1
|
Mikulić M, Vičević D, Nagy E, Napravnik M, Štajduhar I, Tschauner S, Hržić F. Balancing Performance and Interpretability in Medical Image Analysis: Case study of Osteopenia. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025; 38:177-190. [PMID: 39020155 PMCID: PMC11810851 DOI: 10.1007/s10278-024-01194-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 07/19/2024]
Abstract
Multiple studies within the medical field have highlighted the remarkable effectiveness of using convolutional neural networks for predicting medical conditions, sometimes even surpassing that of medical professionals. Despite their great performance, convolutional neural networks operate as black boxes, potentially arriving at correct conclusions for incorrect reasons or areas of focus. Our work explores the possibility of mitigating this phenomenon by identifying and occluding confounding variables within images. Specifically, we focused on the prediction of osteopenia, a serious medical condition, using the publicly available GRAZPEDWRI-DX dataset. After detection of the confounding variables in the dataset, we generated masks that occlude regions of images associated with those variables. By doing so, models were forced to focus on different parts of the images for classification. Model evaluation using F1-score, precision, and recall showed that models trained on non-occluded images typically outperformed models trained on occluded images. However, a test where radiologists had to choose a model based on the focused regions extracted by the GRAD-CAM method showcased different outcomes. The radiologists' preference shifted towards models trained on the occluded images. These results suggest that while occluding confounding variables may degrade model performance, it enhances interpretability, providing more reliable insights into the reasoning behind predictions. The code to repeat our experiment is available on the following link: https://github.com/mikulicmateo/osteopenia .
Collapse
Affiliation(s)
- Mateo Mikulić
- University of Rijeka, Faculty of Engineering, Department of Computer Engineering, Vukovarska 58, Rijeka, 51000, Croatia
| | - Dominik Vičević
- University of Rijeka, Faculty of Engineering, Department of Computer Engineering, Vukovarska 58, Rijeka, 51000, Croatia
| | - Eszter Nagy
- Medical University of Graz, Department of Radiology, Division of Pediatric Radiology, Graz, 8036, Austria
| | - Mateja Napravnik
- University of Rijeka, Faculty of Engineering, Department of Computer Engineering, Vukovarska 58, Rijeka, 51000, Croatia
| | - Ivan Štajduhar
- University of Rijeka, Faculty of Engineering, Department of Computer Engineering, Vukovarska 58, Rijeka, 51000, Croatia
- University of Rijeka, Center for Artificial Intelligence and Cybersecurity, Radmile Matejčić 2, Rijeka, 51000, Croatia
| | - Sebastian Tschauner
- Medical University of Graz, Department of Radiology, Division of Pediatric Radiology, Graz, 8036, Austria
| | - Franko Hržić
- University of Rijeka, Faculty of Engineering, Department of Computer Engineering, Vukovarska 58, Rijeka, 51000, Croatia.
- University of Rijeka, Center for Artificial Intelligence and Cybersecurity, Radmile Matejčić 2, Rijeka, 51000, Croatia.
| |
Collapse
|
2
|
Chen Q, Liu D, Li X, Li F, Guo S, Wang S, Yuan W, Chen P, Li P, Li F, Zhao C, Min W, Hu Z. High prevalence of low bone mineral density in middle-aged adults in Shanghai: a cross-sectional study. BMC Musculoskelet Disord 2024; 25:1097. [PMID: 39736676 DOI: 10.1186/s12891-024-08239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/23/2024] [Indexed: 01/01/2025] Open
Abstract
PURPOSE To assess bone mineral density (BMD) in middle-aged individuals in Shanghai, in order to improve awareness of osteopenia and osteoporosis screening. METHODS The clinical data of 1107 permanent residents of Shanghai aged 40-60 years were collected using a random cluster sampling method. Osteoporosis questionnaire survey and BMD test were conducted. Mann-Whitney U and Chi-square test were used to compare sex, age and body mass index at different stages of bone mass, and Pearson test was used to conduct correlation analysis. Logistic regression was used to analyze the influencing factors. RESULTS The detection rates of osteopenia and osteoporosis were 59% and 12.5% respectively, and bone mineral density was correlated with sex, age, and body mass index (P < 0.05). CONCLUSION The incidence of low bone mass is high in the assessed population, screening for low bone mass should be actively carried out to improve public awareness. It is also good for public health management. REGISTERED CLINICAL TRIAL The trial was approved by Chinese Clinical Trial Registry on February 11, 2021(ChiCTR2100043369).
