1
|
Soyer SM, Ozbek P, Kasavi C. Lung Adenocarcinoma Systems Biomarker and Drug Candidates Identified by Machine Learning, Gene Expression Data, and Integrative Bioinformatics Pipeline. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:408-420. [PMID: 38979602 DOI: 10.1089/omi.2024.0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Lung adenocarcinoma (LUAD) is a significant planetary health challenge with its high morbidity and mortality rate, not to mention the marked interindividual variability in treatment outcomes and side effects. There is an urgent need for robust systems biomarkers that can help with early cancer diagnosis, prediction of treatment outcomes, and design of precision/personalized medicines for LUAD. The present study aimed at systems biomarkers of LUAD and deployed integrative bioinformatics and machine learning tools to harness gene expression data. Predictive models were developed to stratify patients based on prognostic outcomes. Importantly, we report here several potential key genes, for example, PMEL and BRIP1, and pathways implicated in the progression and prognosis of LUAD that could potentially be targeted for precision/personalized medicine in the future. Our drug repurposing analysis and molecular docking simulations suggested eight drug candidates for LUAD such as heat shock protein 90 inhibitors, cardiac glycosides, an antipsychotic agent (trifluoperazine), and a calcium ionophore (ionomycin). In summary, this study identifies several promising leads on systems biomarkers and drug candidates for LUAD. The findings also attest to the importance of integrative bioinformatics, structural biology and machine learning techniques in biomarker discovery, and precision oncology research and development.
Collapse
Affiliation(s)
- Semra Melis Soyer
- Department of Bioengineering, Faculty of Engineering, Marmara University, İstanbul, Türkiye
| | - Pemra Ozbek
- Department of Bioengineering, Faculty of Engineering, Marmara University, İstanbul, Türkiye
| | - Ceyda Kasavi
- Department of Bioengineering, Faculty of Engineering, Marmara University, İstanbul, Türkiye
| |
Collapse
|
2
|
Boavida A, Napolitano LM, Santos D, Cortone G, Jegadesan NK, Onesti S, Branzei D, Pisani FM. FANCJ DNA helicase is recruited to the replisome by AND-1 to ensure genome stability. EMBO Rep 2024; 25:876-901. [PMID: 38177925 PMCID: PMC10897178 DOI: 10.1038/s44319-023-00044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024] Open
Abstract
FANCJ, a DNA helicase linked to Fanconi anemia and frequently mutated in cancers, counteracts replication stress by dismantling unconventional DNA secondary structures (such as G-quadruplexes) that occur at the DNA replication fork in certain sequence contexts. However, how FANCJ is recruited to the replisome is unknown. Here, we report that FANCJ directly binds to AND-1 (the vertebrate ortholog of budding yeast Ctf4), a homo-trimeric protein adaptor that connects the CDC45/MCM2-7/GINS replicative DNA helicase with DNA polymerase α and several other factors at DNA replication forks. The interaction between FANCJ and AND-1 requires the integrity of an evolutionarily conserved Ctf4-interacting protein (CIP) box located between the FANCJ helicase motifs IV and V. Disruption of the CIP box significantly reduces FANCJ association with the replisome, causing enhanced DNA damage, decreased replication fork recovery and fork asymmetry in cells unchallenged or treated with Pyridostatin, a G-quadruplex-binder, or Mitomycin C, a DNA inter-strand cross-linking agent. Cancer-relevant FANCJ CIP box variants display reduced AND-1-binding and enhanced DNA damage, a finding that suggests their potential role in cancer predisposition.
Collapse
Affiliation(s)
- Ana Boavida
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Naples, Italy
- Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | | | - Diana Santos
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Naples, Italy
- Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Giuseppe Cortone
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Naples, Italy
| | | | - Silvia Onesti
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste, Trieste, Italy
| | - Dana Branzei
- IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Francesca M Pisani
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Naples, Italy.
| |
Collapse
|
3
|
Gunawardena K, Sirisena ND, Anandagoda G, Neththikumara N, Dissanayake VHW. Germline variants of uncertain significance, their frequency, and clinico-pathological features in a cohort of Sri Lankan patients with hereditary breast cancer. BMC Res Notes 2023; 16:95. [PMID: 37277882 DOI: 10.1186/s13104-023-06365-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Next-Generation Sequencing (NGS)-based testing in cancer patients has led to increased detection of variants of uncertain significance (VUS). VUS are genetic variants whose impact on protein function is unknown. VUS pose a challenge to clinicians and patients due to uncertainty regarding their cancer predisposition risk. Paucity of data exists on the pattern of VUS in under-represented populations. This study describes the frequency of germline VUS and clinico-pathological features in Sri Lankan hereditary breast cancer patients. METHODS Data of 72 hereditary breast cancer patients who underwent NGS-based testing between January 2015 and December 2021 were maintained prospectively in a database and analyzed retrospectively. Data were subjected to bioinformatics analysis and variants were classified according to international guidelines. RESULTS Germline variants were detected in 33/72(45.8%) patients, comprising 16(48.5%) pathogenic/likely pathogenic variants and 17(51.5%) VUS. Distribution of VUS in breast cancer predisposing genes were :APC:1(5.8%), ATM:2(11.7%), BRCA1:1(5.8%), BRCA2:5(29.4%), BRIP1:1(5.8%), CDKN2A:1(5.8%), CHEK2:2(11.7%), FANC1:1(5.8%), MET:1(5.8%), STK11:1(5.8%), NF2:1(5.8%). Mean age at cancer diagnosis in patients with VUS was 51.2 years. Most common tumour histopathology was ductal carcinoma 11(78.6%). 50% of tumours in patients having VUS in BRCA1/2 genes were hormone receptor negative. 73.3% patients had family history of breast cancer. CONCLUSIONS A significant portion of patients had a germline VUS. Highest frequency was in BRCA2 gene. Majority had family history of breast cancer. This highlights the need to undertake functional genomic studies to determine the biological effects of VUS and identify potentially clinically actionable variants that would be useful for decision-making and patient management.
