1
|
Gong MJ, Lai ZG, Zhang YX, Hu N. Risk factor analysis and development of predictive models for osteoradionecrosis in patients with nasopharyngeal carcinoma after concurrent chemoradiotherapy. Am J Cancer Res 2024; 14:4760-4771. [PMID: 39553231 PMCID: PMC11560816 DOI: 10.62347/riwx7204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/06/2024] [Indexed: 11/19/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor that targets the nasopharyngeal mucosal epithelium. Concurrent chemoradiotherapy (CCRT) is a pivotal treatment modality for NPC, yet it poses a risk for osteoradionecrosis (ORN), a complication that can impede further treatment. This study sought to explore the risk factors for ORN in NPC patients post-CCRT and to construct predictive models. We performed a retrospective analysis of clinical data from 417 NPC patients treated with CCRT at the Affiliated Hospital of Jiangnan University, with 204 patients from Longyan First Hospital as a validation cohort for the models. Our findings indicated that a high radiation dose, tooth extraction after radiotherapy, inadequate oral hygiene, smoking, anemia, and advanced T staging were associated with an elevated risk of ORN in NPC patients following CCRT. We formulated risk prediction models for ORN utilizing a nomogram, gradient boosting machine (GBM), and random forest (RF) algorithms. The area under the curve (AUC) was 0.813 (95% CI: 0.724-0.902) for the nomogram model in the validation cohort, 0.821 (95% CI: 0.732-0.910) for the GBM, and 0.735 (95% CI: 0.614-0.855) for the RF. Delong's test indicated no statistically significant differences in the AUC values among the three models. The nomogram has strong performance across both the training and validation cohorts, featuring a straightforward structure that is both intuitive and comprehensible. Taking into account the model's discriminative power, generalizability, and clinical practicability, the nomogram was proven to be highly applicable in the current study.
Collapse
Affiliation(s)
- Ming-Jie Gong
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Jiangnan UniversityWuxi 214000, Jiangsu, China
| | - Zhi-Gang Lai
- Department of Otorhinolaryngology-Head and Neck Surgery, Longyan First HospitalLongyan 364000, Fujian, China
| | - Yun-Xia Zhang
- Department of Radiotherapy, Affiliated Hospital of Jiangnan UniversityWuxi 214000, Jiangsu, China
| | - Na Hu
- Department of Anesthesiology, Affiliated Hospital of Jiangnan UniversityWuxi 214000, Jiangsu, China
| |
Collapse
|
2
|
Dang LH, Hung SH, Le NTN, Chuang WK, Wu JY, Huang TC, Le NQK. Enhancing Nasopharyngeal Carcinoma Survival Prediction: Integrating Pre- and Post-Treatment MRI Radiomics with Clinical Data. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2474-2489. [PMID: 38689151 PMCID: PMC11522233 DOI: 10.1007/s10278-024-01109-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024]
Abstract
Recurrences are frequent in nasopharyngeal carcinoma (NPC) despite high remission rates with treatment, leading to considerable morbidity. This study aimed to develop a prediction model for NPC survival by harnessing both pre- and post-treatment magnetic resonance imaging (MRI) radiomics in conjunction with clinical data, focusing on 3-year progression-free survival (PFS) as the primary outcome. Our comprehensive approach involved retrospective clinical and MRI data collection of 276 eligible NPC patients from three independent hospitals (180 in the training cohort, 46 in the validation cohort, and 50 in the external cohort) who underwent MRI scans twice, once within 2 months prior to treatment and once within 10 months after treatment. From the contrast-enhanced T1-weighted images before and after treatment, 3404 radiomics features were extracted. These features were not only derived from the primary lesion but also from the adjacent lymph nodes surrounding the tumor. We conducted appropriate feature selection pipelines, followed by Cox proportional hazards models for survival analysis. Model evaluation was performed using receiver operating characteristic (ROC) analysis, the Kaplan-Meier method, and nomogram construction. Our study unveiled several crucial predictors of NPC survival, notably highlighting the synergistic combination of pre- and post-treatment data in both clinical and radiomics assessments. Our prediction model demonstrated robust performance, with an accuracy of AUCs of 0.66 (95% CI: 0.536-0.779) in the training cohort, 0.717 (95% CI: 0.536-0.883) in the testing cohort, and 0.827 (95% CI: 0.684-0.948) in validation cohort in prognosticating patient outcomes. Our study presented a novel and effective prediction model for NPC survival, leveraging both pre- and post-treatment clinical data in conjunction with MRI features. Its constructed nomogram provides potentially significant implications for NPC research, offering clinicians a valuable tool for individualized treatment planning and patient counseling.
Collapse
Affiliation(s)
- Luong Huu Dang
- Department of Otolaryngology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Shih-Han Hung
- Department of Otolaryngology, School of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Otolaryngology, Wan Fang Hospital, Taipei, Taiwan
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Nhi Thao Ngoc Le
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei, Taiwan
| | - Wei-Kai Chuang
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jeng-You Wu
- Department of Radiation Oncology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ting-Chieh Huang
- Department of Otolaryngology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- AIBioMed Research Group, Taipei Medical University, Taipei, Taiwan.