Collapse
Affiliation(s)
- Qian Chen
- Longhua Clinical Medical College of Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Dan Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Xuefei Li
- Longhua Clinical Medical College of Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Fangfang Li
- Longhua Clinical Medical College of Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Suxia Guo
- Longhua Clinical Medical College of Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Shiyun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Weina Yuan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Pinghua Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Pan Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Fangyu Li
- Longhua Clinical Medical College of Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Changwei Zhao
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, PR China
| | - Wen Min
- Nanjing University of Traditional Chinese Medicine, Nanjing, 210023, PR China
| | - Zhijun Hu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China.
| |
Collapse
|
3
|
Pan Y, Wan Y, Wu Y, Lin C, Ye Q, Liu J, Jiang H, Wang H, Wang Y. Radiomics models based on thoracic and upper lumbar spine in chest LDCT to predict low bone mineral density. Sci Rep 2024; 14:31323. [PMID: 39732811 DOI: 10.1038/s41598-024-82642-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/06/2024] [Indexed: 12/30/2024] Open
Abstract
This study aims to develop and validate different radiomics models based on thoracic and upper lumbar spine in chest low-dose computed tomography (LDCT) to predict low bone mineral density (BMD) using quantitative computed tomography (QCT) as standard of reference. A total of 905 participants underwent chest LDCT and paired QCT BMD examination were retrospectively included from August 2018 and June 2019. The patients with low BMD (n = 388) and the normal (n = 517) were randomly divided into a training set (n = 622) and a validation set (n = 283). Radiomics features (RFs) were extracted from the single and consecutive vertebrae in chest LDCT images to construct the single vertebra RFs models, mixed RFs models and Radscore models, respectively. The performance of these models was evaluated by the area under the curve (AUC) of receiver operator characteristic curve, using QCT as standard of reference. The Radscore models, mixed RFs models, and single vertebra RFs models yielded the AUC values ranging from 0.809 to 0.906, 0.792 to 0.883, and 0.731 to 0.884 for predicting low BMD in the validation set, respectively. For predicting low BMD, the Radscore model of L1-L2 vertebrae yielded the highest AUC of 0.906, and of T1-T3 yielded the lowest AUC of 0.809 (P < 0.05), respectively. However, there was no significant difference among the AUC values of three Radscore models constructed on the vertebrae of T4-T6 (AUC = 0.855), T7-T9 (AUC = 0.845), and T10-T12 (AUC = 0.871) for predicting low BMD in the validation set (P > 0.1). The Radscore model of L1-L2 have potential to serve as an important tool for predicting and screening low BMD from normal in chest LDCT images.
Collapse
Affiliation(s)
- Yaling Pan
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Yidong Wan
- HiThink Research, Hangzhou, 310023, Zhejiang, China
- Zhejiang Herymed Technology Co., Ltd., Hangzhou, 310023, Zhejiang, China
| | - Yinbo Wu
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Chunmiao Lin
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Qin Ye
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Jing Liu
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Hongyang Jiang
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Huogen Wang
- HiThink Research, Hangzhou, 310023, Zhejiang, China.
- Zhejiang Herymed Technology Co., Ltd., Hangzhou, 310023, Zhejiang, China.
| | - Yajie Wang
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
4
|
Chen J, Liu S, Lin Y, Hu W, Shi H, Liao N, Zhou M, Gao W, Chen Y, Shi P. The quality and accuracy of radiomics model in diagnosing osteoporosis: a systematic review and meta-analysis. Acad Radiol 2024:S1076-6332(24)00940-1. [PMID: 39701845 DOI: 10.1016/j.acra.2024.11.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/05/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024]
Abstract
RATIONALE AND OBJECTIVES The purpose of this study is to conduct a meta-analysis to evaluate the diagnostic performance of current radiomics models for diagnosing osteoporosis, as well as to assess the methodology and reporting quality of these radiomics studies. METHODS According to PRISMA guidelines, four databases including MEDLINE, Web of Science, Embase and the Cochrane Library were searched systematically to select relevant studies published before July 18, 2024. The articles that used radiomics models for diagnosing osteoporosis were considered eligible. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool and radiomics quality score (RQS) were used to assess the quality of included studies. The pooled diagnostic odds ratio (DOR), sensitivity, specificity, area under the summary receiver operator characteristic curve (AUC) were calculated to estimated diagnostic efficiency of pooled model. RESULTS A total of 25 studies were included, of which 24 provided usable data that were utilized for the meta-analysis, including 1553 patients with osteoporosis and 2200 patients without osteoporosis. The mean RQS score of included studies was 11.48 ± 4.92, with an adherence rate of 31.89%. The pooled DOR, sensitivity and specificity for model to diagnose osteoporosis were 81.72 (95% CI: 51.08 - 130.73), 0.90 (95% CI: 0.87-0.93) and 0.90 (95% CI: 0.87-0.93), respectively. The AUC was 0.96, indicating a high diagnostic capability. Subgroup analysis revealed that the use of different imaging modalities to construct radiomics models might be one source of heterogeneity. Radiomics models built using CT images and deep learning algorithms demonstrated higher diagnostic accuracy for osteoporosis. CONCLUSION Radiomics models for the diagnosis of osteoporosis have high diagnostic efficacy. In the future, radiomics models for diagnosing osteoporosis will be an efficient instrument to assist clinical doctors in screening osteoporosis patients. However, relevant guidelines should be followed strictly to improve the quality of radiomics studies.
