1
|
Sakalauskienė GV, Malcienė L, Stankevičius E, Radzevičienė A. Unseen Enemy: Mechanisms of Multidrug Antimicrobial Resistance in Gram-Negative ESKAPE Pathogens. Antibiotics (Basel) 2025; 14:63. [PMID: 39858349 PMCID: PMC11762671 DOI: 10.3390/antibiotics14010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Multidrug antimicrobial resistance (AMR) represents a formidable challenge in the therapy of infectious diseases, triggered by the particularly concerning gram-negative Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE) pathogens. Designated as a "priority" in 2017, these bacteria continue to pose a significant threat in 2024, particularly during the worldwide SARS-CoV-2 pandemic, where coinfections with ESKAPE members contributed to worsened patient outcomes. The declining effectiveness of current treatments against these pathogens has led to an increased disease burden and an increase in mortality rates globally. This review explores the sophisticated mechanisms driving AMR in gram-negative ESKAPE bacteria, focusing on Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Enterobacter spp. Key bacterial mechanisms contributing to resistance include limitations in drug uptake, production of antibiotic-degrading enzymes, alterations in drug target sites, and enhanced drug efflux systems. Comprehending these pathways is vital for formulating innovative therapeutic strategies and tackling the ongoing threat posed by these resistant pathogens.
Collapse
Affiliation(s)
- Giedrė Valdonė Sakalauskienė
- Institute of Physiology and Pharmacology, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.M.); (E.S.); (A.R.)
| | | | | | | |
Collapse
|
2
|
Beig M, Parvizi E, Navidifar T, Bostanghadiri N, Mofid M, Golab N, Sholeh M. Geographical mapping and temporal trends of Acinetobacter baumannii carbapenem resistance: A comprehensive meta-analysis. PLoS One 2024; 19:e0311124. [PMID: 39680587 DOI: 10.1371/journal.pone.0311124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/04/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Carbapenem-resistant Acinetobacter baumannii (CRAB) is of critical concern in healthcare settings, leading to limited treatment options. In this study, we conducted a comprehensive meta-analysis to assess the prevalence of CRAB by examining temporal, geographic, and bias-related variations. METHODS We systematically searched prominent databases, including Scopus, PubMed, Web of Science, and EMBASE. Quality assessment was performed using the JBI checklist. Subgroup analyses were performed based on the COVID-19 timeframes, years, countries, continents, and bias levels, antimicrobial susceptivity test method and guidelines. RESULTS Our comprehensive meta-analysis, which included 795 studies across 80 countries from 1995 to 2023, revealed a surge in carbapenem resistance among A. baumannii, imipenem (76.1%), meropenem (73.5%), doripenem (73.0%), ertapenem (83.7%), and carbapenems (74.3%). Temporally, 2020-2023 witnessed significant peaks, particularly in carbapenems (81.0%) and meropenem (80.7%), as confirmed by meta-regression, indicating a steady upward trend. CONCLUSION This meta-analysis revealed an alarmingly high resistance rate to CRAB as a global challenge, emphasizing the urgent need for tailored interventions. Transparency, standardized methodologies, and collaboration are crucial for the accurate assessment and maintenance of carbapenem efficacy.
Collapse
Affiliation(s)
- Masoumeh Beig
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Elnaz Parvizi
- Department of Microbiology, Science and Research Branch, Islamic Azad University, Fars, Iran
| | - Tahereh Navidifar
- Shoushtar Faculty of Medical Sciences, Department of Basic Sciences, Shoushtar, Iran
| | - Narjes Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Mofid
- School of Medicine, Hamadan University of Medical Science, Hamadan, Iran
| | - Narges Golab
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
3
|
Abdinia FS, Javadi K, Rajabnia M, Ferdosi-Shahandashti E. A Comprehensive Study on the Distribution of Integrons and Their Gene Cassettes in Clinical Isolates. DNA Cell Biol 2024; 43:579-595. [PMID: 39419631 DOI: 10.1089/dna.2024.0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Antibiotic resistance is a significant global health concern, leading to increased morbidity, mortality, and health care costs. Integrons are genetic elements that could acquire and express gene cassettes, including those that confer antibiotic resistance. This comprehensive study focused on the distribution of integrons and their gene cassettes in clinical isolates. This study explored the structure and classification of integrons with particular emphasis on Class I, II, III, and IV integrons. It also discussed the role of integrons in antibiotic resistance. The findings of this study contribute to a better understanding of the mechanisms underlying antibiotic resistance and provide valuable insights for developing strategies to combat this public health crisis.