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
3
|
Alabi RO, Elmusrati M, Leivo I, Almangush A, Mäkitie AA. Artificial Intelligence-Driven Radiomics in Head and Neck Cancer: Current Status and Future Prospects. Int J Med Inform 2024; 188:105464. [PMID: 38728812 DOI: 10.1016/j.ijmedinf.2024.105464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Radiomics is a rapidly growing field used to leverage medical radiological images by extracting quantitative features. These are supposed to characterize a patient's phenotype, and when combined with artificial intelligence techniques, to improve the accuracy of diagnostic models and clinical outcome prediction. OBJECTIVES This review aims at examining the application areas of artificial intelligence-based radiomics (AI-based radiomics) for the management of head and neck cancer (HNC). It further explores the workflow of AI-based radiomics for personalized and precision oncology in HNC. Finally, it examines the current challenges of AI-based radiomics in daily clinical oncology and offers possible solutions to these challenges. METHODS Comprehensive electronic databases (PubMed, Medline via Ovid, Scopus, Web of Science, CINAHL, and Cochrane Library) were searched following the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. The quality of included studies and their risk of biases were evaluated using the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD)and Prediction Model Risk of Bias Assessment Tool (PROBAST). RESULTS Out of the 659 search hits retrieved, 45 fulfilled the inclusion criteria. Our review revealed that the application of AI-based radiomics model as an ancillary tool for improved decision-making in HNC management includes radiomics-based cancer diagnosis and radiomics-based cancer prognosis. The radiomics-based cancer diagnosis includes tumor staging, tumor grading, and classification of malignant and benign tumors. Similarly, radiomics-based cancer prognosis includes prediction for treatment response, recurrence, metastasis, and survival. In addition, the challenges in the implementation of these models for clinical evaluations include data imbalance, feature engineering (extraction and selection), model generalizability, multi-modal fusion, and model interpretability. CONCLUSION Considering the highly subjective and interobserver variability that is peculiar to the interpretation of medical images by expert clinicians, AI-based radiomics seeks to offer potentially useful quantitative information, which is not visible to the human eye or unintentionally often remain ignored during clinical imaging practice. By enabling the extraction of this type of information, AI-based radiomics has the potential to revolutionize HNC oncology, providing a platform for more personalized, higher quality, and cost-effective care for HNC patients.
Collapse
Affiliation(s)
- Rasheed Omobolaji Alabi
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Industrial Digitalization, School of Technology and Innovations, University of Vaasa, Vaasa, Finland.
| | - Mohammed Elmusrati
- Department of Industrial Digitalization, School of Technology and Innovations, University of Vaasa, Vaasa, Finland
| | - Ilmo Leivo
- University of Turku, Institute of Biomedicine, Pathology, Turku, Finland
| | - Alhadi Almangush
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; University of Turku, Institute of Biomedicine, Pathology, Turku, Finland; Department of Pathology, University of Helsinki, Helsinki, Finland; Faculty of Dentistry, Misurata University, Misurata, Libya
| | - Antti A Mäkitie
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Ishaque AH, Alvi MA, Pedro K, Fehlings MG. Imaging protocols for non-traumatic spinal cord injury: current state of the art and future directions. Expert Rev Neurother 2024; 24:691-709. [PMID: 38879824 DOI: 10.1080/14737175.2024.2363839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
INTRODUCTION Non-traumatic spinal cord injury (NTSCI) is a term used to describe damage to the spinal cord from sources other than trauma. Neuroimaging techniques such as computerized tomography (CT) and magnetic resonance imaging (MRI) have improved our ability to diagnose and manage NTSCIs. Several practice guidelines utilize MRI in the diagnostic evaluation of traumatic and non-traumatic SCI to direct surgical intervention. AREAS COVERED The authors review practices surrounding the imaging of various causes of NTSCI as well as recent advances and future directions for the use of novel imaging modalities in this realm. The authors also present discussions around the use of simple radiographs and advanced MRI modalities in clinical settings, and briefly highlight areas of active research that seek to advance our understanding and improve patient care. EXPERT OPINION Although several obstacles must be overcome, it appears highly likely that novel quantitative imaging features and advancements in artificial intelligence (AI) as well as machine learning (ML) will revolutionize degenerative cervical myelopathy (DCM) care by providing earlier diagnosis, accurate localization, monitoring for deterioration and neurological recovery, outcome prediction, and standardized practice. Some intriguing findings in these areas have been published, including the identification of possible serum and cerebrospinal fluid biomarkers, which are currently in the early phases of translation.
Collapse
Affiliation(s)
- Abdullah H Ishaque
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, University Health Network, Toronto, ON, Canada
| | - Mohammed Ali Alvi
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Karlo Pedro
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, University Health Network, Toronto, ON, Canada
| | - Michael G Fehlings
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Wang Z, Fang M, Zhang J, Tang L, Zhong L, Li H, Cao R, Zhao X, Liu S, Zhang R, Xie X, Mai H, Qiu S, Tian J, Dong D. Radiomics and Deep Learning in Nasopharyngeal Carcinoma: A Review. IEEE Rev Biomed Eng 2024; 17:118-135. [PMID: 37097799 DOI: 10.1109/rbme.2023.3269776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Nasopharyngeal carcinoma is a common head and neck malignancy with distinct clinical management compared to other types of cancer. Precision risk stratification and tailored therapeutic interventions are crucial to improving the survival outcomes. Artificial intelligence, including radiomics and deep learning, has exhibited considerable efficacy in various clinical tasks for nasopharyngeal carcinoma. These techniques leverage medical images and other clinical data to optimize clinical workflow and ultimately benefit patients. In this review, we provide an overview of the technical aspects and basic workflow of radiomics and deep learning in medical image analysis. We then conduct a detailed review of their applications to seven typical tasks in the clinical diagnosis and treatment of nasopharyngeal carcinoma, covering various aspects of image synthesis, lesion segmentation, diagnosis, and prognosis. The innovation and application effects of cutting-edge research are summarized. Recognizing the heterogeneity of the research field and the existing gap between research and clinical translation, potential avenues for improvement are discussed. We propose that these issues can be gradually addressed by establishing standardized large datasets, exploring the biological characteristics of features, and technological upgrades.
