1
|
Bazua-Valenti S, Brown MR, Zavras J, Riedl Khursigara M, Grinkevich E, Sidhom EH, Keller KH, Racette M, Dvela-Levitt M, Quintanova C, Demirci H, Sewerin S, Goss AC, Lin J, Yoo H, Vaca Jacome AS, Papanastasiou M, Udeshi N, Carr SA, Himmerkus N, Bleich M, Mutig K, Bachmann S, Halbritter J, Kmoch S, Živná M, Kidd K, Bleyer AJ, Weins A, Alper SL, Shaw JL, Kost-Alimova M, Pablo JLB, Greka A. Disrupted uromodulin trafficking is rescued by targeting TMED cargo receptors. J Clin Invest 2024; 134:e180347. [PMID: 39680459 PMCID: PMC11645142 DOI: 10.1172/jci180347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/22/2024] [Indexed: 12/18/2024] Open
Abstract
The trafficking dynamics of uromodulin (UMOD), the most abundant protein in human urine, play a critical role in the pathogenesis of kidney disease. Monoallelic mutations in the UMOD gene cause autosomal dominant tubulointerstitial kidney disease (ADTKD-UMOD), an incurable genetic disorder that leads to kidney failure. The disease is caused by the intracellular entrapment of mutant UMOD in kidney epithelial cells, but the precise mechanisms mediating disrupted UMOD trafficking remain elusive. Here, we report that transmembrane Emp24 protein transport domain-containing (TMED) cargo receptors TMED2, TMED9, and TMED10 bind UMOD and regulate its trafficking along the secretory pathway. Pharmacological targeting of TMEDs in cells, in human kidney organoids derived from patients with ADTKD-UMOD, and in mutant-UMOD-knockin mice reduced intracellular accumulation of mutant UMOD and restored trafficking and localization of UMOD to the apical plasma membrane. In vivo, the TMED-targeted small molecule also mitigated ER stress and markers of kidney damage and fibrosis. Our work reveals TMED-targeting small molecules as a promising therapeutic strategy for kidney proteinopathies.
Collapse
Affiliation(s)
- Silvana Bazua-Valenti
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Departamento de Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Matthew R. Brown
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Jason Zavras
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Magdalena Riedl Khursigara
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Elizabeth Grinkevich
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Eriene-Heidi Sidhom
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Keith H. Keller
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew Racette
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Moran Dvela-Levitt
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Hasan Demirci
- Institute of Translational Physiology and
- Department of Anatomy, Charité - Universitätsmedizin, Berlin, Germany
| | - Sebastian Sewerin
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Alissa C. Goss
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - John Lin
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Hyery Yoo
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Alvaro S. Vaca Jacome
- Proteomics Platform, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Malvina Papanastasiou
- Proteomics Platform, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Namrata Udeshi
- Proteomics Platform, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Steven A. Carr
- Proteomics Platform, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Nina Himmerkus
- Institute of Physiology, Christian - Albrechts - Universität, Kiel, Germany
| | - Markus Bleich
- Institute of Physiology, Christian - Albrechts - Universität, Kiel, Germany
| | - Kerim Mutig
- Institute of Translational Physiology and
- Department of Anatomy, Charité - Universitätsmedizin, Berlin, Germany
| | - Sebastian Bachmann
- Institute of Translational Physiology and
- Department of Anatomy, Charité - Universitätsmedizin, Berlin, Germany
| | - Jan Halbritter
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martina Živná
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kendrah Kidd
- Section on Nephrology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina, USA
| | - Anthony J. Bleyer
- Section on Nephrology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina, USA
| | - Astrid Weins
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Seth L. Alper
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
- Division of Nephrology, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jillian L. Shaw
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Maria Kost-Alimova
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Juan Lorenzo B. Pablo
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Anna Greka
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Nanamatsu A, de Araújo L, LaFavers KA, El-Achkar TM. Advances in uromodulin biology and potential clinical applications. Nat Rev Nephrol 2024; 20:806-821. [PMID: 39160319 PMCID: PMC11568936 DOI: 10.1038/s41581-024-00881-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/21/2024]
Abstract
Uromodulin (also known as Tamm-Horsfall protein) is a kidney-specific glycoprotein secreted bidirectionally into urine and into the circulation, and it is the most abundant protein in normal urine. Although the discovery of uromodulin predates modern medicine, its significance in health and disease has been rather enigmatic. Research studies have gradually revealed that uromodulin exists in multiple forms and has important roles in urinary and systemic homeostasis. Most uromodulin in urine is polymerized into highly organized filaments, whereas non-polymeric uromodulin is detected both in urine and in the circulation, and can have distinct roles. The interactions of uromodulin with the immune system, which were initially reported to be a key role of this protein, are now better understood. Moreover, the discovery that uromodulin is associated with a spectrum of kidney diseases, including acute kidney injury, chronic kidney disease and autosomal-dominant tubulointerstitial kidney disease, has further accelerated investigations into the role of this protein. These discoveries have prompted new questions and ushered in a new era in uromodulin research. Here, we delineate the latest discoveries in uromodulin biology and its emerging roles in modulating kidney and systemic diseases, and consider future directions, including its potential clinical applications.