Collapse
Affiliation(s)
- Jianan Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China (J.C., S.L., Y.L., W.H., H.S., N.L., W.G., Y.C.)
| | - Song Liu
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China (J.C., S.L., Y.L., W.H., H.S., N.L., W.G., Y.C.)
| | - Youxi Lin
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China (J.C., S.L., Y.L., W.H., H.S., N.L., W.G., Y.C.)
| | - Wenjun Hu
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China (J.C., S.L., Y.L., W.H., H.S., N.L., W.G., Y.C.)
| | - Huihong Shi
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China (J.C., S.L., Y.L., W.H., H.S., N.L., W.G., Y.C.)
| | - Nianchun Liao
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China (J.C., S.L., Y.L., W.H., H.S., N.L., W.G., Y.C.)
| | - Miaomiao Zhou
- Department of Endocrinology, People's Hospital of Dingbian, Dingbian, Shanxi, PR China (M.Z.)
| | - Wenjie Gao
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China (J.C., S.L., Y.L., W.H., H.S., N.L., W.G., Y.C.)
| | - Yanbo Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China (J.C., S.L., Y.L., W.H., H.S., N.L., W.G., Y.C.)
| | - Peijie Shi
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China (P.S.).
| |
Collapse
|
5
|
Chen R, Yang C, Yang F, Yang A, Xiao H, Peng B, Chen C, Geng B, Xia Y. Targeting the mTOR-Autophagy Axis: Unveiling Therapeutic Potentials in Osteoporosis. Biomolecules 2024; 14:1452. [PMID: 39595628 PMCID: PMC11591800 DOI: 10.3390/biom14111452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/02/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Osteoporosis (OP) is a widespread age-related disorder marked by decreased bone density and increased fracture risk, presenting a significant public health challenge. Central to the development and progression of OP is the dysregulation of the mechanistic target of the rapamycin (mTOR)-signaling pathway, which plays a critical role in cellular processes including autophagy, growth, and proliferation. The mTOR-autophagy axis is emerging as a promising therapeutic target due to its regulatory capacity in bone metabolism and homeostasis. This review aims to (1) elucidate the role of mTOR signaling in bone metabolism and its dysregulation in OP, (2) explore the interplay between mTOR and autophagy in the context of bone cell activity, and (3) assess the therapeutic potential of targeting the mTOR pathway with modulators as innovative strategies for OP treatment. By examining the interactions among autophagy, mTOR, and OP, including insights from various types of OP and the impact on different bone cells, this review underscores the complexity of mTOR's role in bone health. Despite advances, significant gaps remain in understanding the detailed mechanisms of mTOR's effects on autophagy and bone cell function, highlighting the need for comprehensive clinical trials to establish the efficacy and safety of mTOR inhibitors in OP management. Future research directions include clarifying mTOR's molecular interactions with bone metabolism and investigating the combined benefits of mTOR modulation with other therapeutic approaches. Addressing these challenges is crucial for developing more effective treatments and improving outcomes for individuals with OP, thereby unveiling the therapeutic potentials of targeting the mTOR-autophagy axis in this prevalent disease.
Collapse
Affiliation(s)
- Rongjin Chen
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou 730030, China; (R.C.); (C.Y.); (F.Y.); (A.Y.); (H.X.); (B.P.); (C.C.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
- Department of Orthopedics, Tianshui Hand and Foot Surgery Hospital, Tianshui 741000, China
| | - Chenhui Yang
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou 730030, China; (R.C.); (C.Y.); (F.Y.); (A.Y.); (H.X.); (B.P.); (C.C.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
- Department of Orthopedics, Tianshui Hand and Foot Surgery Hospital, Tianshui 741000, China
| | - Fei Yang
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou 730030, China; (R.C.); (C.Y.); (F.Y.); (A.Y.); (H.X.); (B.P.); (C.C.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Ao Yang
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou 730030, China; (R.C.); (C.Y.); (F.Y.); (A.Y.); (H.X.); (B.P.); (C.C.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Hefang Xiao
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou 730030, China; (R.C.); (C.Y.); (F.Y.); (A.Y.); (H.X.); (B.P.); (C.C.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Bo Peng
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou 730030, China; (R.C.); (C.Y.); (F.Y.); (A.Y.); (H.X.); (B.P.); (C.C.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Changshun Chen
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou 730030, China; (R.C.); (C.Y.); (F.Y.); (A.Y.); (H.X.); (B.P.); (C.C.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Bin Geng
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou 730030, China; (R.C.); (C.Y.); (F.Y.); (A.Y.); (H.X.); (B.P.); (C.C.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Yayi Xia
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou 730030, China; (R.C.); (C.Y.); (F.Y.); (A.Y.); (H.X.); (B.P.); (C.C.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
6
|
Pan J, Lin PC, Gong SC, Wang Z, Cao R, Lv Y, Zhang K, Wang L. Feasibility study of opportunistic osteoporosis screening on chest CT using a multi-feature fusion DCNN model. Arch Osteoporos 2024; 19:98. [PMID: 39414670 PMCID: PMC11485148 DOI: 10.1007/s11657-024-01455-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