Collapse
|
6
|
Bhimreddy M, Jiang K, Weber-Levine C, Theodore N. Computational Modeling, Augmented Reality, and Artificial Intelligence in Spine Surgery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1462:453-464. [PMID: 39523282 DOI: 10.1007/978-3-031-64892-2_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Over the past decade, advancements in computational modeling, augmented reality, and artificial intelligence (AI) have been driving innovations in spine surgery. Much of the research conducted in these fields is from the past 5 years. In 2021, the market value for augmented reality and virtual reality reached around $22.6 billion, highlighting the rise in demand for these technologies in the medical industry and beyond. Currently, these modalities have a wide variety of potential uses, from preoperative planning of pedicle screw placement and assessment of surgical instrumentation to predictions for postoperative outcomes and development of educational tools. In this chapter, we provide an overview of the applications of these technologies in spine surgery. Furthermore, we discuss several avenues for further development, including integrations between these modalities and areas of improvement for more immersive, informative surgical experiences.
Collapse
Affiliation(s)
- Meghana Bhimreddy
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kelly Jiang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carly Weber-Levine
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas Theodore
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Wang H, Qiu J, Xie J, Lu W, Pan Y, Ma J, Jia M. Radiomics‑Clinical model based on 99mTc-MDP SPECT/CT for distinguishing between bone metastasis and benign bone disease in tumor patients. J Cancer Res Clin Oncol 2023; 149:13353-13361. [PMID: 37491635 DOI: 10.1007/s00432-023-05162-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/09/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND To establish a radiomics-clinical model based on 99mTc-MDP SPECT/CT for distinguishing between bone metastasis and benign bone disease in tumor patients. METHODS We retrospectively analyzed 256 patients (122 with bone metastasis and 134 with benign bone disease) and randomized them in the ratio of 6:2:2 into training, test and validation sets. All patients underwent 99mTc-labeled methylene diphosphonate (99mTc-MDP) SPECT/CT. We manually outlined the volumes of interest (VOIs) of lesions using ITK-SNAP from SPECT and CT images. In the training set, radiomics features were extracted using PyRadiomics and selected using Least Absolute Shrinkage and Selection Operator (LASSO) regression. Then, we established three radiomics models (CT, SPECT and SPECT-CT models) using support vector machine (SVM). In addition, a radiomics-clinical model was constructed using multivariable logistic regression analysis. The four models' performance was assessed using the area under the receiver operating characteristic curve (AUC). Using DeLong test to make comparisons between the ROC (receiver operating characteristic) curves of different models. The clinical utility of the models was evaluated using decision curve analysis (DCA). RESULTS The radiomics-clinical displayed excellent performance, and its AUC was 0.941 and 0.879 in the training and test sets. The DCA of radiomics-clinical model showed the highest clinical utility. CONCLUSIONS The radiomics-clinical nomogram for identifying bone metastasis and benign bone disease in tumor patients was suitable to assist in clinical decision.
Collapse
Affiliation(s)
- Huili Wang
- College of Preventive Medicine & Institute of Radiation Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250012, China
| | - Jianfeng Qiu
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Jindong Xie
- College of Preventive Medicine & Institute of Radiation Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250012, China
| | - Weizhao Lu
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Yuteng Pan
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Junchi Ma
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China.
| | - Mingsheng Jia
- Department of Nuclear Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taishan Street, No.706, Taian, 271000, China.
| |
Collapse
|
8
|
Zhong NN, Wang HQ, Huang XY, Li ZZ, Cao LM, Huo FY, Liu B, Bu LL. Enhancing head and neck tumor management with artificial intelligence: Integration and perspectives. Semin Cancer Biol 2023; 95:52-74. [PMID: 37473825 DOI: 10.1016/j.semcancer.2023.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Head and neck tumors (HNTs) constitute a multifaceted ensemble of pathologies that primarily involve regions such as the oral cavity, pharynx, and nasal cavity. The intricate anatomical structure of these regions poses considerable challenges to efficacious treatment strategies. Despite the availability of myriad treatment modalities, the overall therapeutic efficacy for HNTs continues to remain subdued. In recent years, the deployment of artificial intelligence (AI) in healthcare practices has garnered noteworthy attention. AI modalities, inclusive of machine learning (ML), neural networks (NNs), and deep learning (DL), when amalgamated into the holistic management of HNTs, promise to augment the precision, safety, and efficacy of treatment regimens. The integration of AI within HNT management is intricately intertwined with domains such as medical imaging, bioinformatics, and medical robotics. This article intends to scrutinize the cutting-edge advancements and prospective applications of AI in the realm of HNTs, elucidating AI's indispensable role in prevention, diagnosis, treatment, prognostication, research, and inter-sectoral integration. The overarching objective is to stimulate scholarly discourse and invigorate insights among medical practitioners and researchers to propel further exploration, thereby facilitating superior therapeutic alternatives for patients.