Collapse
Affiliation(s)
- Azuma Nanamatsu
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Larissa de Araújo
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kaice A LaFavers
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tarek M El-Achkar
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Roudebush VA Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
3
|
Eble J, Köttgen A, Schultheiß UT. Monogenic Kidney Diseases in Adults With Chronic Kidney Disease (CKD). DEUTSCHES ARZTEBLATT INTERNATIONAL 2024; 121:689-695. [PMID: 38958599 DOI: 10.3238/arztebl.m2024.0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND According to current evidence, every 10th to 11th adult with chronic kidney disease (CKD) has a monogenic disease of the kidney. METHODS This review is based on reported studies in which molecular genetic diagnostic techniques were used to investigate monogenic kidney diseases in adults with CKD. The studies were identified by a selective literature search using predefined criteria. RESULTS In 12 selected studies, diagnostic variants of 179 different genes were identified in 1467 out of 6607 study participants with CKD (22.2%). More than 60% of these variants affected 8 genes (PKD1, PKD2, COL4A3, COL4A4, COL4A5, UMOD, MUC1, HNF1B). Three diseases are associated with these genes: autosomal dominant polycystic kidney disease (ADPKD), Alport syndrome, and autosomal dominant tubulo-interstitial kidney disease (ADTKD). Physicians treating patients with CKD should be alert to the presence of any red flags, such as onset at a young age, a positive family history, or hematuria of unknown cause. When a genetic etiology is suspected, a specialized work-up is indicated, often including a molecular genetic investigation. A positive genetic finding usually leads to a modification of the patient's specific diagnosis and/or treatment. CONCLUSION Awareness of the high prevalence of monogenic kidney diseases in adults with CKD and alertness to their suggestive clinical features are crucial for the timely initiation of targeted diagnostic testing. The molecular genetic identification of these diseases is a prerequisite for appropriate patient management.