Collapse
Affiliation(s)
- Fatemeh Sarina Abdinia
- Department of Nanotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Kasra Javadi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Mehdi Rajabnia
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Elaheh Ferdosi-Shahandashti
- Biomedical and Microbial Advanced Technologies Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
4
|
Xiu Y, Dai Y, Yin S, Wei Q. Analysis of the Class 1 Integrons, Carbapenemase Genes and Biofilm Formation Genes Occurrence in Acinetobacter baumannii Clinical Isolates. Pol J Microbiol 2024; 73:189-197. [PMID: 38808771 PMCID: PMC11192457 DOI: 10.33073/pjm-2024-017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/28/2024] [Indexed: 05/30/2024] Open
Abstract
Acinetobacter baumannii is a non-fermentative Gram-negative bacterium that can cause nosocomial infections in critically ill patients. Carbapenem-resistant A. baumannii (CRAB) has spread rapidly in clinical settings and has become a key concern. The main objective of this study was to identify the distribution of integrons and biofilm-formation-related virulence genes in CRAB isolates. A total of 269 A. baumannii isolates (219 isolates of CRAB and 50 isolates of carbapenem-sensitive A. baumannii (CSAB)) were collected. Carbapenemase genes (bla KPC, bla VIM, bla IMP, bla NDM, and bla OXA-23-like) and biofilm-formation-related virulence genes (abal, bfms, bap, and cusE) were screened with PCR. Class 1 integron was screened with PCR, and common promoters and gene cassette arrays were determined with restriction pattern analysis combined with primer walking sequencing. Whole-genome sequencing was conducted, and data were analyzed for a bla OXA-23-like-negative isolate. All 219 CRAB isolates were negative for bla KPC, bla VIM, bla IMP, and bla NDM, while bla OXA-23-like was detected in 218 isolates. The detection rates for abal, bfms, bap, and cusE in 219 CRAB were 93.15%, 63.93%, 88.13%, and 77.63%, respectively. Class 1 integron was detected in 75 CRAB (34.25%) and in 3 CSAB. The single gene cassette array aacA4-catB8-aadA1 with relatively strong PcH2 promoter was detected in class 1 integrons. The bla OXA-23-like-negative CRAB isolate was revealed to be a new sequence type (Oxford 3272, Pasteur 2520) carrying bla OXA-72, bla OXA-259, and bla ADC-26. In conclusion, bla OXA-23-like was the main reason for CRAB's resistance to carbapenems. A new (Oxford 3272, Pasteur 2520) CRAB sequence type carrying the bla OXA-72, bla OXA-259, and bla ADC-26 was reported.
Collapse
Affiliation(s)
- Yu Xiu
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, China
| | - Yueru Dai
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, China
| | - Shasha Yin
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, China
| | - Quhao Wei
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, China
- Department of Laboratory Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
- Department of Laboratory Medicine, Shanghai University of Medicine and Health Sciences Affiliated Sixth People’s Hospital South Campus, Shanghai, China
| |
Collapse
|
5
|
Firoozeh F, Ghorbani M, Zibaei M, Badmasti F, Farid M, Omidinia N, Bakhshi F. Characterization of class 1 integrons in metallo-β-lactamase-producing Acinetobacter baumannii isolates from hospital environment. BMC Res Notes 2023; 16:365. [PMID: 38071347 PMCID: PMC10710726 DOI: 10.1186/s13104-023-06646-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND AND OBJECTIVE The emergence and widespread dissemination of antibiotic resistance in A. baumannii, has become a globally challenge. The increasing hospital outbreaks by multi-drug resistant (MDR) A. baumannii strains, shows the necessity of continuous monitoring to find sources of resistant strains in hospitals. This study aimed to identify the presence of class 1 integrons and metallo-β-lactamase (MBL) related genes in A. baumannii isolates from hospital environment. METHODS In order to identify A. baumannii isolates, a total of 297 environmental samples were collected from burn wards and intensive care units (ICUs) of two university hospitals. Resistance to common antibiotics was studied by disk diffusion method and microbroth dilution assay was used to determine the minimum inhibitory concentrations (MICs) of imipenem, colistin and tigecycline. The A. baumannii isolates were studied by polymerase chain reaction (PCR) for the presence of class 1 integrons (intI1, intl CS) and metallo-β-lactamases (MBLs) (blaIMP, blaVIM, blaNDM) genes. RESULTS A. baumannii was identified in 68/297 (22.9%) of hospital environment. All A. baumannii strains were multidrug-resistant (MDR), but none of them were resistant to colistin, tigecycline and ampicillin-sulbactam. All (100%) and 38 (95.0%) of A. baumannii isolates from ICUs and burn wards were imipenem resistant respectively. Class 1 integrons was identified in 30/40 (75.0%) and 23/28 (82.1%) isolates from burn wards and ICUs respectively. Two different types of gene cassettes were identified, which included: arr-2, ereC, aadA1, cmlA5 and arr2, cmlA5. MBL genes including blaVIM and blaIMP were detected in 26/28 (92.8%), 27/28(96.4%) and 39/40 (97.5%) and 31/40 (77.5%) of the isolates from the ICUs and the burn wards respectively. None of the isolates contained the blaNDM-1 gene. CONCLUSION The findings of the present study showed that the isolation rate of MBL producing carbapenem-resistant A. baumannii (CRAB) was relatively high in the environmental surface of burn wards and ICUs, which can be considered as a potential source of outbreaks in hospitalized patients.
