1
|
Hong L, Yang P, Zhang L, Liu X, Wei X, Xiao W, Yu Z, Zhang J, Peng Y, Wu X, Tang W, Zhi F, Li G, Li A, Lin J, Liu S, Zhang H, Xiang L, Wang J. The VAX2-LINC01189-hnRNPF signaling axis regulates cell invasion and migration in gastric cancer. Cell Death Discov 2023; 9:387. [PMID: 37865686 PMCID: PMC10590441 DOI: 10.1038/s41420-023-01688-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/28/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023] Open
Abstract
Transcription factors (TFs) and long noncoding RNAs (lncRNAs) contribute to gastric cancer (GC). However, the roles of TFs and lncRNAs in the invasion and metastasis of GC remain largely unknown. Here, we observed that the transcription factor VAX2 is significantly upregulated in GC cells and tissues and acts as an oncogene. Moreover, high VAX2 expression is associated with the advancement of tumors in GC. In terms of functionality, the enforced expression of VAX2 promotes the proliferation and metastasis of GC cells. Mechanistically, VAX2 specifically interacts with the LINC01189 promoter and represses LINC01189 transcription. Furthermore, LINC01189 exhibits significant downregulation in GC and functions as a suppressor gene. Functionally, it inhibits migratory and invasive abilities in GC cells. In the context of GC metastasis, VAX2 plays a role in modulating it by trans-repressing the expression of LINC01189. Additionally, LINC01189 binds to hnRNPF to enhance hnRNPF degradation through ubiquitination. The cooperation between LINC01189 and hnRNPF regulates GC cell invasion and migration. In addition, both VAX2 and hnRNPF are highly expressed, while LINC01189 is expressed in at low levels in GC tissues compared to normal gastric tissues. Our study suggests that VAX2 expression facilitates, while LINC01189 expression suppresses, metastasis and that the VAX2-LINC01189-hnRNPF axis plays a contributory role in GC development.
Collapse
Grants
- 81974448, 82073066, 82103152, 82103598, 82273354 National Natural Science Foundation of China (National Science Foundation of China)
- 81974448, 82073066, 82103152, 82103598, 82273354 National Natural Science Foundation of China (National Science Foundation of China)
- 81974448, 82073066, 82103152, 82103598, 82273354 National Natural Science Foundation of China (National Science Foundation of China)
- 81974448, 82073066, 82103152, 82103598, 82273354 National Natural Science Foundation of China (National Science Foundation of China)
- 81974448, 82073066, 82103152, 82103598, 82273354 National Natural Science Foundation of China (National Science Foundation of China)
- 81974448, 82073066, 82103152, 82103598, 82273354 National Natural Science Foundation of China (National Science Foundation of China)
- 81974448, 82073066, 82103152, 82103598, 82273354 National Natural Science Foundation of China (National Science Foundation of China)
- 81974448, 82073066, 82103152, 82103598, 82273354 National Natural Science Foundation of China (National Science Foundation of China)
- 81974448, 82073066, 82103152, 82103598, 82273354 National Natural Science Foundation of China (National Science Foundation of China)
- 81974448, 82073066, 82103152, 82103598, 82273354 National Natural Science Foundation of China (National Science Foundation of China)
- 81974448, 82073066, 82103152, 82103598, 82273354 National Natural Science Foundation of China (National Science Foundation of China)
- 2022A1515012464 Natural Science Foundation of Guangdong Province (Guangdong Natural Science Foundation)
- 2022A1515012464 Natural Science Foundation of Guangdong Province (Guangdong Natural Science Foundation)
- 2022A1515012464 Natural Science Foundation of Guangdong Province (Guangdong Natural Science Foundation)
- 2022A1515012464 Natural Science Foundation of Guangdong Province (Guangdong Natural Science Foundation)
- 2022A1515012464 Natural Science Foundation of Guangdong Province (Guangdong Natural Science Foundation)
- 2022A1515012464 Natural Science Foundation of Guangdong Province (Guangdong Natural Science Foundation)
- 2022A1515012464 Natural Science Foundation of Guangdong Province (Guangdong Natural Science Foundation)
- 2022A1515012464 Natural Science Foundation of Guangdong Province (Guangdong Natural Science Foundation)
- 2022A1515012464 Natural Science Foundation of Guangdong Province (Guangdong Natural Science Foundation)
- 2022A1515012464 Natural Science Foundation of Guangdong Province (Guangdong Natural Science Foundation)
- JCYJ20210324135005013 Shenzhen Science and Technology Innovation Commission
- JCYJ20210324135005013 Shenzhen Science and Technology Innovation Commission
- Science and Technology Project of Guangdong Province, 2017B20209003.