Collapse
Affiliation(s)
- Julian Eble
- Institute of Genetic Epidemiology, Department of Data Driven Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Germany; Faculty of Medicine and Medical Center, Department of Medicine IV-Nephrology and Primary Care, University of Freiburg, Germany; Synlab MVZ Humangenetik Freiburg GmbH, Germany
| | | | | |
Collapse
|
4
|
Vivante A. Genetics of Chronic Kidney Disease. N Engl J Med 2024; 391:627-639. [PMID: 39141855 DOI: 10.1056/nejmra2308577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Affiliation(s)
- Asaf Vivante
- From the Department of Pediatrics and the Pediatric Nephrology Unit, Edmond and Lily Safra Children's Hospital, and the Nephro-Genetics Clinic and Genetic Kidney Disease Research Laboratory, Sheba Medical Center, Tel Hashomer, and the Faculty of Medicine, Tel Aviv University, Tel Aviv - all in Israel
| |
Collapse
|
5
|
Nobayashi H, Iida T, Fujimaru T, Mori T, Ito Y, Ueda H, Sohara E, Uchida S, Aoyagi R, Yokoo T. Autosomal-dominant tubulointerstitial kidney disease with a novel UMOD mutation, overlapping with Sjogren's syndrome: a case report. CEN Case Rep 2024:10.1007/s13730-024-00915-w. [PMID: 39012617 DOI: 10.1007/s13730-024-00915-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
Autosomal-dominant tubulointerstitial kidney disease caused by UMOD (encoding uromodulin) mutation (ADTKD-UMOD) is a rare hereditary disease. A strong family history of hyperuricemia or gout and inherited kidney disease raises the suspicion of ADTKD-UMOD. Genetic testing can confirm the diagnosis without a kidney biopsy. However, when complicated by other diseases that can cause tubulointerstitial disease, renal biopsy is indispensable for the diagnosis and decisions on treatment strategy. We report the case of a 44-year-old woman referred for evaluation of kidney dysfunction. She had an attack of gout 1 month before referral and a family history of hyperuricemia. She was diagnosed with primary Sjogren's syndrome through an immune workup and ophthalmological examination. However, a kidney biopsy revealed histological features suggesting ADTKD rather than gouty kidney or tubulointerstitial nephritis associated with Sjogren's syndrome, and immunostaining revealed a characteristic staining pattern with UMOD. Comprehensive genetic testing of 93 genes responsible for polycystic kidney disease revealed a novel heterozygous missense variant (c.649 T > A:p. Cys217Ser) in UMOD, and the patient was diagnosed with ADTKD-UMOD. In this case, kidney biopsy contributed to the correct diagnosis of tubulointerstitial kidney disease. This case emphasizes the importance of suspecting ADTKD-UMOD based on family history and careful evaluation of kidney biopsy findings.
Collapse
Affiliation(s)
- Hiroki Nobayashi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan.
- Division of Nephrology, Tachikawa General Hospital, Niigata, Japan.
| | - Tomomichi Iida
- Division of Nephrology, Tachikawa General Hospital, Niigata, Japan
| | - Takuya Fujimaru
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Yumi Ito
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroyuki Ueda
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Ryuji Aoyagi
- Division of Nephrology, Tachikawa General Hospital, Niigata, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| |
Collapse
|
6
|
Mitrotti A, Giliberti M, Di Leo V, di Bari I, Pontrelli P, Gesualdo L. Hidden genetics behind glomerular scars: an opportunity to understand the heterogeneity of focal segmental glomerulosclerosis? Pediatr Nephrol 2024; 39:1685-1707. [PMID: 37728640 PMCID: PMC11026212 DOI: 10.1007/s00467-023-06046-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/02/2023] [Accepted: 05/30/2023] [Indexed: 09/21/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a complex disease which describes different kinds of kidney defects, not exclusively linked with podocyte defects. Since nephrin mutation was first described in association with early-onset nephrotic syndrome (NS), many advancements have been made in understanding genetic patterns associated with FSGS. New genetic causes of FSGS have been discovered, displaying unexpected genotypes, and recognizing possible site of damage. Many recent large-scale sequencing analyses on patients affected by idiopathic chronic kidney disease (CKD), kidney failure (KF) of unknown origin, or classified as FSGS, have revealed collagen alpha IV genes, as one of the most frequent sites of pathogenic mutations. Also, recent interest in complex and systemic lysosomal storage diseases, such as Fabry disease, has highlighted GLA mutations as possible causes of FSGS. Tubulointerstitial disease, recently classified by KDIGO based on genetic subtypes, when associated with UMOD variants, may phenotypically gain FSGS features, as well as ciliopathy genes or others, otherwise leading to completely different phenotypes, but found carrying pathogenic variants with associated FSGS phenotype. Thus, glomerulosclerosis may conceal different heterogeneous conditions. When a kidney biopsy is performed, the principal objective is to provide an accurate diagnosis. The broad spectrum of phenotypic expression and genetic complexity is demonstrating that a combined path of management needs to be applied. Genetic investigation should not be reserved only to selected cases, but rather part of medical management, integrating with clinical and renal pathology records. FSGS heterogeneity should be interpreted as an interesting opportunity to discover new pathways of CKD, requiring prompt genotype-phenotype correlation. In this review, we aim to highlight how FSGS represents a peculiar kidney condition, demanding multidisciplinary management, and in which genetic analysis may solve some otherwise unrevealed idiopathic cases. Unfortunately there is not a uniform correlation between specific mutations and FSGS morphological classes, as the same variants may be identified in familial cases or sporadic FSGS/NS or manifest a variable spectrum of the same disease. These non-specific features make diagnosis challenging. The complexity of FSGS genotypes requires new directions. Old morphological classification does not provide much information about the responsible cause of disease and misdiagnoses may expose patients to immunosuppressive therapy side effects, mistaken genetic counseling, and misguided kidney transplant programs.