Collapse
Affiliation(s)
- Kawmadi Gunawardena
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo 8, Sri Lanka
| | - Nirmala D Sirisena
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo 8, Sri Lanka.
| | - Gayani Anandagoda
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo 8, Sri Lanka
| | - Nilaksha Neththikumara
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo 8, Sri Lanka
| | - Vajira H W Dissanayake
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo 8, Sri Lanka
| |
Collapse
|
4
|
Choi DJ, Armstrong G, Lozzi B, Vijayaraghavan P, Plon SE, Wong TC, Boerwinkle E, Muzny DM, Chen HC, Gibbs RA, Ostrom QT, Melin B, Deneen B, Bondy ML, Bainbridge MN. The genomic landscape of familial glioma. SCIENCE ADVANCES 2023; 9:eade2675. [PMID: 37115922 PMCID: PMC10146888 DOI: 10.1126/sciadv.ade2675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Glioma is a rare brain tumor with a poor prognosis. Familial glioma is a subset of glioma with a strong genetic predisposition that accounts for approximately 5% of glioma cases. We performed whole-genome sequencing on an exploratory cohort of 203 individuals from 189 families with a history of familial glioma and an additional validation cohort of 122 individuals from 115 families. We found significant enrichment of rare deleterious variants of seven genes in both cohorts, and the most significantly enriched gene was HERC2 (P = 0.0006). Furthermore, we identified rare noncoding variants in both cohorts that were predicted to affect transcription factor binding sites or cause cryptic splicing. Last, we selected a subset of discovered genes for validation by CRISPR knockdown screening and found that DMBT1, HP1BP3, and ZCH7B3 have profound impacts on proliferation. This study performs comprehensive surveillance of the genomic landscape of familial glioma.
Collapse
Affiliation(s)
- Dong-Joo Choi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Georgina Armstrong
- Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Brittney Lozzi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | | | - Sharon E. Plon
- Department of Pediatrics/Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Terence C. Wong
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, USA
| | - Eric Boerwinkle
- The University of Texas Health Science Center School of Public Health, Houston, TX, USA
| | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Hsiao-Chi Chen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Quinn T. Ostrom
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Beatrice Melin
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Melissa L. Bondy
- Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - The Gliogene Consortium
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, USA
- Department of Pediatrics/Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
- The University of Texas Health Science Center School of Public Health, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Genomics England Research Consortium
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, USA
- Department of Pediatrics/Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
- The University of Texas Health Science Center School of Public Health, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | | |
Collapse
|
5
|
Long G, Hu K, Zhang X, Zhou L, Li J. Spectrum of BRCA1 interacting helicase 1 aberrations and potential prognostic and therapeutic implication: a pan cancer analysis. Sci Rep 2023; 13:4435. [PMID: 36932143 PMCID: PMC10023799 DOI: 10.1038/s41598-023-31109-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
BRCA1 interacting helicase 1 (BRIP1) alteration was crucial in tumors and it was a potential therapeutic target in ovarian serous cystadenocarcinoma (OV). Although a small number of studies had focused on BRIP1, an extensive study of BRIP1 genetic mutation and its clinical application in different cancer types had not been analyzed. In the current study, we analyzed BRIP1 abnormal expression, methylation, mutation, and their clinical application via several extensive datasets, which covered over 10,000 tumor samples across more than 30 cancer types. The total mutation rate of BRIP1 was rare in pan cancer. Its alteration frequency, oncogenic effects, mutation, and therapeutic implications were different in each cancer. 242 BRIP1 mutations were found across 32 cancer types. UCEC had the highest alteration (mutation and CNV) frequency. In addition, BRIP1 was a crucial oncogenic factor in OV and BRCA. BRIP1 mutation in PRAD was targetable, and FDA had approved a new drug. Moreover, Kaplan-Meier curve analysis showed that BRIP1 expression and genetic aberrations were closely related to patient survival in several cancers, indicating their potential for application as new tumor markers and therapeutic targets. The current study profiled the total BRIP1 mutation spectrum and offered an extensive molecular outlook of BRIP1 in a pan cancer analysis. And it suggested a brand-new perspective for clinical cancer therapy.