Collapse
Affiliation(s)
- Farzaneh Firoozeh
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, 3149779453, Iran.
- Evidence- Based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| | - Mohammad Ghorbani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, 3149779453, Iran.
| | - Mohammad Zibaei
- Evidence- Based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Parasitology and Mycology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Malihe Farid
- Social Determinants of Health Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Narges Omidinia
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, 3149779453, Iran
| | - Fatemeh Bakhshi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, 3149779453, Iran
| |
Collapse
|
6
|
Okonkwo V, Cholet F, Ijaz UZ, Koottatep T, Pussayanavin T, Polpraset C, Sloan WT, Connelly S, Smith CJ. intI1 gene abundance from septic tanks in Thailand using validated intI1 primers. Appl Environ Microbiol 2023; 89:e0107123. [PMID: 37874304 PMCID: PMC10686061 DOI: 10.1128/aem.01071-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/22/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Antimicrobial resistance is a global crisis, and wastewater treatment, including septic tanks, remains an important source of antimicrobial resistance (AMR) genes. The role of septic tanks in disseminating class 1 integron, and by extension AMR genes, in Thailand, where antibiotic use is unregulated remains understudied. We aimed to monitor gene abundance as a proxy to infer potential AMR from septic tanks in Thailand. We evaluated published intI1 primers due to the lack of consensus on optimal Q-PCR primers and the absence of standardization. Our findings confirmed septic tanks are a source of class 1 integron to the environment. We highlighted the significance of intI1 primer choice, in the context of interpretation of risk associated with AMR spread from septic tanks. We recommend the validated set (F3-R3) for optimal intI1 quantification toward the goal of achieving standardization across studies.
Collapse
Affiliation(s)
- Valentine Okonkwo
- Department of Infrastructure and Environment, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Fabien Cholet
- Department of Infrastructure and Environment, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Umer Z. Ijaz
- Department of Infrastructure and Environment, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Thammarat Koottatep
- School of Environment, Resources and Development, Asian Institute of Technology, Khlong Nueng, Thailand
| | | | - Chongrak Polpraset
- Thammasat School of Engineering, Thammasat University, Bangkok, Thailand
| | - William T. Sloan
- Department of Infrastructure and Environment, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Stephanie Connelly
- Department of Infrastructure and Environment, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Cindy J. Smith
- Department of Infrastructure and Environment, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
7
|
Gauba A, Rahman KM. Evaluation of Antibiotic Resistance Mechanisms in Gram-Negative Bacteria. Antibiotics (Basel) 2023; 12:1590. [PMID: 37998792 PMCID: PMC10668847 DOI: 10.3390/antibiotics12111590] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
Multidrug-resistant Gram-negative bacterial infections are exponentially increasing, posing one of the most urgent global healthcare and economic threats. Due to the lack of new therapies, the World Health Organization classified these bacterial species as priority pathogens in 2017, known as ESKAPE pathogens. This classification emphasizes the need for urgent research and development of novel targeted therapies. The majority of these priority pathogens are Gram-negative species, which possess a structurally dynamic cell envelope enabling them to resist multiple antibiotics, thereby leading to increased mortality rates. Despite 6 years having passed since the WHO classification, the progress in generating new treatment ideas has not been sufficient, and antimicrobial resistance continues to escalate, acting as a global ticking time bomb. Numerous efforts and strategies have been employed to combat the rising levels of antibiotic resistance by targeting specific resistance mechanisms. These mechanisms include antibiotic inactivating/modifying enzymes, outer membrane porin remodelling, enhanced efflux pump action, and alteration of antibiotic target sites. Some strategies have demonstrated clinical promise, such as the utilization of beta-lactamase inhibitors as antibiotic adjuvants, as well as recent advancements in machine-based learning employing artificial intelligence to facilitate the production of novel narrow-spectrum antibiotics. However, further research into an enhanced understanding of the precise mechanisms by which antibiotic resistance occurs, specifically tailored to each bacterial species, could pave the way for exploring narrow-spectrum targeted therapies. This review aims to introduce the key features of Gram-negative bacteria and their current treatment approaches, summarizing the major antibiotic resistance mechanisms with a focus on Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Additionally, potential directions for alternative therapies will be discussed, along with their relative modes of action, providing a future perspective and insight into the discipline of antimicrobial resistance.