Collapse
Affiliation(s)
- Adele Mitrotti
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy.
| | - Marica Giliberti
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Di Leo
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Ighli di Bari
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Paola Pontrelli
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Loreto Gesualdo
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
7
|
Fages V, Bourre F, Larrue R, Wenzel A, Gibier JB, Bonte F, Dhaenens CM, Kidd K, Kmoch S, Bleyer A, Glowacki F, Grunewald O. Description of a New Simple and Cost-Effective Molecular Testing That Could Simplify MUC1 Variant Detection. Kidney Int Rep 2024; 9:1451-1457. [PMID: 38707821 PMCID: PMC11068942 DOI: 10.1016/j.ekir.2024.01.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Patients with autosomal dominant tubulointerstitial kidney disease (ADTKD) usually present with nonspecific progressive chronic kidney disease (CKD) with mild to negative proteinuria and a family history. ADTKD-MUC1 leads to the formation of a frameshift protein that accumulates in the cytoplasm, leading to tubulointerstitial damage. ADTKD-MUC1 prevalence remains unclear because MUC1 variants are not routinely detected by standard next-generation sequencing (NGS) techniques. Methods We developed a bioinformatic counting script that can detect specific genetic sequences and count the number of occurrences. We used DNA samples from 27 patients for validation, 11 of them were patients from the Lille University Hospital in France and 16 were from the Wake Forest Hospital, NC. All patients from Lille were tested with an NGS gene panel with our script and all patients from Wake Forest Hospital were tested with the snapshot reference technique. Between January 2018 and February 2023, we collected data on all patients diagnosed with MUC1 variants with this script. Results A total of 27 samples were tested anonymously by the BROAD Institute reference technique for confirmation and we were able to get a 100% concordance for MUC1 diagnosis. Clinico-biologic characteristics in our cohort were similar to those previously described in ADTKD-MUC1. Conclusion We describe a new simple and cost-effective method for molecular testing of ADTKD-MUC1. Genetic analyses in our cohort suggest that MUC1 might be the first cause of ADTKD. Increasing the availability of MUC1 diagnosis tools will contribute to a better understanding of the disease and to the development of specific treatments.
Collapse
Affiliation(s)
- Victor Fages
- Nephrology, Centre Hospitalier Regional Universitaire de Lille, Lille, France
| | - Florentin Bourre
- Nephrology, Centre Hospitalier Regional Universitaire de Lille, Lille, France
| | - Romain Larrue
- Service de Toxicologie et Génopathies, CHU Lille, Lille, France
| | - Andrea Wenzel
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Cologne, Germany
| | | | - Fabrice Bonte
- Functional and Structural Platform, Université de Lille, Lille, France
| | - Claire-Marie Dhaenens
- Department of Biochemistry and Molecular Biology, Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Kendrah Kidd
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Stanislav Kmoch
- First Faculty of Medicine, Charles University, Nové Město, Czechia
| | - Anthony Bleyer
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - François Glowacki
- Nephrology, Centre Hospitalier Regional Universitaire de Lille, Lille, France
| | - Olivier Grunewald
- Neuroscience and Cognition, University Lille, Inserm, CHU Lille, Lille, France
| |
Collapse
|
8
|
Robert T, Raymond L, Dancer M, Torrents J, Jourde-Chiche N, Burtey S, Béroud C, Mesnard L. Beyond the kidney biopsy: genomic approach to undetermined kidney diseases. Clin Kidney J 2024; 17:sfad099. [PMID: 38186885 PMCID: PMC10765093 DOI: 10.1093/ckj/sfad099] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Indexed: 01/09/2024] Open
Abstract