Collapse
Affiliation(s)
- Guo Long
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Kuan Hu
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaofang Zhang
- Departments of Burn and Plastic, Ningxiang People's Hospital, Hunan University of Chinese Medicine, Changsha, 410600, Hunan, China
| | - Ledu Zhou
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Juanni Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
6
|
Muacevic A, Adler JR, Algharbi A, Aluwishiq A, Alsolami Z. Double Intussusceptions in a 20-Year-Old Lady Harboring a Tubulovillous Adenoma with High-Grade Dysplasia: A Case Report and Literature Review. Cureus 2023; 15:e34265. [PMID: 36843738 PMCID: PMC9957521 DOI: 10.7759/cureus.34265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2023] [Indexed: 01/28/2023] Open
Abstract
Underlying malignancy is a concern when intussusception is diagnosed in adults and the elderly. Management includes oncological resection of the intussusception. We report a case of a 20-year-old female patient who presented with signs of bowel obstruction. Computed tomography demonstrated double intussusceptions (ileo-cecal and transverse colo-colonic). During laparotomy, the mid-transverse intussusception reduced spontaneously while the other did not. Both intussusceptions were managed with oncological resection. The final pathology showed a tubulovillous adenoma with high-grade dysplasia. As a result, intussusception in adults should be investigated thoroughly to exclude malignant potential.
Collapse
|
7
|
Liu Y, Wu X, Feng Y, Jiang Q, Zhang S, Wang Q, Yang A. Insights into the Oncogenic, Prognostic, and Immunological Role of BRIP1 in Pan-Cancer: A Comprehensive Data-Mining-Based Study. JOURNAL OF ONCOLOGY 2023; 2023:4104639. [PMID: 37153833 PMCID: PMC10162871 DOI: 10.1155/2023/4104639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/14/2023] [Accepted: 04/08/2023] [Indexed: 05/10/2023]
Abstract
Background BRCA1 interacting helicase 1 (BRIP1), an ATP-dependent DNA helicase which belongs to an Iron-Sulfur (Fe-S) helicase cluster family with a DEAH domain, plays a key role in DNA damage and repair, Fanconi anemia, and development of several cancers including breast and ovarian cancer. However, its role in pan-cancer remains largely unknown. Methods BRIP1 expression data of tumor and normal tissues were downloaded from the Cancer Genome Atlas, Genotype-Tissue Expression, and Human Protein Atlas databases. Correlation between BRIP1 and prognosis, genomic alterations, and copy number variation (CNV) as well as methylation in pan-cancer were further analyzed. Protein-protein interaction (PPI) and gene set enrichment and variation analysis (GSEA and GSVA) were performed to identify the potential pathways and functions of BRIP1. Besides, BRIP1 correlations with tumor microenvironment (TME), immune infiltration, immune-related genes, tumor mutation burden (TMB), microsatellite instability (MSI), and immunotherapy as well as antitumor drugs were explored in pan-cancer. Results Differential analyses showed an increased expression of BRIP1 in 28 cancer types and its aberrant expression could be an indicator for prognosis in most cancers. Among the various mutation types of BRIP1 in pan-cancer, amplification was the most common type. BRIP1 expression had a significant correlation with CNV and DNA methylation in 23 tumor types and 16 tumor types, respectively. PPI, GSEA, and GSVA results validated the association between BRIP1 and DNA damage and repair, cell cycle, and metabolism. In addition, the expression of BRIP1 and its correlation with TME, immune-infiltrating cells, immune-related genes, TMB, and MSI as well as a variety of antitumor drugs and immunotherapy were confirmed. Conclusions Our study indicates that BRIP1 plays an imperative role in the tumorigenesis and immunity of various tumors. It may not only serve as a diagnostic and prognostic biomarker but also can be a predictor for drug sensitivity and immunoreaction during antitumor treatment in pan-cancer.
Collapse
Affiliation(s)
- Yongru Liu
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xi Wu
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yunlu Feng
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qingwei Jiang
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shengyu Zhang
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qiang Wang
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Aiming Yang
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
8
|
Fujita M, Liu X, Iwasaki Y, Terao C, Mizukami K, Kawakami E, Takata S, Inai C, Aoi T, Mizukoshi M, Maejima K, Hirata M, Murakami Y, Kamatani Y, Kubo M, Akagi K, Matsuda K, Nakagawa H, Momozawa Y. Population-based Screening for Hereditary Colorectal Cancer Variants in Japan. Clin Gastroenterol Hepatol 2022; 20:2132-2141.e9. [PMID: 33309985 DOI: 10.1016/j.cgh.2020.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/01/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Colorectal cancer (CRC) is one of the most common cancers in the world. A small proportion of CRCs can be attributed to recognizable hereditary germline variants of known CRC susceptibility genes. To better understand cancer risk, it is necessary to explore the prevalence of hereditary CRC and pathogenic variants of multiple cancer-predisposing genes in non-European populations. METHODS We analyzed the coding regions of 27 cancer-predisposing genes in 12,503 unselected Japanese CRC patients and 23,705 controls by target sequencing and genome-wide SNP chip. Their clinical significance was assessed using ClinVar and the guidelines by ACMG/AMP. RESULTS We identified 4,804 variants in the 27 genes and annotated them as pathogenic in 397 and benign variants in 941, of which 43.6% were novel. In total, 3.3% of the unselected CRC patients and 1.5% of the controls had a pathogenic variant. The pathogenic variants of MSH2 (odds ratio (OR) = 18.1), MLH1 (OR = 8.6), MSH6 (OR = 4.9), APC (OR = 49.4), BRIP1 (OR=3.6), BRCA1 (OR = 2.6), BRCA2 (OR = 1.9), and TP53 (OR = 1.7) were significantly associated with CRC development in the Japanese population (P-values<0.01, FDR<0.05). These pathogenic variants were significantly associated with diagnosis age and personal/family history of cancer. In total, at least 3.5% of the Japanese CRC population had a pathogenic variant or CNV of the 27 cancer-predisposing genes, indicating hereditary cancers. CONCLUSIONS This largest study of CRC heredity in Asia can contribute to the development of guidelines for genetic testing and variant interpretation for heritable CRCs.