A multi-feature fusion DCNN model for automated evaluation of lumbar vertebrae L1 on chest combined with clinical information and radiomics permits estimation of volumetric bone mineral density for evaluation of osteoporosis. PURPOSE To develop a multi-feature deep learning model based on chest CT, combined with clinical information and radiomics to explore the feasibility in screening for osteoporosis based on estimation of volumetric bone mineral density. METHODS The chest CT images of 1048 health check subjects were retrospectively collected as the master dataset, and the images of 637 subjects obtained from a different CT scanner were used for the external validation cohort. The subjects were divided into three categories according to the quantitative CT (QCT) examination, namely, normal group, osteopenia group, and osteoporosis group. Firstly, a deep learning-based segmentation model was constructed. Then, classification models were established and selected, and then, an optimal model to build bone density value prediction regression model was chosen. RESULTS The DSC value was 0.951 ± 0.030 in the testing dataset and 0.947 ± 0.060 in the external validation cohort. The multi-feature fusion model based on the lumbar 1 vertebra had the best performance in the diagnosis. The area under the curve (AUC) of diagnosing normal, osteopenia, and osteoporosis was 0.992, 0.973, and 0.989. The mean absolute errors (MAEs) of the bone density prediction regression model in the test set and external testing dataset are 8.20 mg/cm3 and 9.23 mg/cm3, respectively, and the root mean square errors (RMSEs) are 10.25 mg/cm3 and 11.91 mg/cm3, respectively. The R-squared values are 0.942 and 0.923, respectively. The Pearson correlation coefficients are 0.972 and 0.965. CONCLUSION The multi-feature fusion DCNN model based on only the lumbar 1 vertebrae and clinical variables can perform bone density three-classification diagnosis and estimate volumetric bone mineral density. If confirmed in independent populations, this automated opportunistic chest CT evaluation can help clinical screening of large-sample populations to identify subjects at high risk of osteoporotic fracture.
Collapse
Affiliation(s)
- Jing Pan
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Department of Radiology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210000, Jiangsu, China
| | - Peng-Cheng Lin
- School of Electrical Engineering, Nantong University, Nantong, 226001, Jiangsu, China
| | - Shen-Chu Gong
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Ze Wang
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Rui Cao
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Yuan Lv
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Kun Zhang
- School of Electrical Engineering, Nantong University, Nantong, 226001, Jiangsu, China.
| | - Lin Wang
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
7
|
Wang J, He Y, Yan L, Chen S, Zhang K. Predicting Osteoporosis and Osteopenia by Fusing Deep Transfer Learning Features and Classical Radiomics Features Based on Single-Source Dual-energy CT Imaging. Acad Radiol 2024; 31:4159-4170. [PMID: 38693026 DOI: 10.1016/j.acra.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/14/2024] [Accepted: 04/14/2024] [Indexed: 05/03/2024]
Abstract
RATIONALE AND OBJECTIVES To develop and validate a predictive model for osteoporosis and osteopenia prediction by fusing deep transfer learning (DTL) features and classical radiomics features based on single-source dual-energy computed tomography (CT) virtual monochromatic imaging. METHODS A total of 606 lumbar vertebrae with dual-energy CT imaging and quantitative CT (QCT) evaluation were included in the retrospective study and randomly divided into the training (n = 424) and validation (n = 182) cohorts. Radiomics features and DTL features were extracted from 70-keV monochromatic CT images, followed by feature selection and model construction, radiomics and DTL features models were established. Then, we integrated the selected two types of features into a features fusion model. We developed a two-level classifier for the hierarchical pairwise classification of each vertebra. All the vertebrae were first classified into osteoporosis and non-osteoporosis groups, then non-osteoporosis group was classified into osteopenia and normal groups. QCT was used as reference. The predictive performance and clinical usefulness of three models were evaluated and compared. RESULTS The area under the curve (AUC) of the features fusion, radiomics and DTL models for the classification between osteoporosis and non-osteoporosis were 0.981, 0.999, 0.997 in the training cohort and 0.979, 0.943, 0.848 in the validation cohort. Furthermore, the AUCs of the previously mentioned models for the differentiation between osteopenia and normal were 0.994, 0.971, 0.996 in the training cohort and 0.990, 0.968, 0.908 in the validation cohort. The overall accuracy of the previously mentioned models for two-level classifications was 0.979, 0.955, 0.908 in the training cohort and 0.918, 0.885, 0.841 in the validation cohort. Decision curve analysis showed that all models had high clinical value. CONCLUSION The feature fusion model can be used for osteoporosis and osteopenia prediction with improved predictive ability over a radiomics model or a DTL model alone.
