southeast University, Nanjing 210009, People’s Republic of China
| | - Xiaobo Fan
- Diagnostics
Department, Medical School of Southeast
University, Nanjing 210009, People’s Republic of China
| | - Guoqiu Wu
- Diagnostics
Department, Medical School of Southeast
University, Nanjing 210009, People’s Republic of China
- Zhongda
Hospital, Center of Clinical Laboratory Medicine, Medical School, Southeast University, Nanjing 210009, People’s Republic of China
- Jiangsu
Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing 210009, People’s Republic
of China
| |
Collapse
|
5
|
Ishak A, AlRawashdeh MM, Esagian SM, Nikas IP. Diagnostic, Prognostic, and Therapeutic Value of Droplet Digital PCR (ddPCR) in COVID-19 Patients: A Systematic Review. J Clin Med 2021; 10:5712. [PMID: 34884414 PMCID: PMC8658157 DOI: 10.3390/jcm10235712] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023] Open
Abstract
Accurate detection of SARS-CoV-2, the pathogen causing the global pandemic of COVID-19, is essential for disease surveillance and control. Quantitative reverse transcription PCR (RT-qPCR) is considered the reference standard test for the diagnosis of SARS-CoV-2 by the World Health Organization and Centers for Disease Control and Prevention. However, its limitations are a prompt for a more accurate assay to detect SARS-CoV-2, quantify its levels, and assess the prognosis. This article aimed to systematically review the literature and assess the diagnostic performance of droplet digital PCR (ddPCR), also to evaluate its potential role in prognosis and management of COVID-19 patients. PubMed and Scopus databases were searched to identify relevant articles published until 13 July 2021. An additional PubMed search was performed on 21 October 2021. Data from the 39 eligible studies were extracted and an overall 3651 samples from 2825 patients and 145 controls were used for our qualitative analysis. Most studies reported ddPCR was more accurate than RT-qPCR in detecting and quantifying SARS-CoV-2 levels, especially in patients with low viral loads. ddPCR was also found highly effective in quantifying SARS-CoV-2 RNAemia levels in hospitalized patients, monitoring their disease course, and predicting their response to therapy. These findings suggest ddPCR could serve as a complement or alternative SARS-CoV-2 tool with emerging diagnostic, prognostic, and therapeutic value, especially in hospital settings. Additional research is still needed to standardize its laboratory protocols, also to accurately assess its role in monitoring COVID-19 therapy response and in identifying SARS-CoV-2 emerging variants.
Collapse
Affiliation(s)
- Angela Ishak
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus; (A.I.); (M.M.A.)
| | - Mousa M. AlRawashdeh
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus; (A.I.); (M.M.A.)
| | - Stepan M. Esagian
- Jacobi Medical Center, Department of Medicine, Albert Einstein College of Medicine, The Bronx, New York, NY 10461, USA;
| | - Ilias P. Nikas
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus; (A.I.); (M.M.A.)
| |
Collapse
|