Collapse
Affiliation(s)
| | - Xiaoxi Liu
- RIKEN Center for Integrative Medical Sciences, Yokohama
| | | | | | | | - Eiryo Kawakami
- Medical Sciences Innovation Hub Program, RIKEN, Yokohama; Artificial intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba
| | | | - Chihiro Inai
- RIKEN Center for Integrative Medical Sciences, Yokohama
| | - Tomomi Aoi
- RIKEN Center for Integrative Medical Sciences, Yokohama
| | | | | | - Makoto Hirata
- Institute of Medical Science, University of Tokyo, Tokyo
| | | | | | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama
| | - Kiwamu Akagi
- Division of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama
| | - Koichi Matsuda
- Graduate School of Frontier Science, University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
9
|
Parsa FG, Nobili S, Karimpour M, Aghdaei HA, Nazemalhosseini-Mojarad E, Mini E. Fanconi Anemia Pathway in Colorectal Cancer: A Novel Opportunity for Diagnosis, Prognosis and Therapy. J Pers Med 2022; 12:396. [PMID: 35330396 PMCID: PMC8950345 DOI: 10.3390/jpm12030396] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed malignancy and has the second highest mortality rate globally. Thanks to the advent of next-generation sequencing technologies, several novel candidate genes have been proposed for CRC susceptibility. Germline biallelic mutations in one or more of the 22 currently recognized Fanconi anemia (FA) genes have been associated with Fanconi anemia disease, while germline monoallelic mutations, somatic mutations, or the promoter hypermethylation of some FANC genes increases the risk of cancer development, including CRC. The FA pathway is a substantial part of the DNA damage response system that participates in the repair of DNA inter-strand crosslinks through homologous recombination (HR) and protects genome stability via replication fork stabilization, respectively. Recent studies revealed associations between FA gene/protein tumor expression levels (i.e., FANC genes) and CRC progression and drug resistance. Moreover, the FA pathway represents a potential target in the CRC treatment. In fact, FANC gene characteristics may contribute to chemosensitize tumor cells to DNA crosslinking agents such as oxaliplatin and cisplatin besides exploiting the synthetic lethal approach for selective targeting of tumor cells. Hence, this review summarizes the current knowledge on the function of the FA pathway in DNA repair and genomic integrity with a focus on the FANC genes as potential predisposition factors to CRC. We then introduce recent literature that highlights the importance of FANC genes in CRC as promising prognostic and predictive biomarkers for disease management and treatment. Finally, we represent a brief overview of the current knowledge around the FANC genes as synthetic lethal therapeutic targets for precision cancer medicine.
Collapse
Affiliation(s)
- Fatemeh Ghorbani Parsa
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 19857-17413, Iran; (F.G.P.); (H.A.A.)
| | - Stefania Nobili
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy;
- Center for Advanced Studies and Technology (CAST), University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Mina Karimpour
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran;
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 19857-17413, Iran; (F.G.P.); (H.A.A.)
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 19857-17413, Iran
| | - Enrico Mini
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
- DENOTHE Excellence Center, University of Florence, 50139 Florence, Italy
| |
Collapse
|
10
|
Yamamoto H, Hirasawa A. Homologous Recombination Deficiencies and Hereditary Tumors. Int J Mol Sci 2021; 23:348. [PMID: 35008774 PMCID: PMC8745585 DOI: 10.3390/ijms23010348] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 12/16/2022] Open
Abstract
Homologous recombination (HR) is a vital process for repairing DNA double-strand breaks. Germline variants in the HR pathway, comprising at least 10 genes, such as BRCA1, BRCA2, ATM, BARD1, BRIP1, CHEK2, NBS1(NBN), PALB2, RAD51C, and RAD51D, lead to inherited susceptibility to specific types of cancers, including those of the breast, ovaries, prostate, and pancreas. The penetrance of germline pathogenic variants of each gene varies, whereas all their associated protein products are indispensable for maintaining a high-fidelity DNA repair system by HR. The present review summarizes the basic molecular mechanisms and components that collectively play a role in maintaining genomic integrity against DNA double-strand damage and their clinical implications on each type of hereditary tumor.