Collapse
Affiliation(s)
- Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Han-Qi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Xin-Yue Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Fang-Yi Huo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
9
|
Zhang YP, Zhang XY, Cheng YT, Li B, Teng XZ, Zhang J, Lam S, Zhou T, Ma ZR, Sheng JB, Tam VCW, Lee SWY, Ge H, Cai J. Artificial intelligence-driven radiomics study in cancer: the role of feature engineering and modeling. Mil Med Res 2023; 10:22. [PMID: 37189155 DOI: 10.1186/s40779-023-00458-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/04/2023] [Indexed: 05/17/2023] Open
Abstract
Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients' anatomy. However, the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians. Moreover, some potentially useful quantitative information in medical images, especially that which is not visible to the naked eye, is often ignored during clinical practice. In contrast, radiomics performs high-throughput feature extraction from medical images, which enables quantitative analysis of medical images and prediction of various clinical endpoints. Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis, demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine. However, radiomics remains in a developmental phase as numerous technical challenges have yet to be solved, especially in feature engineering and statistical modeling. In this review, we introduce the current utility of radiomics by summarizing research on its application in the diagnosis, prognosis, and prediction of treatment responses in patients with cancer. We focus on machine learning approaches, for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling. Furthermore, we introduce the stability, reproducibility, and interpretability of features, and the generalizability and interpretability of models. Finally, we offer possible solutions to current challenges in radiomics research.
Collapse
Affiliation(s)
- Yuan-Peng Zhang
- Department of Medical Informatics, Nantong University, Nantong, 226001, Jiangsu, China
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, Guangdong, China
| | - Xin-Yun Zhang
- Department of Medical Informatics, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yu-Ting Cheng
- Department of Medical Informatics, Nantong University, Nantong, 226001, Jiangsu, China
| | - Bing Li
- Department of Radiation Oncology, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, Henan, China
| | - Xin-Zhi Teng
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jiang Zhang
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Saikit Lam
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Ta Zhou
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Zong-Rui Ma
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jia-Bao Sheng
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Victor C W Tam
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Shara W Y Lee
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Hong Ge
- Department of Radiation Oncology, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, Henan, China
| | - Jing Cai
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China.
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
10
|
Ong W, Zhu L, Tan YL, Teo EC, Tan JH, Kumar N, Vellayappan BA, Ooi BC, Quek ST, Makmur A, Hallinan JTPD. Application of Machine Learning for Differentiating Bone Malignancy on Imaging: A Systematic Review. Cancers (Basel) 2023; 15:cancers15061837. [PMID: 36980722 PMCID: PMC10047175 DOI: 10.3390/cancers15061837] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
An accurate diagnosis of bone tumours on imaging is crucial for appropriate and successful treatment. The advent of Artificial intelligence (AI) and machine learning methods to characterize and assess bone tumours on various imaging modalities may assist in the diagnostic workflow. The purpose of this review article is to summarise the most recent evidence for AI techniques using imaging for differentiating benign from malignant lesions, the characterization of various malignant bone lesions, and their potential clinical application. A systematic search through electronic databases (PubMed, MEDLINE, Web of Science, and clinicaltrials.gov) was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A total of 34 articles were retrieved from the databases and the key findings were compiled and summarised. A total of 34 articles reported the use of AI techniques to distinguish between benign vs. malignant bone lesions, of which 12 (35.3%) focused on radiographs, 12 (35.3%) on MRI, 5 (14.7%) on CT and 5 (14.7%) on PET/CT. The overall reported accuracy, sensitivity, and specificity of AI in distinguishing between benign vs. malignant bone lesions ranges from 0.44–0.99, 0.63–1.00, and 0.73–0.96, respectively, with AUCs of 0.73–0.96. In conclusion, the use of AI to discriminate bone lesions on imaging has achieved a relatively good performance in various imaging modalities, with high sensitivity, specificity, and accuracy for distinguishing between benign vs. malignant lesions in several cohort studies. However, further research is necessary to test the clinical performance of these algorithms before they can be facilitated and integrated into routine clinical practice.
Collapse
Affiliation(s)
- Wilson Ong
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Correspondence: ; Tel.: +65-67725207
| | - Lei Zhu
- Department of Computer Science, School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417, Singapore
| | - Yi Liang Tan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Ee Chin Teo
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Jiong Hao Tan
- University Spine Centre, Department of Orthopaedic Surgery, National University Health System, 1E, Lower Kent Ridge Road, Singapore 119228, Singapore
| | - Naresh Kumar
- University Spine Centre, Department of Orthopaedic Surgery, National University Health System, 1E, Lower Kent Ridge Road, Singapore 119228, Singapore
| | - Balamurugan A. Vellayappan
- Department of Radiation Oncology, National University Cancer Institute Singapore, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Beng Chin Ooi
- Department of Computer Science, School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417, Singapore
| | - Swee Tian Quek
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Andrew Makmur
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - James Thomas Patrick Decourcy Hallinan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| |
Collapse
|
11
|
Ong W, Zhu L, Zhang W, Kuah T, Lim DSW, Low XZ, Thian YL, Teo EC, Tan JH, Kumar N, Vellayappan BA, Ooi BC, Quek ST, Makmur A, Hallinan JTPD. Application of Artificial Intelligence Methods for Imaging of Spinal Metastasis. Cancers (Basel) 2022; 14:4025. [PMID: 36011018 PMCID: PMC9406500 DOI: 10.3390/cancers14164025] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Spinal metastasis is the most common malignant disease of the spine. Recently, major advances in machine learning and artificial intelligence technology have led to their increased use in oncological imaging. The purpose of this study is to review and summarise the present evidence for artificial intelligence applications in the detection, classification and management of spinal metastasis, along with their potential integration into clinical practice. A systematic, detailed search of the main electronic medical databases was undertaken in concordance with the PRISMA guidelines. A total of 30 articles were retrieved from the database and reviewed. Key findings of current AI applications were compiled and summarised. The main clinical applications of AI techniques include image processing, diagnosis, decision support, treatment assistance and prognostic outcomes. In the realm of spinal oncology, artificial intelligence technologies have achieved relatively good performance and hold immense potential to aid clinicians, including enhancing work efficiency and reducing adverse events. Further research is required to validate the clinical performance of the AI tools and facilitate their integration into routine clinical practice.