Collapse
Affiliation(s)
| | - Khondaker Miraz Rahman
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street, London SE1 9NH, UK;
| |
Collapse
|
8
|
Aldali JA. Acinetobacter baumannii: A multidrug-resistant pathogen, has emerged in Saudi Arabia. Saudi Med J 2023; 44:732-744. [PMID: 37582561 PMCID: PMC10425629 DOI: 10.15537/smj.2023.44.8.20230194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
A significant opportunistic pathogen, Acinetobacter baumannii (A. baumannii) has evolved mechanisms of resistance to a wide variety of antimicrobials, including carbapenems. In this article, we assessed the prevalence, risk factors, antimicrobial sensitivity, and resistance mechanisms among A. baumannii in several locations in Saudi Arabia. Hospital-acquired infections caused by A. baumannii were prevalent in the country due to a variety of reasons, such as the high number of critically ill patients, the frequency of gastrointestinal colonization, and the widespread use of antimicrobial medications. There has been an increase in the frequency of A. baumannii strains that are resistant to several antimicrobials, including carbapenems. Hospitals are a breeding ground for multidrug-resistant A. baumannii due to the widespread use of broad-spectrum antibiotics, the potential for patient-to-patient transmission of the bacteria, the high risk of infection during invasive intensive care unit procedures, and the high frequency with which diabetic and cancer patients in hospitals undergo invasive diagnostic and therapeutic procedures. Combinations of colistin and tigecycline with carbapenems or other antibiotics remain the best treatment option and are relatively safe to treat patients with multidrug resistance (MDR) A. baumannii infections, despite the rising incidence of resistance to these drugs observed in many hospitals. The prevalence of multidrug-resistant A. baumannii in Saudi hospitals calls for in-depth research into the underlying molecular mechanisms of multidrug resistance. In addition, a better understanding of A. baumannii resistance patterns and the establishment of a treatment protocol to reduce the infection burden in Saudi Arabia could benefit from the implementation of a local antibiogram database in tandem with a national antimicrobial stewardship and infection prevention program.
Collapse
Affiliation(s)
- Jehad A. Aldali
- From the Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|
9
|
Firoozeh F, Nikibakhsh M, Badmasti F, Zibaei M, Nikbin VS. Clonal relatedness of carbapenem-resistant Acinetobacter baumannii: high prevalence of ST136 pas in a burn center. Ann Clin Microbiol Antimicrob 2023; 22:34. [PMID: 37149598 PMCID: PMC10164327 DOI: 10.1186/s12941-023-00589-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 04/27/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Carbapenem-resistant Acinetobacter baumannii (CRAB) is a global health crisis. This study aimed to determine the clonal relatedness of antibiotic-resistant A. baumannii isolates in hospitalized patients who suffered from burn wound infection. METHODS One hundred and six A. baumannii isolates from 562 patients with burn wound infections, were identified and examined for antimicrobial susceptibility. Detection and characterization of carbapenem-hydrolyzing class D OXA-type beta-lactamases (CHDLs) were performed by PCR assays. The clonal relatedness of A. baumannii isolates was determined by multilocus sequence typing (MLST) according to the Pasteur scheme, dual-sequence typing of blaOXA-51-like and ampC genes, and RAPD-PCR method. RESULTS All isolates were carbapenem-resistant while susceptible to colistin, minocycline, doxycycline, and ampicillin-sulbactam. The intrinsic blaOXA-51-like was detected in all isolates, and blaOXA-23-like was identified in 92.5% of isolates. However, blaOXA-143-like and blaOXA-58-like genes were not detected among isolates. Four distinct blaOXA-51-like alleles were determined as follows: blaOXA-317 (67.0%), blaOXA-90 (9.4%), blaOXA-69 (17.0%), and blaOXA-64 (6.6%) and four ampC (blaADC) allele types including ampC-25 (6.6%), ampC-39 (9.4%), ampC-1 (17.0%), and blaADC-88 (67.0%) were identified. MLST (Pasteur scheme) analysis revealed four ST types including ST136 (singleton), ST1 (CC1), ST25 (CC25), and ST78 (singleton) in 71, 18, 7, and 10 of A. baumannii strains, respectively. Five RAPD clusters including A (1.9%), B (26.4%), C (57.5%), D (7.5%), and E (1.9%) were characterized and 5 (4.7%) strains were found to be singletons. CONCLUSION The present study demonstrated that there was a high prevalence of blaOXA-23-like producing CRAB in the clinical setting. The majority of isolates belonged to ST136 (singleton). However, blaOXA-23-like producing multi-drug resistant international clones including ST1, and emerging lineages (e.g. ST25 and ST78) were also identified. Interestingly, in this study ST2 was not detected.