Collapse
Affiliation(s)
- Hideki Yamamoto
- Department of Clinical Genomic Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan;
| | | |
Collapse
|
11
|
Bhai P, Levy MA, Rooney K, Carere DA, Reilly J, Kerkhof J, Volodarsky M, Stuart A, Kadour M, Panabaker K, Schenkel LC, Lin H, Ainsworth P, Sadikovic B. Analysis of Sequence and Copy Number Variants in Canadian Patient Cohort With Familial Cancer Syndromes Using a Unique Next Generation Sequencing Based Approach. Front Genet 2021; 12:698595. [PMID: 34326862 PMCID: PMC8314385 DOI: 10.3389/fgene.2021.698595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background Hereditary cancer predisposition syndromes account for approximately 10% of cancer cases. Next generation sequencing (NGS) based multi-gene targeted panels is now a frontline approach to identify pathogenic mutations in cancer predisposition genes in high-risk families. Recent evolvement of NGS technologies have allowed simultaneous detection of sequence and copy number variants (CNVs) using a single platform. In this study, we have analyzed frequency and nature of sequence variants and CNVs, in a Canadian cohort of patients, suspected with hereditary cancer syndrome, referred for genetic testing following specific genetic testing guidelines based on patient's personal and/or family history of cancer. Methods A 2870 patients were subjected to a single NGS based multi-gene targeted hereditary cancer panel testing algorithm to identify sequence variants and CNVs in cancer predisposition genes at our reference laboratory in Southwestern Ontario. CNVs identified by NGS were confirmed by alternative techniques like Multiplex ligation-dependent probe amplification (MLPA). Results A 15% (431/2870) patients had a pathogenic variant and 36% (1032/2870) had a variant of unknown significance (VUS), in a cancer susceptibility gene. A total of 287 unique pathogenic variant were identified, out of which 23 (8%) were novel. CNVs identified by NGS based approach accounted for 9.5% (27/287) of pathogenic variants, confirmed by alternate techniques with high accuracy. Conclusion This study emphasizes the utility of NGS based targeted testing approach to identify both sequence and CNVs in patients suspected with hereditary cancer syndromes in clinical setting and expands the mutational spectrum of high and moderate penetrance cancer predisposition genes.
Collapse
Affiliation(s)
- Pratibha Bhai
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, Canada
| | - Michael A Levy
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, Canada
| | - Kathleen Rooney
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, Canada
| | - Deanna Alexis Carere
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, Canada
| | - Jack Reilly
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Jennifer Kerkhof
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, Canada
| | - Michael Volodarsky
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, Canada
| | - Alan Stuart
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, Canada
| | - Mike Kadour
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.,Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, ON, Canada
| | - Karen Panabaker
- Medical Genetics Program of Southwestern Ontario, London Health Sciences Centre, London, ON, Canada
| | - Laila C Schenkel
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Hanxin Lin
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Peter Ainsworth
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.,Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, ON, Canada
| | - Bekim Sadikovic
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| |
Collapse
|
12
|
Muhseena N K, Mathukkada S, Das SP, Laha S. The repair gene BACH1 - a potential oncogene. Oncol Rev 2021; 15:519. [PMID: 34322202 PMCID: PMC8273628 DOI: 10.4081/oncol.2021.519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACH1 encodes for a protein that belongs to RecQ DEAH helicase family and interacts with the BRCT repeats of BRCA1. The N-terminus of BACH1 functions in DNA metabolism as DNA-dependent ATPase and helicase. The C-terminus consists of BRCT domain, which interacts with BRCA1 and this interaction is one of the major regulator of BACH1 function. BACH1 plays important roles both in phosphorylated as well as dephosphorylated state and functions in coordination with multiple signaling molecules. The active helicase property of BACH1 is maintained by its dephosphorylated state. Imbalance between these two states enhances the development and progression of the diseased condition. Currently BACH1 is known as a tumor suppressor gene based on the presence of its clinically relevant mutations in different cancers. Through this review we have justified it to be named as an oncogene. In this review, we have explained the mechanism of how BACH1 in collaboration with BRCA1 or independently regulates various pathways like cell cycle progression, DNA replication during both normal and stressed situation, recombination and repair of damaged DNA, chromatin remodeling and epigenetic modifications. Mutation and overexpression of BACH1 are significantly found in different cancer types. This review enlists the molecular players which interact with BACH1 to regulate DNA metabolic functions, thereby revealing its potential for cancer therapeutics. We have identified the most mutated functional domain of BACH1, the hot spot for tumorigenesis, justifying it as a target molecule in different cancer types for therapeutics. BACH1 has high potentials of transforming a normal cell into a tumor cell if compromised under certain circumstances. Thus, through this review, we justify BACH1 as an oncogene along with the existing role of being a tumor suppressant.
Collapse
Affiliation(s)
- Katheeja Muhseena N
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sooraj Mathukkada
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Shankar Prasad Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Suparna Laha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
13
|
Ece Solmaz A, Yeniay L, Gökmen E, Zekioğlu O, Haydaroğlu A, Bilgen I, Özkınay F, Onay H. Clinical Contribution of Next-Generation Sequencing Multigene Panel Testing for BRCA Negative High-Risk Patients With Breast Cancer. Clin Breast Cancer 2021; 21:e647-e653. [PMID: 33980423 DOI: 10.1016/j.clbc.2021.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 02/19/2021] [Accepted: 04/05/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Breast cancer is the most common malignancy in women and thought to be hereditary in 10% of patients. Recent next-generation sequencing studies have increased the detection of pathogenic or likely pathogenic (P/LP) variants in genes other than BRCA1/2 in patients with breast cancer. This study evaluated pathogenic variants, likely pathogenic variants, and variants of unknown significance in 18 hereditary cancer susceptibility genes in patients with BRCA1/2-negative breast cancer. PATIENTS AND METHODS This retrospective study included 188 high-risk BRCA1/2-negative patients with breast cancer tested with a multigene cancer panel using next-generation sequencing. RESULTS Among 188 proband cases, 18 variants in 21 patients (11.1%) were classified as P/LP in PALB2 (n = 6), CHEK2 (n = 5), MUTYH (n = 4), ATM (n = 3), TP53 (n = 2), BRIP1 (n = 1), and MSH2 (n = 1). Three novel P/LP variants were identified. An additional 28 variants were classified as variants of unknown significance and detected in 30 different patients (15.9%). CONCLUSION This is one of the largest study from Turkey to investigate the mutation spectrum in non-BRCA hereditary breast cancer susceptibility genes. A multigene panel test increased the likelihood of identifying a molecular diagnosis in patients with BRCA 1/2-negative breast cancer at risk for a hereditary breast cancer syndrome. More studies are needed to enable the clinical interpretation of these P/LP variants in hereditary patients with breast cancer.