Collapse
Affiliation(s)
- Wilson Ong
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
| | - Lei Zhu
- Department of Computer Science, School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417, Singapore
| | - Wenqiao Zhang
- Department of Computer Science, School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417, Singapore
| | - Tricia Kuah
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
| | - Desmond Shi Wei Lim
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
| | - Xi Zhen Low
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
| | - Yee Liang Thian
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Ee Chin Teo
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
| | - Jiong Hao Tan
- University Spine Centre, Department of Orthopaedic Surgery, National University Health System, 1E, Lower Kent Ridge Road, Singapore 119228, Singapore
| | - Naresh Kumar
- University Spine Centre, Department of Orthopaedic Surgery, National University Health System, 1E, Lower Kent Ridge Road, Singapore 119228, Singapore
| | - Balamurugan A. Vellayappan
- Department of Radiation Oncology, National University Cancer Institute Singapore, National University Hospital, Singapore 119074, Singapore
| | - Beng Chin Ooi
- Department of Computer Science, School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417, Singapore
| | - Swee Tian Quek
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Andrew Makmur
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - James Thomas Patrick Decourcy Hallinan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| |
Collapse
|
12
|
Magnetic Resonance Imaging Features on Deep Learning Algorithm for the Diagnosis of Nasopharyngeal Carcinoma. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:3790269. [PMID: 35677026 PMCID: PMC9159821 DOI: 10.1155/2022/3790269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022]
Abstract
The objective of this research was to investigate the application values of magnetic resonance imaging (MRI) features of the deep learning-based image super-resolution reconstruction algorithm optimized convolutional neural network (OPCNN) algorithm in nasopharyngeal carcinoma (NPC) lesion diagnosis. A total of 54 patients with NPC were selected as research objects. Based on the traditional CNN structure, OPCNN was proposed. Besides, MRI processed by the traditional CNN model and the U-net network model was introduced to be analyzed and compared with its algorithm. The used assessment parameters included volume transfer constant (Ktrans), rate constant (Kep), volume fraction (Ve), and apparent diffusion coefficient (ADC). The results showed that the values of Dice coefficient, peak signal-to-noise ratio (PSNR), and structural similarity (SSIM) of the OPCNN algorithm were significantly higher than those of the traditional CNN model and the U-net network model. Meanwhile, the difference was statistically significant (P < 0.05). Ktrans, Kep, and Ve in tumor lesions were significantly higher than those in the healthy side, while the ADC was significantly lower than that in the healthy side (P < 0.05). The sensitivity, specificity, and accuracy of dynamic contrast-enhancement magnetic resonance imaging (DCE-MRI) in the diagnosis of nasopharyngeal carcinoma staging were slightly higher than those in T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI). The diagnostic sensitivity of DCE-MRI was more than 85%, its diagnostic specificity was more than 75%, and its diagnostic accuracy was more than 90%. The AUC area of NPC diagnosed by combination of the three was significantly different from that diagnosed by single T2WI, DWI, and DCE-MRI (P < 0.05). The diagnostic accuracy of MRI based on the OPCNN algorithm for nasopharyngeal carcinoma (93.2%) was significantly higher than that of single MRI (76.4%). In summary, the OPCNN algorithm proposed in this study could improve the quality of MRI images, and the effect was better than the traditional deep learning model, which had the value of clinical promotion. The application value of DCE-MRI in the diagnosis of pathogenic lesions of nasopharyngeal carcinoma was better than conventional MRI. The combined application of T2WI, DWI, and DCE-MRI in the screening of nasopharyngeal carcinoma lesions could greatly improve the diagnostic accuracy of nasopharyngeal carcinoma.