Collapse
Affiliation(s)
- Jinling Wang
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha 410007, PR China
| | - Yewen He
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha 410007, PR China
| | - Luyou Yan
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha 410007, PR China
| | - Suping Chen
- GE Healthcare (Shanghai) Co., Ltd., Shanghai 201203, PR China
| | - Kun Zhang
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha 410007, PR China; College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha 410208, PR China.
| |
Collapse
|
8
|
Kang SR, Wang K. Radiomic nomogram based on lumbar spine magnetic resonance images to diagnose osteoporosis. Acta Radiol 2024; 65:950-958. [PMID: 38651258 DOI: 10.1177/02841851241242052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
BACKGROUND We aimed to establish a novel model using a radiomics analysis of magnetic resonance (MR) images for predicting osteoporosis. PURPOSE To investigate the effectiveness of a radiomics approach utilizing magnetic resonance imaging (MRI) of the lumbar spine in identifying osteoporosis. MATERIAL AND METHODS In this retrospective study, a total of 291 patients who underwent MRI were analyzed. Radiomics features were extracted from the MRI scans of all 1455 lumbar vertebrae, and build the radiomics model based on T2-weighted (T2W), T1-weighted (T1W), and T2W + T1W imaging. The performance of the combined model was assessed using metrics such as the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and accuracy. The AUCs of these models were compared using the DeLong test. Their clinical usefulness was assessed using a decision curve analysis. RESULTS T2W, T1W, and T1W + T2W imaging retained 27, 27, and 17 non-zero coefficients, respectively. The AUCS about radiomics scores based on T2W, T1W, and T1W + T2W imaging were 0.894, 0.934, and 0.945, respectively, which all performed better than the clinical model significantly. The rad-signatures based on T1W + T2W imaging, which exhibited a stronger predictive power, were included in the creation of the nomogram for osteoporosis diagnosis, and the AUC was 0.965 (95% confidence interval (CI)=0.944-0.986) in the training cohort and 0.917 (95% CI=0.738-1.000) in the test cohort. The calibration curve indicated that the radiomics nomogram had considerable clinical usefulness in prediction, observation, and decision curve analysis. CONCLUSION A reliable and powerful tool for identifying osteoporosis can be provided by the nomogram that combines the T1W and T2W imaging radiomics score with clinical risk factors.
Collapse
Affiliation(s)
- Si-Ru Kang
- Department of Radiology, Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, PR China
| | - Kai Wang
- Department of Orthopedics, Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, PR China
| |
Collapse
|
9
|
Tong X, Wang S, Cheng Q, Fan Y, Fang X, Wei W, Li J, Liu Y, Liu L. Effect of fully automatic classification model from different tube voltage images on bone density screening: A self-controlled study. Eur J Radiol 2024; 177:111521. [PMID: 38850722 DOI: 10.1016/j.ejrad.2024.111521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/27/2024] [Accepted: 05/19/2024] [Indexed: 06/10/2024]
Abstract
PURPOSE To develop two bone status prediction models combining deep learning and radiomics based on standard-dose chest computed tomography (SDCT) and low-dose chest computed tomography (LDCT), and to evaluate the effect of tube voltage on reproducibility of radiomics features and predictive efficacy of these models. METHODS A total of 1508 patients were enrolled in this retrospective study. LDCT was conducted using 80 kVp, tube current ranging from 100 to 475 mA. On the other hand, SDCT was performed using 120 kVp, tube current ranging from 100 to 520 mA. We developed an automatic thoracic vertebral cancellous bone (TVCB) segmentation model. Subsequently, 1184 features were extracted and two classifiers were developed based on LDCT and SDCT images. Based on the diagnostic results of quantitative computed tomography examination, the first-level classifier was initially developed to distinguish normal or abnormal BMD (including osteoporosis and osteopenia), while the second-level classifier was employed to identify osteoporosis or osteopenia. The Dice coefficient was used to evaluate the performance of the automated segmentation model. The Concordance Correlation Coefficients (CCC) of radiomics features were calculated between LDCT and SDCT, and the performance of these models was evaluated. RESULTS Our automated segmentation model achieved a Dice coefficient of 0.98 ± 0.01 and 0.97 ± 0.02 in LDCT and SDCT, respectively. Alterations in tube voltage decreased the reproducibility of the extracted radiomic features, with 85.05 % of the radiomic features exhibiting low reproducibility (CCC < 0.75). The area under the curve (AUC) using LDCT-based and SDCT-based models was 0.97 ± 0.01 and 0.94 ± 0.02, respectively. Nonetheless, cross-validation with independent test sets of different tube voltage scans suggests that variations in tube voltage can impair the diagnostic efficacy of the model. Consequently, radiomics models are not universally applicable to images of varying tube voltages. In clinical settings, ensuring consistency between the tube voltage of the image used for model development and that of the acquired patient image is critical. CONCLUSIONS Automatic bone status prediction models, utilizing either LDCT or SDCT images, enable accurate assessment of bone status. Tube voltage impacts reproducibility of features and predictive efficacy of models. It is necessary to account for tube voltage variation during the image acquisition.