Collapse
Affiliation(s)
- Aslı Ece Solmaz
- Department of Medical Genetic, Ege University Faculty of Medicine, Izmir, Turkey.
| | - Levent Yeniay
- Department of General Surgery, Ege University Faculty of Medicine, Izmir, Turkey
| | - Erhan Gökmen
- Department of Medical Oncology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Osman Zekioğlu
- Department of Pathology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Ayfer Haydaroğlu
- Department of Radiation Oncology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Işıl Bilgen
- Department of Radiology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Ferda Özkınay
- Department of Medical Genetic, Ege University Faculty of Medicine, Izmir, Turkey
| | - Hüseyin Onay
- Department of Medical Genetic, Ege University Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
14
|
Gao M, Guo Y, Xiao Y, Shang X. Comprehensive analyses of correlation and survival reveal informative lncRNA prognostic signatures in colon cancer. World J Surg Oncol 2021; 19:104. [PMID: 33836755 PMCID: PMC8035745 DOI: 10.1186/s12957-021-02196-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Colon cancer is a commonly worldwide cancer with high morbidity and mortality. Long non-coding RNAs (lncRNAs) are involved in many biological processes and are closely related to the occurrence of colon cancer. Identification of the prognostic signatures of lncRNAs in colon cancer has great significance for its treatment. METHODS We first identified the colon cancer-related mRNAs and lncRNAs according to the differential analysis methods using the expression data in TCGA. Then, we performed correlation analysis between the identified mRNAs and lncRNAs by integrating their expression values and secondary structure information to estimate the co-regulatory relationships between the cancer-related mRNAs and lncRNAs. Besides, the competing endogenous RNA regulation network based on co-regulatory relationships was constructed to reveal cancer-related regulatory patterns. Meanwhile, we used traditional regression analysis (univariate Cox analysis, random survival forest analysis, and lasso regression analysis) to screen the cancer-related lncRNAs. Finally, by combining the identified colon cancer-related lncRNAs according to the above analyses, we constructed a risk prognosis model for colon cancer through multivariate Cox analysis and also validated the model in the colon cancer dataset in TCGA cohorts. RESULTS Six lncRNAs were found highly correlated with the overall survival of colon cancer patients, and a risk prognosis model based on them was constructed to predict the overall survival of colon cancer patients. In particular, EVX1-AS, ZNF667-AS1, CTC-428G20.6, and CTC-297N7.9 were first reported to be related to colon cancer by using our model, among which EVX1-AS and ZNF667-AS1 have been predicted to be related to colon cancer in LncRNADisease database. CONCLUSIONS This study identified the potential regulatory relationships between lncRNAs and mRNAs by integrating their expression values and secondary structure information and presented a significant 6-lncRNA risk prognosis model to predict the overall survival of colon cancer patients.
Collapse
Affiliation(s)
- Meihong Gao
- School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Yang Guo
- School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Yifu Xiao
- School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Xuequn Shang
- School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, People's Republic of China.
| |
Collapse
|
15
|
Calvo JA, Fritchman B, Hernandez D, Persky NS, Johannessen CM, Piccioni F, Kelch BA, Cantor SB. Comprehensive Mutational Analysis of the BRCA1-Associated DNA Helicase and Tumor-Suppressor FANCJ/BACH1/BRIP1. Mol Cancer Res 2021; 19:1015-1025. [PMID: 33619228 DOI: 10.1158/1541-7786.mcr-20-0828] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/27/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022]
Abstract
FANCJ (BRIP1/BACH1) is a hereditary breast and ovarian cancer (HBOC) gene encoding a DNA helicase. Similar to HBOC genes, BRCA1 and BRCA2, FANCJ is critical for processing DNA inter-strand crosslinks (ICL) induced by chemotherapeutics, such as cisplatin. Consequently, cells deficient in FANCJ or its catalytic activity are sensitive to ICL-inducing agents. Unfortunately, the majority of FANCJ clinical mutations remain uncharacterized, limiting therapeutic opportunities to effectively use cisplatin to treat tumors with mutated FANCJ. Here, we sought to perform a comprehensive screen to identify FANCJ loss-of-function (LOF) mutations. We developed a FANCJ lentivirus mutation library representing approximately 450 patient-derived FANCJ nonsense and missense mutations to introduce FANCJ mutants into FANCJ knockout (K/O) HeLa cells. We performed a high-throughput screen to identify FANCJ LOF mutants that, as compared with wild-type FANCJ, fail to robustly restore resistance to ICL-inducing agents, cisplatin or mitomycin C (MMC). On the basis of the failure to confer resistance to either cisplatin or MMC, we identified 26 missense and 25 nonsense LOF mutations. Nonsense mutations elucidated a relationship between location of truncation and ICL sensitivity, as the majority of nonsense mutations before amino acid 860 confer ICL sensitivity. Further validation of a subset of LOF mutations confirmed the ability of the screen to identify FANCJ mutations unable to confer ICL resistance. Finally, mapping the location of LOF mutations to a new homology model provides additional functional information. IMPLICATIONS: We identify 51 FANCJ LOF mutations, providing important classification of FANCJ mutations that will afford additional therapeutic strategies for affected patients.