Collapse
|
13
|
Xi Y, Ge X, Ji H, Wang L, Duan S, Chen H, Wang M, Hu H, Jiang F, Ding Z. Prediction of Response to Induction Chemotherapy Plus Concurrent Chemoradiotherapy for Nasopharyngeal Carcinoma Based on MRI Radiomics and Delta Radiomics: A Two-Center Retrospective Study. Front Oncol 2022; 12:824509. [PMID: 35530350 PMCID: PMC9074388 DOI: 10.3389/fonc.2022.824509] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/23/2022] [Indexed: 12/03/2022] Open
Abstract
Objective We aimed to establish an MRI radiomics model and a Delta radiomics model to predict tumor retraction after induction chemotherapy (IC) combined with concurrent chemoradiotherapy (CCRT) for primary nasopharyngeal carcinoma (NPC) in non-endemic areas and to validate its efficacy. Methods A total of 272 patients (155 in the training set, 66 in the internal validation set, and 51 in the external validation set) with biopsy pathologically confirmed primary NPC who were screened for pretreatment MRI were retrospectively collected. The NPC tumor was delineated as a region of interest in the two sequenced images of MRI before treatment and after IC, followed by radiomics feature extraction. With the use of maximum relevance minimum redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) algorithms, logistic regression was performed to establish pretreatment MRI radiomics and pre- and post-IC Delta radiomics models. The optimal Youden’s index was taken; the receiver operating characteristic (ROC) curve, calibration curve, and decision curve were drawn to evaluate the predictive efficacy of different models. Results Seven optimal feature subsets were selected from the pretreatment MRI radiomics model, and twelve optimal subsets were selected from the Delta radiomics model. The area under the ROC curve, accuracy, sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) of the MRI radiomics model were 0.865, 0.827, 0.837, 0.813, 0.776, and 0.865, respectively; the corresponding indicators of the Delta radiomics model were 0.941, 0.883, 0.793, 0.968, 0.833, and 0.958, respectively. Conclusion The pretreatment MRI radiomics model and pre- and post-IC Delta radiomics models could predict the IC-CCRT response of NPC in non-epidemic areas.
Collapse
Affiliation(s)
- Yuzhen Xi
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- Department of Radiology, 903rd Hospital of PLA, Hangzhou, China
| | - Xiuhong Ge
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiming Ji
- Department of Radiology, Liangzhu Hospital, Hangzhou, China
| | - Luoyu Wang
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Shaofeng Duan
- GE Healthcare, Precision Health Institution, Shanghai, China
| | - Haonan Chen
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengze Wang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital Affiliated to Medical College Zhejiang University, Hangzhou, China
| | - Feng Jiang
- Department of Head and Neck Radiotherapy, Zhejiang Cancer Hospital/Zhejiang Province Key Laboratory of Radiation Oncology, Hangzhou, China
- *Correspondence: Feng Jiang, ; Zhongxiang Ding,
| | - Zhongxiang Ding
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Feng Jiang, ; Zhongxiang Ding,
| |
Collapse
|
14
|
Faiella E, Santucci D, Calabrese A, Russo F, Vadalà G, Zobel BB, Soda P, Iannello G, de Felice C, Denaro V. Artificial Intelligence in Bone Metastases: An MRI and CT Imaging Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031880. [PMID: 35162902 PMCID: PMC8834956 DOI: 10.3390/ijerph19031880] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 02/01/2023]
Abstract
(1) Background: The purpose of this review is to study the role of radiomics as a supporting tool in predicting bone disease status, differentiating benign from malignant bone lesions, and characterizing malignant bone lesions. (2) Methods: Two reviewers conducted the literature search independently. Thirteen articles on radiomics as a decision support tool for bone lesions were selected. The quality of the methodology was evaluated according to the radiomics quality score (RQS). (3) Results: All studies were published between 2018 and 2021 and were retrospective in design. Eleven (85%) studies were MRI-based, and two (15%) were CT-based. The sample size was <200 patients for all studies. There is significant heterogeneity in the literature, as evidenced by the relatively low RQS value (average score = 22.6%). There is not a homogeneous protocol used for MRI sequences among the different studies, although the highest predictive ability was always obtained in T2W-FS. Six articles (46%) reported on the potential application of the model in a clinical setting with a decision curve analysis (DCA). (4) Conclusions: Despite the variability in the radiomics method application, the similarity of results and conclusions observed is encouraging. Substantial limits were found; prospective and multicentric studies are needed to affirm the role of radiomics as a supporting tool.
Collapse
Affiliation(s)
- Eliodoro Faiella
- Department of Radiology, University of Rome “Campus Bio-Medico”, Via Alvaro del Portillo, 00128 Roma, Italy; (E.F.); (D.S.); (B.B.Z.)
| | - Domiziana Santucci
- Department of Radiology, University of Rome “Campus Bio-Medico”, Via Alvaro del Portillo, 00128 Roma, Italy; (E.F.); (D.S.); (B.B.Z.)
| | - Alessandro Calabrese
- Department of Radiology, University of Rome “Sapienza”, Viale del Policlinico, 00161 Roma, Italy;
- Correspondence:
| | - Fabrizio Russo
- Department of Orthopaedic and Trauma Surgery, University of Rome “Campus Bio-Medico”, Via Alvaro del Portillo, 00128 Roma, Italy; (F.R.); (G.V.); (V.D.)
| | - Gianluca Vadalà
- Department of Orthopaedic and Trauma Surgery, University of Rome “Campus Bio-Medico”, Via Alvaro del Portillo, 00128 Roma, Italy; (F.R.); (G.V.); (V.D.)
| | - Bruno Beomonte Zobel
- Department of Radiology, University of Rome “Campus Bio-Medico”, Via Alvaro del Portillo, 00128 Roma, Italy; (E.F.); (D.S.); (B.B.Z.)
| | - Paolo Soda
- Unit of Computer Systems and Bioinformatics, Department of Engineering, University of Rome “Campus Bio-Medico”, Via Alvaro del Portillo, 00128 Roma, Italy; (P.S.); (G.I.)
| | - Giulio Iannello
- Unit of Computer Systems and Bioinformatics, Department of Engineering, University of Rome “Campus Bio-Medico”, Via Alvaro del Portillo, 00128 Roma, Italy; (P.S.); (G.I.)