Collapse
Affiliation(s)
- Xiaoyu Tong
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shigeng Wang
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiye Cheng
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yong Fan
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xin Fang
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Wei
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | | | - Yijun Liu
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lei Liu
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
10
|
Park JY, Lee SH, Kim YJ, Kim KG, Lee GJ. Machine learning model based on radiomics features for AO/OTA classification of pelvic fractures on pelvic radiographs. PLoS One 2024; 19:e0304350. [PMID: 38814948 PMCID: PMC11139281 DOI: 10.1371/journal.pone.0304350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024] Open
Abstract
Depending on the degree of fracture, pelvic fracture can be accompanied by vascular damage, and in severe cases, it may progress to hemorrhagic shock. Pelvic radiography can quickly diagnose pelvic fractures, and the Association for Osteosynthesis Foundation and Orthopedic Trauma Association (AO/OTA) classification system is useful for evaluating pelvic fracture instability. This study aimed to develop a radiomics-based machine-learning algorithm to quickly diagnose fractures on pelvic X-ray and classify their instability. data used were pelvic anteroposterior radiographs of 990 adults over 18 years of age diagnosed with pelvic fractures, and 200 normal subjects. A total of 93 features were extracted based on radiomics:18 first-order, 24 GLCM, 16 GLRLM, 16 GLSZM, 5 NGTDM, and 14 GLDM features. To improve the performance of machine learning, the feature selection methods RFE, SFS, LASSO, and Ridge were used, and the machine learning models used LR, SVM, RF, XGB, MLP, KNN, and LGBM. Performance measurement was evaluated by area under the curve (AUC) by analyzing the receiver operating characteristic curve. The machine learning model was trained based on the selected features using four feature-selection methods. When the RFE feature selection method was used, the average AUC was higher than that of the other methods. Among them, the combination with the machine learning model SVM showed the best performance, with an average AUC of 0.75±0.06. By obtaining a feature-importance graph for the combination of RFE and SVM, it is possible to identify features with high importance. The AO/OTA classification of normal pelvic rings and pelvic fractures on pelvic AP radiographs using a radiomics-based machine learning model showed the highest AUC when using the SVM classification combination. Further research on the radiomic features of each part of the pelvic bone constituting the pelvic ring is needed.
Collapse
Affiliation(s)
- Jun Young Park
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, Republic of Korea
| | - Seung Hwan Lee
- Department of Trauma Surgery, Gachon University Gil Medical Center, Gachon University, Incheon, Republic of Korea
- Department of Traumatology, Gachon University College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Young Jae Kim
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, Republic of Korea
- Department of Medical Devices R&D Center, Gachon University Gil Medical Center, Gachon University, Incheon, Republic of Korea
- Department of Biomedical Engineering, Pre-medical Course, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Kwang Gi Kim
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, Republic of Korea
- Department of Medical Devices R&D Center, Gachon University Gil Medical Center, Gachon University, Incheon, Republic of Korea
- Department of Biomedical Engineering, Pre-medical Course, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Gil Jae Lee
- Department of Trauma Surgery, Gachon University Gil Medical Center, Gachon University, Incheon, Republic of Korea
- Department of Traumatology, Gachon University College of Medicine, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
11
|
Wang J, Xue M, Hu Y, Li J, Li Z, Wang Y. Proteomic Insights into Osteoporosis: Unraveling Diagnostic Markers of and Therapeutic Targets for the Metabolic Bone Disease. Biomolecules 2024; 14:554. [PMID: 38785961 PMCID: PMC11118602 DOI: 10.3390/biom14050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Osteoporosis (OP), a prevalent skeletal disorder characterized by compromised bone strength and increased susceptibility to fractures, poses a significant public health concern. This review aims to provide a comprehensive analysis of the current state of research in the field, focusing on the application of proteomic techniques to elucidate diagnostic markers and therapeutic targets for OP. The integration of cutting-edge proteomic technologies has enabled the identification and quantification of proteins associated with bone metabolism, leading to a deeper understanding of the molecular mechanisms underlying OP. In this review, we systematically examine recent advancements in proteomic studies related to OP, emphasizing the identification of potential biomarkers for OP diagnosis and the discovery of novel therapeutic targets. Additionally, we discuss the challenges and future directions in the field, highlighting the potential impact of proteomic research in transforming the landscape of OP diagnosis and treatment.
Collapse
Affiliation(s)
- Jihan Wang
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (J.W.)
| | - Mengju Xue
- School of Medicine, Xi’an International University, Xi’an 710077, China
| | - Ya Hu
- Department of Medical College, Hunan Polytechnic of Environment and Biology, Hengyang 421000, China
| | - Jingwen Li
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (J.W.)
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Zhenzhen Li
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (J.W.)