Collapse
Affiliation(s)
- Jennifer A Calvo
- Department of Molecular Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Briana Fritchman
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | - Nicole S Persky
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | | | - Brian A Kelch
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Sharon B Cantor
- Department of Molecular Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
16
|
Lu J, Yu R, Liu R, Liang X, Sun J, Zhang H, Wu H, Zhang Z, Shao YW, Guo J, Liang Z. Genetic aberrations in Chinese pancreatic cancer patients and their association with anatomic location and disease outcomes. Cancer Med 2020; 10:933-943. [PMID: 33350171 PMCID: PMC7897942 DOI: 10.1002/cam4.3679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Pancreatic cancer (PC) is one of the most lethal malignancies with an increasing death rate over the years. We performed targeted sequencing and survival analyses on 90 Chinese pancreatic cancer patients, hoping to identify genomic biomarkers associated with clinical outcomes and therapeutic options. METHOD Genomic DNA was extracted from formalin-fixed paraffin-embedded (FFPE) tissue specimens of 90 pancreatic cancer patients and sequenced. The associations with clinicopathological factors were analyzed. RESULT High prevalence of driver mutations in KRAS, TP53, CDKN2A, SMAD4, and ARID1A genes were found. Most mutated genes in PC belonged to cell cycle and DNA damage repair pathways. Tumors that arise from the pancreas' body and tail (BT tumors) displayed a higher ratio of mutated KRAS and TP53 than those that arise from the pancreas' head and neck (HN tumors), who showed less diverse KRAS subtypes. Patients with a KRAS p.G12R mutated tumor tended to have a prolonged disease-free survival (DFS) and overall survival (OS) than other KRAS subtypes. Those with an altered ARID1A gene and more than two mutated driver genes tended to have a shorter DFS and OS. CONCLUSION HN and BT tumors of the pancreas displayed different mutational profiles, which had prognostic significances and indicated different potential therapeutic options.
Collapse
Affiliation(s)
- Junliang Lu
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ruoying Yu
- Translational Medicine Research Institute, Geneseeq Technology Inc, Toronto, ON, Canada
| | - Rui Liu
- Translational Medicine Research Institute, Geneseeq Technology Inc, Toronto, ON, Canada
| | - Xiaolong Liang
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jian Sun
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hui Zhang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Huanwen Wu
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhiwen Zhang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yang W Shao
- Nanjing Geneseeq Technology Inc, Nanjing, Canada.,School of Public Health, Nanjing Medical University, Nanjing, China
| | - Junchao Guo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhiyong Liang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Melo-Hanchuk TD, Colleti C, Saito Â, Mendes MCS, Carvalheira JBC, Vassallo J, Kobarg J. Intracellular hyaluronic acid-binding protein 4 (HABP4): a candidate tumor suppressor in colorectal cancer. Oncotarget 2020; 11:4325-4337. [PMID: 33245729 PMCID: PMC7679031 DOI: 10.18632/oncotarget.27804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Hyaluronic Acid-binding protein 4 (HABP4) is a regulatory protein of 57 kDa that is functionally involved in transcription regulation and RNA metabolism and shows several characteristics common to oncoproteins or tumor suppressors, including altered expression in cancer tissues, nucleus/cytoplasm shuttling, intrinsic lack of protein structure, complex interactomes and post translational modifications. Its gene has been found in a region on chromosome 9q22.3-31, which contains SNP haplotypes occurring in individuals with a high risk for familial colon cancer. To test a possible role of HABP4 in tumorigenesis we generated knockout mice by the CRISPR/Cas9 method and treated the animals with azoxymethane (AOM)/dextran sodium sulfate (DSS) for induction of colon tumors. HABP4-/- mice, compared to wild type mice, had more and larger tumors, and expressed more of the proliferation marker proteins Cyclin-D1, CDK4 and PCNA. Furthermore, the cells of the bottom of the colon crypts in the HABP4-/- mice divided more rapidly. Next, we generated also HABP4-/- HCT 116 cells, in cell culture and found again an increased proliferation in clonogenic assays in comparison to wild-type cells. Our study of the protein expression levels of HABP4 in human colon cancer samples, through immunohistochemistry assays, showed, that 30% of the tumors analyzed had low expression of HABP4. Our data suggest that HABP4 is involved in proliferation regulation of colon cells in vitro and in vivo and that it is a promising new candidate for a tumor suppressor protein that can be explored both in the diagnosis and possibly therapy of colon cancer.