Collapse
Affiliation(s)
- Farzaneh Firoozeh
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahnaz Nikibakhsh
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
| | - Mohammad Zibaei
- Department of Parasitology and Mycology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | | |
Collapse
|
10
|
Wu HJ, Xiao ZG, Lv XJ, Huang HT, Liao C, Hui CY, Xu Y, Li HF. Drug‑resistant Acinetobacter baumannii: From molecular mechanisms to potential therapeutics (Review). Exp Ther Med 2023; 25:209. [PMID: 37090073 PMCID: PMC10119666 DOI: 10.3892/etm.2023.11908] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/24/2023] [Indexed: 04/25/2023] Open
Abstract
Bacterial drug resistance is increasingly becoming an important problem that needs to be solved urgently in modern clinical practices. Infection caused by Acinetobacter baumannii is a serious threat to the life and health of patients. The drug resistance rate of Acinetobacter baumannii strains is increasing, thus research on the drug resistance of Acinetobacter baumannii has also seen an increase. When patients are infected with drug-resistant Acinetobacter baumannii, the availability of suitable antibiotics commonly used in clinical practices is becoming increasingly limited and the prognosis of patients is worsening. Studying the molecular mechanism of the drug resistance of Acinetobacter baumannii is fundamental to solving the problem of drug-resistant Acinetobacter baumannii and potentially other 'super bacteria'. Drug resistance mechanisms primarily include enzymes, membrane proteins, efflux pumps and beneficial mutations. Research on the underlying mechanisms provides a theoretical basis for the use and development of antibiotics and the development of novel treatment methods.
Collapse
Affiliation(s)
- Hao-Jia Wu
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Zhi-Gang Xiao
- Department of Orthopedics, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
| | - Xiao-Juan Lv
- Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| | - Hai-Tang Huang
- Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| | - Chu Liao
- Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| | - Chen-Yang Hui
- Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| | - Yue Xu
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Heng-Fei Li
- Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
- Correspondence to: Professor Heng-Fei Li, Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Room 4, Garden Hill, Wuchang, Wuhan, Hubei 430061, P.R. China
| |
Collapse
|
11
|
Wang T, Zhu Y, Zhu W, Cao M, Wei Q. Molecular characterization of class 1 integrons in carbapenem-resistant Enterobacterales isolates. Microb Pathog 2023; 177:106051. [PMID: 36858185 DOI: 10.1016/j.micpath.2023.106051] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/29/2023] [Accepted: 02/26/2023] [Indexed: 03/03/2023]
Abstract
OBJECTIVE Carbapenem-resistant Enterobacterales (CRE) infections result in higher treatment costs and mortality rates. Integrons play important roles in emergence and spread of antibiotic resistant genes. To get a better understand on the effects of integron on CRE resistance, distribution of common carbapenemase genes and class 1 integron in clinical CRE isolates were investigated. METHOD Carbapenemase genes, including blaKPC, blaVIM, blaIMP, blaNDM, blaGES, blaVEB and blaOXA-23, were screened in 161 CRE isolates and subtypes of these genes were confirmed through sequence analysis. Class 1 integron was screened and common promoter and gene cassette arrays were determined by sequencing. The resistant rates to clinical commonly used antibiotics between integron positive and integron negative CRE isolates were compared. RESULTS Of 161 CRE isolates, the most prevalent carbapenemase gene was blaKPC-2, which was detected in 139 isolates, including 99 Klebsiella pneumoniae. Class 1 integron was detected in 78 isolates. Twenty different gene cassettes, including two carbapenemase genes blaVEB-1 and blaIMP-4, and nine different gene cassette arrays, including blaVEB-1-aadB-arr-2-cmlA5-blaOXA-10-aadA1, aadB-catB8-blaOXA-10-aadA1-dfrA1-aacA4 and blaIMP-4-qacG-aacA4-catB3, were detected. Five types of common promoters were identified. Relative weak promoter PcH1 was the dominant type. Resistant rates of CRE isolates containing class 1 integrons to ceftazidime, amikacin, trimethoprim/sulfamethoxazole and gentamicin were higher than those without class 1 integrons (P < 0.05). CONCLUSION Class 1 integrons play important roles in the emergence and spread of CRE resistance. To the best of our knowledge, this is the first report of aadB-catB8-blaOXA-10-aadA1-dfrA1-aacA4 and blaIMP-4-qacG-aacA4-catB3 in the same Providencia rettgeri isolate and blaVEB-1-aadB-arr-2-cmlA5-blaOXA-10-aadA1 in P. rettgeri.