| | - Carlo de Felice
- Department of Radiology, University of Rome “Sapienza”, Viale del Policlinico, 00161 Roma, Italy;
| | - Vincenzo Denaro
- Department of Orthopaedic and Trauma Surgery, University of Rome “Campus Bio-Medico”, Via Alvaro del Portillo, 00128 Roma, Italy; (F.R.); (G.V.); (V.D.)
| |
Collapse
|
15
|
Zhang YM, Gong GZ, Qiu QT, Han YW, Lu HM, Yin Y. Radiomics for Diagnosis and Radiotherapy of Nasopharyngeal Carcinoma. Front Oncol 2022; 11:767134. [PMID: 35070971 PMCID: PMC8766636 DOI: 10.3389/fonc.2021.767134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor of the head and neck. The primary clinical manifestations are nasal congestion, blood-stained nasal discharge, headache, and hearing loss. It occurs frequently in Southeast Asia, North Africa, and especially in southern China. Radiotherapy is the main treatment, and currently, imaging examinations used for the diagnosis, treatment, and prognosis of NPC include computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET)-CT, and PET-MRI. These methods play an important role in target delineation, radiotherapy planning design, dose evaluation, and outcome prediction. However, the anatomical and metabolic information obtained at the macro level of images may not meet the increasing accuracy required for radiotherapy. As a technology used for mining deep image information, radiomics can provide further information for the diagnosis and treatment of NPC and promote individualized precision radiotherapy in the future. This paper reviews the application of radiomics in the diagnosis and treatment of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Yu-Mei Zhang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Guan-Zhong Gong
- Department of Radiotherapy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qing-Tao Qiu
- Department of Radiotherapy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yun-Wei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - He-Ming Lu
- Department of Radiotherapy, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yong Yin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Radiotherapy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
16
|
Li S, Deng YQ, Zhu ZL, Hua HL, Tao ZZ. A Comprehensive Review on Radiomics and Deep Learning for Nasopharyngeal Carcinoma Imaging. Diagnostics (Basel) 2021; 11:1523. [PMID: 34573865 PMCID: PMC8465998 DOI: 10.3390/diagnostics11091523] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 12/23/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumours of the head and neck, and improving the efficiency of its diagnosis and treatment strategies is an important goal. With the development of the combination of artificial intelligence (AI) technology and medical imaging in recent years, an increasing number of studies have been conducted on image analysis of NPC using AI tools, especially radiomics and artificial neural network methods. In this review, we present a comprehensive overview of NPC imaging research based on radiomics and deep learning. These studies depict a promising prospect for the diagnosis and treatment of NPC. The deficiencies of the current studies and the potential of radiomics and deep learning for NPC imaging are discussed. We conclude that future research should establish a large-scale labelled dataset of NPC images and that studies focused on screening for NPC using AI are necessary.
Collapse
Affiliation(s)
- Song Li
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China; (S.L.); (Y.-Q.D.); (H.-L.H.)
| | - Yu-Qin Deng
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China; (S.L.); (Y.-Q.D.); (H.-L.H.)
| | - Zhi-Ling Zhu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Hong-Li Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China; (S.L.); (Y.-Q.D.); (H.-L.H.)
| | - Ze-Zhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China; (S.L.); (Y.-Q.D.); (H.-L.H.)
| |
Collapse
|
17
|
Spadarella G, Calareso G, Garanzini E, Ugga L, Cuocolo A, Cuocolo R. MRI based radiomics in nasopharyngeal cancer: Systematic review and perspectives using radiomic quality score (RQS) assessment. Eur J Radiol 2021; 140:109744. [PMID: 33962253 DOI: 10.1016/j.ejrad.2021.109744] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND MRI based radiomics has the potential to better define tumor biology compared to qualitative MRI assessment and support decisions in patients affected by nasopharyngeal carcinoma. Aim of this review was to systematically evaluate the methodological quality of studies using MRI- radiomics for nasopharyngeal cancer patient evaluation. METHODS A systematic search was performed in PUBMED, WEB OF SCIENCE and SCOPUS using "MRI, magnetic resonance imaging, radiomic, texture analysis, nasopharyngeal carcinoma, nasopharyngeal cancer" in all possible combinations. The methodological quality of study included ( = 24) was evaluated according to the RQS (Radiomic quality score). Subgroup, for journal type (imaging/clinical) and biomarker (prognostic/predictive), and correlation, between RQS and journal Impact Factor, analyses were performed. Mann-Whitney U test and Spearman's correlation were performed. P value < .05 were defined as statistically significant. RESULTS Overall, no studies reported a phantom study or a test re-test for assessing stability in image, biological correlation or open science data. Only 8% of them included external validation. Almost half of articles (45 %) performed multivariable analysis with non-radiomics features. Only 1 study was prospective (4%). The mean RQS was 7.5 ± 5.4. No significant differences were detected between articles published in clinical/imaging journal and between studies with a predictive or prognostic biomarker. No significant correlation was found between total RQS and Impact Factor of the year of publication (p always > 0.05). CONCLUSIONS Radiomic articles in nasopharyngeal cancer are mostly of low methodological quality. The greatest limitations are the lack of external validation, biological correlates, prospective design and open science.