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Yangyang Wang
- School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710129, China
| |
Collapse
|
12
|
Liu J, Wang H, Shan X, Zhang L, Cui S, Shi Z, Liu Y, Zhang Y, Wang L. Hybrid transformer convolutional neural network-based radiomics models for osteoporosis screening in routine CT. BMC Med Imaging 2024; 24:62. [PMID: 38486185 PMCID: PMC10938662 DOI: 10.1186/s12880-024-01240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
OBJECTIVE Early diagnosis of osteoporosis is crucial to prevent osteoporotic vertebral fracture and complications of spine surgery. We aimed to conduct a hybrid transformer convolutional neural network (HTCNN)-based radiomics model for osteoporosis screening in routine CT. METHODS To investigate the HTCNN algorithm for vertebrae and trabecular segmentation, 92 training subjects and 45 test subjects were employed. Furthermore, we included 283 vertebral bodies and randomly divided them into the training cohort (n = 204) and test cohort (n = 79) for radiomics analysis. Area receiver operating characteristic curves (AUCs) and decision curve analysis (DCA) were applied to compare the performance and clinical value between radiomics models and Hounsfield Unit (HU) values to detect dual-energy X-ray absorptiometry (DXA) based osteoporosis. RESULTS HTCNN algorithm revealed high precision for the segmentation of the vertebral body and trabecular compartment. In test sets, the mean dice scores reach 0.968 and 0.961. 12 features from the trabecular compartment and 15 features from the entire vertebral body were used to calculate the radiomics score (rad score). Compared with HU values and trabecular rad-score, the vertebrae rad-score suggested the best efficacy for osteoporosis and non-osteoporosis discrimination (training group: AUC = 0.95, 95%CI 0.91-0.99; test group: AUC = 0.97, 95%CI 0.93-1.00) and the differences were significant in test group according to the DeLong test (p < 0.05). CONCLUSIONS This retrospective study demonstrated the superiority of the HTCNN-based vertebrae radiomics model for osteoporosis discrimination in routine CT.
Collapse
Affiliation(s)
- Jiachen Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, 110004, Shenyang, People's Republic of China
| | - Huan Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, 110004, Shenyang, People's Republic of China
| | - Xiuqi Shan
- Department of Orthopedics, Shengjing Hospital of China Medical University, 110004, Shenyang, People's Republic of China
| | - Lei Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, 110004, Shenyang, People's Republic of China
| | - Shaoqian Cui
- Department of Orthopedics, Shengjing Hospital of China Medical University, 110004, Shenyang, People's Republic of China
| | - Zelin Shi
- Shenyang Institute of Automation, Chinese Academy of Sciences, 110016, Shenyang, People's Republic of China
| | - Yunpeng Liu
- Shenyang Institute of Automation, Chinese Academy of Sciences, 110016, Shenyang, People's Republic of China
| | - Yingdi Zhang
- Shenyang Institute of Automation, Chinese Academy of Sciences, 110016, Shenyang, People's Republic of China
| | - Lanbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, 110004, Shenyang, People's Republic of China.
| |
Collapse
|
13
|
Yang Q, Cheng H, Qin J, Loke AY, Ngai FW, Chong KC, Zhang D, Gao Y, Wang HH, Liu Z, Hao C, Xie YJ. A Machine Learning-Based Preclinical Osteoporosis Screening Tool (POST): Model Development and Validation Study. JMIR Aging 2023; 6:e46791. [PMID: 37986117 PMCID: PMC10686208 DOI: 10.2196/46791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 09/16/2023] [Accepted: 10/02/2023] [Indexed: 11/22/2023] Open
Abstract
Background Identifying persons with a high risk of developing osteoporosis and preventing the occurrence of the first fracture is a health care priority. Most existing osteoporosis screening tools have high sensitivity but relatively low specificity. Objective We aimed to develop an easily accessible and high-performance preclinical risk screening tool for osteoporosis using a machine learning-based method among the Hong Kong Chinese population. Methods Participants aged 45 years or older were enrolled from 6 clinics in the 3 major districts of Hong Kong. The potential risk factors for osteoporosis were collected through a validated, self-administered questionnaire and then filtered using a machine learning-based method. Bone mineral density was measured with dual-energy x-ray absorptiometry at the clinics; osteoporosis was defined as a t score of -2.5 or lower. We constructed machine learning models, including gradient boosting machines, support vector machines, and naive Bayes, as well as the commonly used logistic regression models, for the prediction of osteoporosis. The best-performing model was chosen as the final tool, named the Preclinical Osteoporosis Screening Tool (POST). Model performance was evaluated by the area under the receiver operating characteristic curve (AUC) and other metrics. Results Among the 800 participants enrolled in this study, the prevalence of osteoporosis was 10.6% (n=85). The machine learning-based Boruta algorithm identified 15 significantly important predictors from the 113 potential risk factors. Seven variables were further selected based on their accessibility and convenience for daily self-assessment and health care practice, including age, gender, education level, decreased body height, BMI, number of teeth lost, and the intake of vitamin D supplements, to construct the POST. The AUC of the POST was 0.86 and the sensitivity, specificity, and accuracy were all 0.83. The positive predictive value, negative predictive value, and F1-score were 0.41, 0.98, and 0.56, respectively. Conclusions The machine learning-based POST was conveniently accessible and exhibited accurate discriminative capabilities for the prediction of osteoporosis; it might be useful to guide population-based preclinical screening of osteoporosis and clinical decision-making.