Collapse
Affiliation(s)
- Tong Wang
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Yu Zhu
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Wenwen Zhu
- Department of Laboratory Medicine, Southern Medical University Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Mei Cao
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Quhao Wei
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China; Department of Laboratory Medicine, Southern Medical University Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China; Department of Laboratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Shanghai, 201499, China.
| |
Collapse
|
12
|
Jeon JH, Jang KM, Lee JH, Kang LW, Lee SH. Transmission of antibiotic resistance genes through mobile genetic elements in Acinetobacter baumannii and gene-transfer prevention. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159497. [PMID: 36257427 DOI: 10.1016/j.scitotenv.2022.159497] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic resistance is a major global public health concern. Acinetobacter baumannii is a nosocomial pathogen that has emerged as a global threat because of its high levels of resistance to many antibiotics, particularly those considered as last-resort antibiotics, such as carbapenems. Mobile genetic elements (MGEs) play an important role in the dissemination and expression of antibiotic resistance genes (ARGs), including the mobilization of ARGs within and between species. We conducted an in-depth, systematic investigation of the occurrence and dissemination of ARGs associated with MGEs in A. baumannii. We focused on a cross-sectoral approach that integrates humans, animals, and environments. Four strategies for the prevention of ARG dissemination through MGEs have been discussed: prevention of airborne transmission of ARGs using semi-permeable membrane-covered thermophilic composting; application of nanomaterials for the removal of emerging pollutants (antibiotics) and pathogens; tertiary treatment technologies for controlling ARGs and MGEs in wastewater treatment plants; and the removal of ARGs by advanced oxidation techniques. This review contemplates and evaluates the major drivers involved in the transmission of ARGs from the cross-sectoral perspective and ARG-transfer prevention processes.
Collapse
Affiliation(s)
- Jeong Ho Jeon
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| | - Kyung-Min Jang
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea.
| |
Collapse
|
13
|
Adeniji OO, Elsheikh EAE, Okoh AI. Prevalence of classes 1 and 2 integrons in multidrug-resistant Acinetobacter baumanni isolates recovered from some aquatic environment in South Africa. Sci Rep 2022; 12:20319. [PMID: 36434075 PMCID: PMC9700688 DOI: 10.1038/s41598-022-24724-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
The emergence of antibiotic-resistance genes (ARGs) by means of integrons in multidrug-resistant Acinetobacter baumannii (MDR A. baumannii) has become a significant challenge in the management of infections from this pathogen. In this paper, we report on the variable region of class 1 and 2 integrons observed in MDR A. baumanni isolates recovered from rivers in the Eastern Cape Province, South Africa. Class 1 and 2 integrons with their variable regions were evaluated with polymerase chain reaction techniques followed by sequencing. Antibiotic sensitivity testing, checkerboard assay, time-kill independent assay, and Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR) were carried out using standard microbiological techniques. A total of fifty-six (56) isolates were examined, among which 45 (79%) tested positive for class 1 integron, and 7 (12.3%) had class 2 integron. None was found to be class 3 integron positive among the isolates. The variable region contained aadA1, aadA5, and aadA2 genes, which confer resistance against streptomycin and spectinomycin, aac(6')-Ib against amikacin/ tobramycin and dfrA17 genes against trimethoprim. The minimum inhibitory concentrations of the antimicrobials for one of the tested organisms were resistant against meropenem, colistin sodium methanesulfonate, tetracycline, ceftazidime, and ciprofloxacin (16, > 16, > 8, > 256, and 128 ug/mL respectively). The impact of colistin combined with quinolones (ciprofloxacin), with the FICIs (0.31) indicated synergistic effects against MDR A baumanni. However, when colistin was combined with meropenem and ceftazidime, additive effects with fractional inhibitory concentration (FIC) index ranging from 0.52 to 1 were observed. No antagonistic effect was evaluated among the examined isolates. ERIC-PCR analyses of A. baumanni isolates revealed significant genetic diversity, suggesting various sources of environmental contamination. We conclude that A. baumanni harbouring class 1 integrons in aquatic milieus are a significant source of ARGs and can transmit these elements to other organisms and consequently to man with significant public health implications.