Collapse
Affiliation(s)
- Gaia Spadarella
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy.
| | - Giuseppina Calareso
- Department of Radiology, Fondazione IRCCS, Istituto Nazionale Dei Tumori, Milan, Italy
| | - Enrico Garanzini
- Department of Radiology, Fondazione IRCCS, Istituto Nazionale Dei Tumori, Milan, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Renato Cuocolo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy; Laboratory of Augmented Reality for Health Monitoring (ARHeMLab), Department of Electrical Engineering and Information Technology, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
18
|
Veres G, Vas NF, Lyngby Lassen M, Béresová M, K. Krizsan A, Forgács A, Berényi E, Balkay L. Effect of grey-level discretization on texture feature on different weighted MRI images of diverse disease groups. PLoS One 2021; 16:e0253419. [PMID: 34143830 PMCID: PMC8213143 DOI: 10.1371/journal.pone.0253419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Many studies of MRI radiomics do not include the discretization method used for the analyses, which might indicate that the discretization methods used are considered irrelevant. Our goals were to compare three frequently used discretization methods (lesion relative resampling (LRR), lesion absolute resampling (LAR) and absolute resampling (AR)) applied to the same data set, along with two different lesion segmentation approaches. METHODS We analyzed the effects of altering bin widths or bin numbers for the three different sampling methods using 40 texture indices (TIs). The impact was evaluated on brain MRI studies obtained for 71 patients divided into three different disease groups: multiple sclerosis (MS, N = 22), ischemic stroke (IS, N = 22), cancer patients (N = 27). Two different MRI acquisition protocols were considered for all patients, a T2- and a post-contrast 3D T1-weighted MRI sequence. Elliptical and manually drawn VOIs were employed for both imaging series. Three different types of gray-level discretization methods were used: LRR, LAR and AR. Hypothesis tests were done among all diseased and control areas to compare the TI values in these areas. We also did correlation analyses between TI values and lesion volumes. RESULTS In general, no significant differences were reported in the results when employing the AR and LAR discretization methods. It was found that employing 38 TIs introduced variation in the results when the number of bin parameters was altered, suggesting that both the degree and direction of monotonicity between each TI value and binning parameters were characteristic for each TI. Furthermore, while TIs were changing with altering binning values, no changes correlated to neither disease nor the MRI sequence. We found that most indices correlated weakly with the volume, while the correlation coefficients were independent of both diseases analyzed and MR contrast. Several cooccurrence-matrix based texture parameters show a definite higher correlation when employing the LRR discretization method However, with the best correlations obtained for the manually drawn VOI. Hypothesis tests among all disease and control areas (co-lateral hemisphere) revealed that the AR or LAR discretization techniques provide more suitable texture features than LRR. In addition, the manually drawn segmentation gave fewer significantly different TIs than the ellipsoid segmentations. In addition, the amount of TIs with significant differences was increasing with increasing the number of bins, or decreasing bin widths. CONCLUSION Our findings indicate that the AR discretization method may offer the best texture analysis in MR image assessments. Employing too many bins or too large bin widths might reduce the selection of TIs that can be used for differential diagnosis. In general, more statistically different TIs were observed for elliptical segmentations when compared to the manually drawn VOIs. In the texture analysis of MR studies, studies and publications should report on all important parameters and methods related to data collection, corrections, normalization, discretization, and segmentation.
Collapse
Affiliation(s)
- Gergő Veres
- Division of Radiology and Imaging Science, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Norman Félix Vas
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Martin Lyngby Lassen
- Cedars-Sinai Medical Center, AIM Group, Los Angeles, CA, United States of America
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, University of Copenhagen, Copenhagen, Denmark
| | - Monika Béresová
- Division of Radiology and Imaging Science, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | | | - Ervin Berényi
- Division of Radiology and Imaging Science, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Balkay
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
19
|
Zhang Z, Zhang Y, Qiu Y, Mo W, Yang Z. Human/eukaryotic ribosomal protein L14 (RPL14/eL14) overexpression represses proliferation, migration, invasion and EMT process in nasopharyngeal carcinoma. Bioengineered 2021; 12:2175-2186. [PMID: 34057029 PMCID: PMC8806664 DOI: 10.1080/21655979.2021.1932225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Although human/eukaryotic ribosomal protein L14 (RPL14/eL14) is known to be associated with a variety of cancers, its role in nasopharyngeal carcinoma (NPC) remains unclear. The aim of this study was to explore the impact of RPL14(eL14) in NPC. The results of quantitative real-time polymerase chain reaction (qRT-PCR), western blot, and immunohistochemical staining revealed that the expression of RPL14(eL14) significantly reduced in NPC tissues and cells. Furthermore, the protein expression of RPL14(eL14) was linked to NPC-related clinical pathological features, including the T and N classification of Tumor Node Metastasis (TNM) staging (all p < 0.05). Cell counting kit-8 (CCK-8) assay and colony formation assay revealed that RPL14(eL14) overexpression repressed NPC cell proliferation. In cell cycle assay, RPL14(eL14) overexpression significantly blocked NPC cells in S phase. Overexpression of RPL14(eL14) repressed cell migration and invasion in NPC as shown by transwell assay and cell scratch healing assay. In addition, RPL14(eL14) was closely correlated with the expression of epithelial–mesenchymal transition (EMT) biomarkers, including E-cadherin, N-cadherin, and vimentin as detected by western blot. In conclusion, our results revealed that RPL14(eL14) may be considered as an antioncogene in NPC, which greatly suppresses cancer progression.
Collapse
Affiliation(s)
- Zunni Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yalong Zhang
- Department of Ultrasonic Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yuling Qiu
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Wuning Mo
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Zheng Yang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
20
|
Wang G, Ma C. Application and prospect of radiomics in spinal cord and spine system diseases: A narrative review. GLIOMA 2021. [DOI: 10.4103/glioma.glioma_14_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|