- Longgang District Science and Technology Innovation Bureau, LGKCYLWS2021000012, LGKCYLWS2022-005.
Collapse
Affiliation(s)
- Linjie Hong
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ping Yang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Luyu Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xuehua Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Gastroenterology, Shunde Hospital, Southern Medical University, Foshan, 528300, China
| | - Xiangyang Wei
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wushuang Xiao
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhen Yu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jieming Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ying Peng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaosheng Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Weimei Tang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Guoxin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jianjiao Lin
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Hui Zhang
- Department of Gastroenterology, The Affiliated Hexian Memorial Hospital of Southern Medical University, Guangzhou, 511400, China.
| | - Li Xiang
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.
| | - Jide Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.
| |
Collapse
|
2
|
Markitantova Y, Simirskii V. Inherited Eye Diseases with Retinal Manifestations through the Eyes of Homeobox Genes. Int J Mol Sci 2020; 21:E1602. [PMID: 32111086 PMCID: PMC7084737 DOI: 10.3390/ijms21051602] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Retinal development is under the coordinated control of overlapping networks of signaling pathways and transcription factors. The paper was conceived as a review of the data and ideas that have been formed to date on homeobox genes mutations that lead to the disruption of eye organogenesis and result in inherited eye/retinal diseases. Many of these diseases are part of the same clinical spectrum and have high genetic heterogeneity with already identified associated genes. We summarize the known key regulators of eye development, with a focus on the homeobox genes associated with monogenic eye diseases showing retinal manifestations. Recent advances in the field of genetics and high-throughput next-generation sequencing technologies, including single-cell transcriptome analysis have allowed for deepening of knowledge of the genetic basis of inherited retinal diseases (IRDs), as well as improve their diagnostics. We highlight some promising avenues of research involving molecular-genetic and cell-technology approaches that can be effective for IRDs therapy. The most promising neuroprotective strategies are aimed at mobilizing the endogenous cellular reserve of the retina.
Collapse
|
3
|
Guo B, Zhang Y, Yuan K, Jiang FX, Cui QB, Zhou Q, Dong HX, Chen W, Yang SS. Depletion of VAX2 Restrains the Malignant Progression of Papillary Thyroid Carcinoma by Modulating ERK Signaling Pathway. Open Life Sci 2019; 14:237-245. [PMID: 33817157 PMCID: PMC7874804 DOI: 10.1515/biol-2019-0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/22/2019] [Indexed: 11/30/2022] Open
Abstract
Objective Ventral anterior homeobox 2 (VAX2) gene is a key regulating factor for the development of the ventral region of the eye, and has recently attracted much attention from the cancer treatment field. Our study aimed to explore the effect of VAX2 on papillary thyroid carcinoma (PTC). Methods We determined the expression levels of VAX2 in PTC based on The Cancer Genome Atlas (TCGA) database. We then assessed the prognosis of patients with PTC, and analyzed the association between VAX2 expression and clinicopathological characteristics. Subsequently, we measured the biological functions of VAX2 in PTC using qRT-PCR, cell counting kit-8 (CCK-8) assay, colony formation assay, wound healing assay, transwell assays and western blot. Results VAX2 was up-regulated in PTC tissues when compared with normal thyroid tissues, and high expression level of VAX2 was positively correlated with poor prognosis. Furthermore, knockdown of VAX2 significantly inhibited the proliferation, migration and invasion of PTC cells. Importantly, through western blot analysis, we found that the expression of phosphorylated-(p) ERK and p-MEK in ERK signaling pathway showed a significant decrease after knockdown of VAX2. Conclusion These findings suggest that VAX2 may be involved in the malignant progression of PTC, and hold significant potential as a therapeutic target for PTC.