Collapse
Affiliation(s)
- Oluwaseun Ola Adeniji
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.
| | - Elsiddig A E Elsheikh
- Department of Applied Biology, College of Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Anthony Ifeanyin Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
14
|
Antimicrobial Resistance, Integron Carriage, and Fluoroquinolone Resistance Genes in Acinetobacte baumannii Isolates. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2022. [DOI: 10.5812/archcid-120590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background: Acinetobacte is the leading cause of pneumonia and sepsis in the ICU ward. Accordingly, in the present study, the antibiotic susceptibility pattern, presence, and dissemination of different classes of integrons and fluoroquinolone resistance genes were investigated among A. baumannii isolates. Methods: In this descriptive, cross-sectional study, during a period of 24 months (2018-2020), 100 isolates of A. baumannii were isolated from different clinical specimens of patients admitted to the two teaching hospital in Ardabil province in the northwest of Iran. Kirby -Bauer disk diffusion, PCR, and sequencing methods were used for antimicrobial susceptibility testing and gene and mutation verification. Results: The resistance rates to all tested antibiotics were found to be between 78% and 100%. No isolate was resistant to polymyxin B. Multidrug-resistant (MDR) rate among tested clinical isolates was about 99%. The prevalence of class 1, 2, and 3 integrons was found to be 70%, 21%, and 0%, respectively. The aadA1 cassette gene was detected in all class 1 integron-carrying strains. Conclusions: High-level antibiotic resistance and a high prevalence of integrons were observed among these clinical isolates. Our findings highlighted the need for continuous monitoring of resistant isolates.
Collapse
|
15
|
Bakhshi F, Firoozeh F, Badmasti F, Dadashi M, Zibaei M, Khaledi A. Molecular Detection of OXA-type Carbapenemases among Acinetobacter baumannii Isolated from Burn Patients and Hospital Environments. Open Microbiol J 2022. [DOI: 10.2174/18742858-v16-e2206101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Acinetobacter baumannii is known as one of the major causes of nosocomial infections, especially in intensive care units and burn patients. The emergence of antimicrobial resistance in burn wound bacterial pathogens is a severe health crisis. Detection of carbapenem resistance and genetic elements in A. baumannii associated with burn patients and hospital environments play a key role in the control and alerting in clinical settings.
Purpose:
In this study, the prevalence of OXA-type carbapenemases was investigated in A. baumannii strains isolated from burn patients and from a hospital environment in Tehran, 2021.
Methods:
A total of 85 non-duplicate A. baumannii isolates (53 from various surfaces of the hospital environment and 32 from burn patients) were recovered in the Burns Hospital in Tehran. The A. baumannii isolates were screened for antibiotic susceptibility and the presence of the most common OXA-type carbapenemase genes.
Results:
A. baumannii was isolated from 38.5% of hospital patient burn wounds and 22.1% of surfaces, including burn units (15.6%) and intensive care units (52.4%). Antibiotic susceptibility results showed that (100%) of burn patient isolates were resistant to imipenem, while (100%) of ICU isolates and (96.8%) of burn isolates were resistant to imipenem. All clinical isolates were identified as MDR and XDR, whereas all (100%) and 98.1% of environmental isolates were identified as MDR and XDR, respectively. All studied A. baumannii isolates carried blaOXA-51-like gene. Moreover, 50 (94.3%) and 49 (92.5%) of environmental isolates, 32 (100%) and 30 (93.7%) of burn patient isolate harbored blaOXA-23-like and blaOXA-24/40–like genes, respectively. None of the isolates carried the blaOXA-58 or blaOXA-143 genes and all isolates had at least 2 OXA-type carbapenemase genes.
Conclusion:
Our results suggest that surfaces in the hospital environment, particularly in ICUs, are contaminated with MDR or XDR A. baumannii strains. They may be considered a potential reservoir for the colonization of hospital patients. In addition, OXA-type carbapenemases, including OXA-23-like and OXA-24/40-like, appear to be one of the major mechanisms of carbapenem resistance in the clinical and environmental A. baumannii strains.