Background According to data from large national registries, almost 20%-25% of patients with end-stage kidney disease have an undetermined kidney disease (UKD). Recent data have shown that monogenic disease-causing variants are under-diagnosed. We performed exome sequencing (ES) on UKD patients in our center to improve the diagnosis rate. Methods ES was proposed in routine practice for patients with UKD including kidney biopsy from January 2019 to December 2021. Mutations were detected using a targeted bioinformatic customized kidney gene panel (675 genes). The pathogenicity was assessed using American College of Medical Genetics guidelines. Results We included 230 adult patients, median age 47.5 years. Consanguinity was reported by 25 patients. A family history of kidney disease was documented in 115 patients (50%). Kidney biopsies were either inconclusive in 69 patients (30.1%) or impossible in 71 (30.9%). We detected 28 monogenic renal disorders in 75 (32.6%) patients. Collagenopathies was the most common genetic kidney diagnosis (46.7%), with COL4A3 and COL4A4 accounting for 80% of these diagnoses. Tubulopathies (16%) and ciliopathies (14.7%) yielded, respectively, the second and third genetic kidney diagnosis category and UMOD-associated nephropathy as the main genetic findings for tubulopathies (7/11). Ten of the 22 patients having ES "first" eventually received a positive diagnosis, thereby avoiding 11 biopsies. Among the 44 patients with glomerular, tubulo-interstitial or vascular nephropathy, 13 (29.5%) were phenocopies. The diagnostic yield of ES was higher in female patients (P = .02) and in patients with a family history of kidney disease (P < .0001), reaching 56.8% when the patient had both first- and second-degree family history of renal disease. Conclusion Genetic diagnosis has provided new clinical insights by clarifying or reclassifying kidney disease etiology in over a third of UKD patients. Exome "first" may have a significant positive diagnostic yield, thus avoiding invasive kidney biopsy; moreover, the diagnostic yield remains elevated even when biopsy is impossible or inconclusive. ES provides a clinical benefit for routine nephrological healthcare in patients with UKD.
Collapse
Affiliation(s)
- Thomas Robert
- Centre of Nephrology and Renal Transplantation, Hôpital de la Conception, CHU de Marseille, Marseille, France
- Marseille Medical Genetics, Bioinformatics & Genetics, INSERM U1251, Aix-Marseille Université, Marseille, France
| | - Laure Raymond
- Genetics Department, Laboratoire Eurofins Biomnis, Lyon, France
| | - Marine Dancer
- Genetics Department, Laboratoire Eurofins Biomnis, Lyon, France
| | - Julia Torrents
- Department of Renal Pathology, CHU Timone, AP-HM, Marseille, France
| | - Noémie Jourde-Chiche
- Centre of Nephrology and Renal Transplantation, Hôpital de la Conception, CHU de Marseille, Marseille, France
- Aix-Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Stéphane Burtey
- Centre of Nephrology and Renal Transplantation, Hôpital de la Conception, CHU de Marseille, Marseille, France
- Aix-Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Christophe Béroud
- Marseille Medical Genetics, Bioinformatics & Genetics, INSERM U1251, Aix-Marseille Université, Marseille, France
| | - Laurent Mesnard
- Urgences Néphrologiques et Transplantation Rénale, Sorbonne Université, APHP, Hôpital Tenon, Paris, France
| |
Collapse
|
9
|
Schiano G, Lake J, Mariniello M, Schaeffer C, Harvent M, Rampoldi L, Olinger E, Devuyst O. Allelic effects on uromodulin aggregates drive autosomal dominant tubulointerstitial kidney disease. EMBO Mol Med 2023; 15:e18242. [PMID: 37885358 PMCID: PMC10701617 DOI: 10.15252/emmm.202318242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Missense mutations in the uromodulin (UMOD) gene cause autosomal dominant tubulointerstitial kidney disease (ADTKD), one of the most common monogenic kidney diseases. The unknown impact of the allelic and gene dosage effects and fate of mutant uromodulin leaves open the gap between postulated gain-of-function mutations, end-organ damage and disease progression in ADTKD. Based on two prevalent missense UMOD mutations with divergent disease progression, we generated UmodC171Y and UmodR186S knock-in mice that showed strong allelic and gene dosage effects on uromodulin aggregates and activation of ER stress and unfolded protein and immune responses, leading to variable kidney damage. Deletion of the wild-type Umod allele in heterozygous UmodR186S mice increased the formation of uromodulin aggregates and ER stress. Studies in kidney tubular cells confirmed differences in uromodulin aggregates, with activation of mutation-specific quality control and clearance mechanisms. Enhancement of autophagy by starvation and mTORC1 inhibition decreased uromodulin aggregates. These studies substantiate the role of toxic aggregates as driving progression of ADTKD-UMOD, relevant for therapeutic strategies to improve clearance of mutant uromodulin.