Collapse
Affiliation(s)
- Qingling Yang
- School of Nursing, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Huilin Cheng
- School of Nursing, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jing Qin
- School of Nursing, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Alice Yuen Loke
- School of Nursing, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Fei Wan Ngai
- School of Nursing, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Ka Chun Chong
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dexing Zhang
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yang Gao
- Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong SAR, China
| | - Harry Haoxiang Wang
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
- College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Zhaomin Liu
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Chun Hao
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
- Sun Yat‑Sen Global Health Institute, Institute of State Governance, Sun Yat-Sen University, Guangzhou, China
| | - Yao Jie Xie
- School of Nursing, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
14
|
Cheng L, Cai F, Xu M, Liu P, Liao J, Zong S. A diagnostic approach integrated multimodal radiomics with machine learning models based on lumbar spine CT and X-ray for osteoporosis. J Bone Miner Metab 2023; 41:877-889. [PMID: 37898574 DOI: 10.1007/s00774-023-01469-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/16/2023] [Indexed: 10/30/2023]
Abstract
INTRODUCTION The aim of this analysis is to construct a combined model that integrates radiomics, clinical risk factors, and machine learning algorithms to diagnose osteoporosis in patients and explore its potential in clinical applications. MATERIALS AND METHODS A retrospective analysis was conducted on 616 lumbar spine. Radiomics features were extracted from the computed tomography (CT) scans and anteroposterior and lateral X-ray images of the lumbar spine. Logistic regression (LR), support vector machine (SVM), and random forest (RF) algorithms were used to construct radiomics models. The receiver operating characteristic curve (ROC) was employed to select the best-performing model. Clinical risk factors were identified through univariate logistic regression analysis (ULRA) and multivariate logistic regression analysis (MLRA) and utilized to develop a clinical model. A combined model was then created by merging radiomics and clinical risk factors. The performance of the models was evaluated using ROC curve analysis, and the clinical value of the models was assessed using decision curve analysis (DCA). RESULTS A total of 4858 radiomics features were extracted. Among the radiomics models, the SVM model demonstrated the optimal diagnostic capabilities and accuracy, with an area under the curve (AUC) of 0.958 (0.9405-0.9762) in the training cohort and 0.907 (0.8648-0.9492) in the test cohort. Furthermore, the combined model exhibited an AUC of 0.959 (0.9412-0.9763) in the training cohort and 0.910 (0.8690-0.9506) in the test cohort. CONCLUSION The combined model displayed outstanding ability in diagnosing osteoporosis, providing a safe and efficient method for clinical decision-making.
Collapse
Affiliation(s)
- Liwei Cheng
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Fangqi Cai
- Department of Respiratory and Critical Care Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
| | - Mingzhi Xu
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Pan Liu
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Department of Orthopaedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, People's Republic of China
| | - Jun Liao
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| | - Shaohui Zong
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
15
|
Ortiz-Barrios M, Arias-Fonseca S, Ishizaka A, Barbati M, Avendaño-Collante B, Navarro-Jiménez E. Artificial intelligence and discrete-event simulation for capacity management of intensive care units during the Covid-19 pandemic: A case study. JOURNAL OF BUSINESS RESEARCH 2023; 160:113806. [PMID: 36895308 PMCID: PMC9981538 DOI: 10.1016/j.jbusres.2023.113806] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 01/18/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
The Covid-19 pandemic has pushed the Intensive Care Units (ICUs) into significant operational disruptions. The rapid evolution of this disease, the bed capacity constraints, the wide variety of patient profiles, and the imbalances within health supply chains still represent a challenge for policymakers. This paper aims to use Artificial Intelligence (AI) and Discrete-Event Simulation (DES) to support ICU bed capacity management during Covid-19. The proposed approach was validated in a Spanish hospital chain where we initially identified the predictors of ICU admission in Covid-19 patients. Second, we applied Random Forest (RF) to predict ICU admission likelihood using patient data collected in the Emergency Department (ED). Finally, we included the RF outcomes in a DES model to assist decision-makers in evaluating new ICU bed configurations responding to the patient transfer expected from downstream services. The results evidenced that the median bed waiting time declined between 32.42 and 48.03 min after intervention.
Collapse
Affiliation(s)
- Miguel Ortiz-Barrios
- Department of Productivity and Innovation, Universidad de la Costa CUC, Barranquilla 080002, Colombia
| | - Sebastián Arias-Fonseca
- Department of Productivity and Innovation, Universidad de la Costa CUC, Barranquilla 080002, Colombia
| | - Alessio Ishizaka
- NEOMA Business School, 1 rue du Maréchal Juin, Mont-Saint-Aignan 76130, France
| | - Maria Barbati
- Department of Economics, University Ca' Foscari, Cannaregio 873, Fondamenta San Giobbe, 30121 Venice, Italy
| | | | | |
Collapse
|