Collapse
|
16
|
Firoozeh F, Zibaei M, Badmasti F, Khaledi A. Virulence factors, antimicrobial resistance and the relationship between these characteristics in uropathogenic Escherichia coli. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Roy S, Chowdhury G, Mukhopadhyay AK, Dutta S, Basu S. Convergence of Biofilm Formation and Antibiotic Resistance in Acinetobacter baumannii Infection. Front Med (Lausanne) 2022; 9:793615. [PMID: 35402433 PMCID: PMC8987773 DOI: 10.3389/fmed.2022.793615] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/31/2022] [Indexed: 07/30/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is a leading cause of nosocomial infections as this pathogen has certain attributes that facilitate the subversion of natural defenses of the human body. A. baumannii acquires antibiotic resistance determinants easily and can thrive on both biotic and abiotic surfaces. Different resistance mechanisms or determinants, both transmissible and non-transmissible, have aided in this victory over antibiotics. In addition, the propensity to form biofilms (communities of organism attached to a surface) allows the organism to persist in hospitals on various medical surfaces (cardiac valves, artificial joints, catheters, endotracheal tubes, and ventilators) and also evade antibiotics simply by shielding the bacteria and increasing its ability to acquire foreign genetic material through lateral gene transfer. The biofilm formation rate in A. baumannii is higher than in other species. Recent research has shown how A. baumannii biofilm-forming capacity exerts its effect on resistance phenotypes, development of resistome, and dissemination of resistance genes within biofilms by conjugation or transformation, thereby making biofilm a hotspot for genetic exchange. Various genes control the formation of A. baumannii biofilms and a beneficial relationship between biofilm formation and "antimicrobial resistance" (AMR) exists in the organism. This review discusses these various attributes of the organism that act independently or synergistically to cause hospital infections. Evolution of AMR in A. baumannii, resistance mechanisms including both transmissible (hydrolyzing enzymes) and non-transmissible (efflux pumps and chromosomal mutations) are presented. Intrinsic factors [biofilm-associated protein, outer membrane protein A, chaperon-usher pilus, iron uptake mechanism, poly-β-(1, 6)-N-acetyl glucosamine, BfmS/BfmR two-component system, PER-1, quorum sensing] involved in biofilm production, extrinsic factors (surface property, growth temperature, growth medium) associated with the process, the impact of biofilms on high antimicrobial tolerance and regulation of the process, gene transfer within the biofilm, are elaborated. The infections associated with colonization of A. baumannii on medical devices are discussed. Each important device-related infection is dealt with and both adult and pediatric studies are separately mentioned. Furthermore, the strategies of preventing A. baumannii biofilms with antibiotic combinations, quorum sensing quenchers, natural products, efflux pump inhibitors, antimicrobial peptides, nanoparticles, and phage therapy are enumerated.
Collapse
Affiliation(s)
- Subhasree Roy
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Goutam Chowdhury
- Division of Molecular Microbiology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish K. Mukhopadhyay
- Division of Molecular Microbiology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sulagna Basu
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
18
|
Huang X, Shen S, Shi Q, Ding L, Wu S, Han R, Zhou X, Yu H, Hu F. First Report of bla IMP-4 and bla SRT-2 Coproducing Serratia marcescens Clinical Isolate in China. Front Microbiol 2021; 12:743312. [PMID: 34659175 PMCID: PMC8517538 DOI: 10.3389/fmicb.2021.743312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Carbapenem-resistant Enterobacterales (CRE) has become a major therapeutic concern in clinical settings, and carbapenemase genes have been widely reported in various bacteria. In Serratia marcescens, class A group carbapenemases including SME and KPC were mostly identified. However, there are few reports of metallo-β-lactamase-producing S. marcescens. Here, we isolated a carbapenem-resistant S. marcescens (S378) from a patient with asymptomatic urinary tract infection which was then identified as an IMP-4-producing S. marcescens at a tertiary hospital in Sichuan Province in southwest of China. The species were identified using MALDI-TOF MS, and carbapenemase-encoding genes were detected using PCR and DNA sequencing. The results of antimicrobial susceptibility testing by broth microdilution method indicated that the isolate S. marcescens S378 was resistant to meropenem (MIC = 32 μg/ml) and imipenem (MIC = 64 μg/ml) and intermediate to aztreonam (MIC = 8 μg/ml). The complete genomic sequence of S. marcescens was identified using Illumina (Illumina, San Diego, CA, United States) short-read sequencing (150 bp paired-end reads); five resistance genes had been identified, including blaIMP–4, blaSRT–2, aac(6′)-Ic, qnrS1, and tet(41). Conjugation experiments indicated that the blaIMP–4-carrying plasmid pS378P was conjugative. Complete sequence analysis of the plasmid pS378P bearing blaIMP–4 revealed that it was a 48,780-bp IncN-type plasmid with an average GC content of 50% and was nearly identical to pP378-IMP (99% nucleotide identity and query coverage).
Collapse
Affiliation(s)
- Xiangning Huang
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Siquan Shen
- Huashan Hospital, Institute of Antibiotics, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Qingyu Shi
- Huashan Hospital, Institute of Antibiotics, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Li Ding
- Huashan Hospital, Institute of Antibiotics, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Shi Wu
- Huashan Hospital, Institute of Antibiotics, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Renru Han
- Huashan Hospital, Institute of Antibiotics, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Xun Zhou
- Huashan Hospital, Institute of Antibiotics, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Hua Yu
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Fupin Hu
- Huashan Hospital, Institute of Antibiotics, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| |
Collapse
|