Collapse
Affiliation(s)
- Guglielmo Schiano
- Mechanisms of Inherited Kidney Disorders, Institute of PhysiologyUniversity of ZurichZurichSwitzerland
| | - Jennifer Lake
- Mechanisms of Inherited Kidney Disorders, Institute of PhysiologyUniversity of ZurichZurichSwitzerland
| | - Marta Mariniello
- Mechanisms of Inherited Kidney Disorders, Institute of PhysiologyUniversity of ZurichZurichSwitzerland
| | - Céline Schaeffer
- Molecular Genetics of Renal Disorders, Division of Genetics and Cell BiologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Marianne Harvent
- Mechanisms of Inherited Kidney Disorders, Institute of PhysiologyUniversity of ZurichZurichSwitzerland
- Institut de Recherche Expérimentale et CliniqueUCLouvainBrusselsBelgium
| | - Luca Rampoldi
- Molecular Genetics of Renal Disorders, Division of Genetics and Cell BiologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Eric Olinger
- Mechanisms of Inherited Kidney Disorders, Institute of PhysiologyUniversity of ZurichZurichSwitzerland
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
- Center for Human GeneticsCliniques Universitaires Saint‐Luc, UCLouvainBrusselsBelgium
| | - Olivier Devuyst
- Mechanisms of Inherited Kidney Disorders, Institute of PhysiologyUniversity of ZurichZurichSwitzerland
- Institut de Recherche Expérimentale et CliniqueUCLouvainBrusselsBelgium
| |
Collapse
|
10
|
Doctor GT, Gale DP, Chan MM. Genomics in the kidney clinic. Clin Med (Lond) 2023; 23:246-249. [PMID: 37236798 PMCID: PMC11046554 DOI: 10.7861/clinmed.2023-rm2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Inherited diseases are a frequent cause of end-stage kidney disease and often seen in the kidney clinic. Clinical genomic testing is increasingly available in the UK and eligible patients in England can be referred through the NHS Genomic Medicine Service. Testing is useful for diagnosis, prognostication and management of conditions such as autosomal dominant polycystic kidney disease (ADPKD), Alport syndrome, autosomal dominant tubulointerstitial kidney disease (ADTKD) and focal segmental glomerulosclerosis (FSGS). As more patients undergo genomic testing and newer technologies such as whole genome sequencing are applied, we are developing a greater appreciation of the full phenotypic spectrum of inherited kidney diseases and the challenges associated with the interpretation of clinically significant variants.
Collapse
|
11
|
Valluru MK, Chung NK, Gilchrist M, Butland L, Cook J, Takou A, Dixit A, Weedon MN, Ong ACM. A founder UMOD variant is a common cause of hereditary nephropathy in the British population. J Med Genet 2023; 60:397-405. [PMID: 36038257 PMCID: PMC10086494 DOI: 10.1136/jmg-2022-108704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/10/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Monogenic disorders are estimated to account for 10%-12% of patients with kidney failure. We report the unexpected finding of an unusual uromodulin (UMOD) variant in multiple pedigrees within the British population and demonstrate a shared haplotype indicative of an ancestral variant. METHODS Probands from 12 apparently unrelated pedigrees with a family history of kidney failure within a geographically contiguous UK region were shown to be heterozygous for a pathogenic variant of UMOD c.278_289delTCTGCCCCGAAG insCCGCCTCCT. RESULTS A total of 88 clinically affected individuals were identified, all born in the UK and of white British ethnicity. 20 other individuals with the variant were identified in the UK 100,000 Genomes (100K) Project and 9 from UK Biobank (UKBB). A common extended haplotype was present in 5 of the UKBB individuals who underwent genome sequencing which was only present in <1 in 5000 of UKBB controls. Significantly, rare variants (<1 in 250 general population) identified within 1 Mb of the UMOD variant by genome sequencing were detected in all of the 100K individuals, indicative of an extended shared haplotype. CONCLUSION Our data confirm a likely founder UMOD variant with a wide geographical distribution within the UK. It should be suspected in cases of unexplained familial nephropathy presenting in patients of white British ancestry.