Collapse
Affiliation(s)
- Talita Diniz Melo-Hanchuk
- 2Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
- *These authors contributed equally to this work
| | - Carolina Colleti
- 1School of Pharmaceutical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
- *These authors contributed equally to this work
| | - Ângela Saito
- 3Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- *These authors contributed equally to this work
| | - Maria Carolina Santos Mendes
- 4Division of Oncology, Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - José Barreto Campello Carvalheira
- 4Division of Oncology, Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Jose Vassallo
- 5Laboratory of Investigative Pathology, CIPED, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil
| | - Jörg Kobarg
- 1School of Pharmaceutical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
- Correspondence to: Jörg Kobarg, email:
| |
Collapse
|
18
|
Martín-Morales L, Garre P, Lorca V, Cazorla M, Llovet P, Bando I, García-Barberan V, González-Morales ML, Esteban-Jurado C, de la Hoya M, Castellví-Bel S, Caldés T. BRIP1, a Gene Potentially Implicated in Familial Colorectal Cancer Type X. Cancer Prev Res (Phila) 2020; 14:185-194. [PMID: 33115781 DOI: 10.1158/1940-6207.capr-20-0316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/17/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022]
Abstract
Familial colorectal cancer Type X (FCCTX) comprises a heterogeneous group of families with an increased risk of developing colorectal cancer and other related tumors, but with mismatch repair-proficient, microsatellite-stable (MSS) tumors. Unfortunately, the genetic basis underlying their cancer predisposition remains unknown. Although pathogenic germline variants in BRIP1 increase the risk of developing hereditary ovarian cancer, the involvement of BRIP1 in hereditary colorectal cancer is still not well known. In order to identify new BRIP1 variants associated with inherited colorectal cancer, affected and nonaffected individuals from 18 FCCTX or high-risk MSS colorectal cancer families were evaluated by whole-exome sequencing, and another 62 colorectal cancer patients from FCCTX or high-risk MSS colorectal cancer families were screened by a next-generation sequencing (NGS) multigene panel. The families were recruited at the Genetic Counseling Unit of Hospital Clínico San Carlos of Madrid. A total of three different BRIP1 mutations in three unrelated families were identified. Among them, there were two frameshift variants [c.1702_1703del, p.(Asn568TrpfsTer9) and c.903del, p.(Leu301PhefsTer2)] that result in the truncation of the protein and are thus classified as pathogenic (class 5). The remaining was a missense variant [c.2220G>T, p.(Gln740His)] considered a variant of uncertain significance (class 3). The segregation and loss-of-heterozygosity studies provide evidence linking the two BRIP1 frameshift variants to colorectal cancer risk, with suggestive but not definitive evidence that the third variant may be benign. The results here presented suggest that germline BRIP1 pathogenic variants could be associated with hereditary colorectal cancer predisposition.Prevention Relevance: We suggest that BRIP1 pathogenic germline variants may have a causal role in CRC as moderate cancer susceptibility alleles and be associated with hereditary CRC predisposition. A better understanding of hereditary CRC may provide important clues to disease predisposition and could contribute to molecular diagnostics, improved risk stratification, and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Lorena Martín-Morales
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Pilar Garre
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Víctor Lorca
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Marta Cazorla
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Patricia Llovet
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Inmaculada Bando
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Vanesa García-Barberan
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | | | - Clara Esteban-Jurado
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Sergi Castellví-Bel
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Trinidad Caldés
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain.
| |
Collapse
|
19
|
Rizeq B, Sif S, Nasrallah GK, Ouhtit A. Novel role of BRCA1 interacting C-terminal helicase 1 (BRIP1) in breast tumour cell invasion. J Cell Mol Med 2020; 24:11477-11488. [PMID: 32888398 PMCID: PMC7576304 DOI: 10.1111/jcmm.15761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/21/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) is the most common malignancy and the leading cause of death in women worldwide. Only 5%‐10% of mutations in BRCA genes are associated with familial breast tumours in Eastern countries, suggesting the contribution of other genes. Using a microarray gene expression profiling study of BC, we have recently identified BRIP1 (fivefold up‐regulation) as a potential gene associated with BC progression in the Omani population. Although BRIP1 regulates DNA repair and cell proliferation, the precise role of BRIP1 in BC cell invasion/metastasis has not been explored yet; this prompted us to test the hypothesis that BRIP1 promotes BC cell proliferation and invasion. Using a combination of cellular and molecular approaches, our results revealed differential overexpression of BRIP1 in different BC cell lines. Functional assays validated further the physiological relevance of BRIP1 in tumour malignancy, and siRNA‐mediated BRIP1 knockdown significantly reduced BC cell motility by targeting key motility‐associated genes. Moreover, down‐regulation of BRIP1 expression significantly attenuated cell proliferation via cell cycle arrest. Our study is the first to show the novel function of BRIP1 in promoting BC cell invasion by regulating expression of various downstream target genes. Furthermore, these findings provide us with a unique opportunity to identify BRIP1‐induced pro‐invasive genes that could serve as biomarkers and/or targets to guide the design of appropriate BC targeted therapies.
Collapse
Affiliation(s)
- Balsam Rizeq
- Department of Biological and Environmental Sciences, College of Arts & Sciences, Qatar University, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| | - Saïd Sif
- Department of Biological and Environmental Sciences, College of Arts & Sciences, Qatar University, Doha, Qatar
| | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha, Qatar.,Biomedical Science Department, College of Health Sciences, Qatar University, Doha, Qatar
| | - Allal Ouhtit
- Department of Biological and Environmental Sciences, College of Arts & Sciences, Qatar University, Doha, Qatar
| |
Collapse
|