Collapse
Affiliation(s)
- Bei Guo
- Department of Otorlaryngology Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Zhang
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kun Yuan
- Department of Otorlaryngology Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng-Xia Jiang
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian-Bo Cui
- Department of Otorlaryngology Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qin Zhou
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hong-Xia Dong
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Chen
- Department of Otorlaryngology Head and Neck Surgery, The Central Hospital of Wuhan, NO.26 Shengli street, Jiangan district, Wuhan, Hubei 430014, P.R. China.,Department of Otorlaryngology Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shun-Shi Yang
- Department of Ultrasound, The Central Hospital of Wuhan, NO.26 Shengli street, Jiangan district, Wuhan, Hubei 430014, P.R. China.,Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
4
|
Alfano G, Waseem NH, Webster AR, Bhattacharya SS. Identification and characterization of the VAX2 p.Leu139Arg variant: possible involvement of VAX2 in cone dystrophy. Ophthalmic Genet 2019; 39:539-543. [PMID: 29947570 DOI: 10.1080/13816810.2018.1484927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVE This study was undertaken with the objective to investigate the potential involvement of VAX2 in retinal degeneration. METHODS A cohort of macular and cone dystrophy patients (n = 70) was screened for variant identification. Polymerase chain reaction (PCR) products were purified using ExoSAP-IT. Direct sequencing of PCR products was performed using BigDye 3.1 on the ABI 3730 DNA Analyzer and analyzed using DNASTAR software tool. Search for known variant was performed using the following platforms: 1000 Genomes Project, Ensembl, UCSC, ExAc, and dbSNP. The VAX2 mutants were generated using the GeneArt® Site-Directed Mutagenesis kit. In vitro analysis was performed in hTERTRPE-1 (RPE-1) cell line. Cells were photographed using a Zeiss AXIOVERT S100 microscope. Images were analyzed using Photoshop CS4 software. RESULTS Here, we report the identification of a heterozygous non-synonymous variant (c.416T>G; p.Leu139Arg) in one cone dystrophy proband. Functional characterization of this variant in vitro revealed an aberrant phenotype seen as protein mislocalization to cytoplasm/nucleus and aggregates undergoing degradation or forming aggresomes. The cellular phenotype suggests protein loss-of-function. Analysis of the VAX2 p.Leu139Met, a variant present in the normal population, showed a phenotype similar to the wild-type, further supporting the hypothesis for the Leucine 139 to Arginine change to be damaging. CONCLUSIONS This study raises the interesting possibility for evaluating VAX2 as a candidate gene for cone dystrophy.
Collapse
Affiliation(s)
| | | | - Andrew R Webster
- a Institute of Ophthalmology , UCL , London , UK.,b Moorfields Eye Hospital , London , UK
| | | |
Collapse
|
5
|
Cavodeassi F, Creuzet S, Etchevers HC. The hedgehog pathway and ocular developmental anomalies. Hum Genet 2018; 138:917-936. [PMID: 30073412 PMCID: PMC6710239 DOI: 10.1007/s00439-018-1918-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022]
Abstract
Mutations in effectors of the hedgehog signaling pathway are responsible for a wide variety of ocular developmental anomalies. These range from massive malformations of the brain and ocular primordia, not always compatible with postnatal life, to subtle but damaging functional effects on specific eye components. This review will concentrate on the effects and effectors of the major vertebrate hedgehog ligand for eye and brain formation, Sonic hedgehog (SHH), in tissues that constitute the eye directly and also in those tissues that exert indirect influence on eye formation. After a brief overview of human eye development, the many roles of the SHH signaling pathway during both early and later morphogenetic processes in the brain and then eye and periocular primordia will be evoked. Some of the unique molecular biology of this pathway in vertebrates, particularly ciliary signal transduction, will also be broached within this developmental cellular context.
Collapse
Affiliation(s)
- Florencia Cavodeassi
- Institute for Medical and Biomedical Education, St. George´s University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Sophie Creuzet
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197, CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Heather C Etchevers
- Aix-Marseille Univ, Marseille Medical Genetics (MMG), INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
6
|
DNA methylation profiling reveals the presence of population-specific signatures correlating with phenotypic characteristics. Mol Genet Genomics 2017; 292:655-662. [PMID: 28271161 DOI: 10.1007/s00438-017-1298-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/09/2017] [Indexed: 12/11/2022]
Abstract
Phenotypic characteristics are known to vary substantially among different ethnicities around the globe. These variations are mediated by number of stochastic events and cannot be attributed to genetic architecture alone. DNA methylation is a well-established mechanism that sculpts our epigenome influencing phenotypic variation including disease manifestation. Since DNA methylation is an important determinant for health issues of a population, it demands a thorough investigation of the natural differences in genome wide DNA methylation patterns across different ethnic groups. This study is based on comparative analyses of methylome from five different ethnicities with major focus on Indian subjects. The current study uses hierarchical clustering approaches, principal component analysis and locus specific differential methylation analysis on Illumina 450K methylation data to compare methylome of different ethnic subjects. Our data indicates that the variations in DNA methylation patterns of Indians are less among themselves compared to other global population. It empirically correlated with dietary, cultural and demographical divergences across different ethnic groups. Our work further suggests that Indians included in this study, despite their genetic similarity with the Caucasian population, are in close proximity with Japanese in terms of their methylation signatures.
Collapse
|
7
|
Alfano G, Shah AZ, Jeffery G, Bhattacharya SS. First insights into the expression of VAX2 in humans and its localization in the adult primate retina. Exp Eye Res 2016; 148:24-29. [DOI: 10.1016/j.exer.2016.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/29/2016] [Accepted: 05/09/2016] [Indexed: 01/21/2023]
|