Collapse
Affiliation(s)
- Manoj K Valluru
- Academic Nephrology Unit, Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield Medical School, Sheffield, UK
| | - Noelle Kx Chung
- Academic Nephrology Unit, Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield Medical School, Sheffield, UK
| | - Mark Gilchrist
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - Laura Butland
- Department of Clinical Genetics, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Jackie Cook
- Department of Clinical Genetics, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK
| | - Anna Takou
- Department of Histopathology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Abhijit Dixit
- Department of Clinical Genetics, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Michael N Weedon
- Institute of Biomedical and Clinical Science, University of Exeter, Exeter, UK
| | - Albert C M Ong
- Academic Nephrology Unit, Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield Medical School, Sheffield, UK
- Sheffield Kidney Institute, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | | |
Collapse
|
12
|
Chang LY, Chang JM. Chronic Kidney Disease-How Does It Go, and What Can We Do and Expect? Biomedicines 2023; 11:biomedicines11030977. [PMID: 36979956 PMCID: PMC10046251 DOI: 10.3390/biomedicines11030977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Chronic kidney disease (CKD), as a worldwide threat to public health, is a key determinant of poor health outcomes, but the severity of the problem is probably not fully appreciated [...].
Collapse
Affiliation(s)
- Li-Yun Chang
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan
| | - Jer-Ming Chang
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807377, Taiwan
| |
Collapse
|
13
|
Mary S, Boder P, Padmanabhan S, McBride MW, Graham D, Delles C, Dominiczak AF. Role of Uromodulin in Salt-Sensitive Hypertension. Hypertension 2022; 79:2419-2429. [PMID: 36378920 PMCID: PMC9553220 DOI: 10.1161/hypertensionaha.122.19888] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The exclusive expression of uromodulin in the kidneys has made it an intriguing protein in kidney and cardiovascular research. Genome-wide association studies discovered variants of uromodulin that are associated with chronic kidney diseases and hypertension. Urinary and circulating uromodulin levels reflect kidney and cardiovascular health as well as overall mortality. More recently, Mendelian randomization studies have shown that genetically driven levels of uromodulin have a causal and adverse effect on kidney function. On a mechanistic level, salt sensitivity is an important factor in the pathophysiology of hypertension, and uromodulin is involved in salt reabsorption via the NKCC2 (Na+-K+-2Cl- cotransporter) on epithelial cells of the ascending limb of loop of Henle. In this review, we provide an overview of the multifaceted physiology and pathophysiology of uromodulin including recent advances in its genetics; cellular trafficking; and mechanistic and clinical studies undertaken to understand the complex relationship between uromodulin, blood pressure, and kidney function. We focus on tubular sodium reabsorption as one of the best understood and pathophysiologically and clinically most important roles of uromodulin, which can lead to therapeutic interventions.
Collapse
Affiliation(s)
- Sheon Mary
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Philipp Boder
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Sandosh Padmanabhan
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Martin W. McBride
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Delyth Graham
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Christian Delles
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Anna F. Dominiczak
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
14
|
Chen HD, Yu CC, Yang IH, Hung CC, Kuo MC, Tarng DC, Chang JM, Hwang DY. UMOD Mutations in Chronic Kidney Disease in Taiwan. Biomedicines 2022; 10:biomedicines10092265. [PMID: 36140366 PMCID: PMC9496136 DOI: 10.3390/biomedicines10092265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/21/2022] Open
Abstract
UMOD is the first identified and the most commonly mutated gene that causes autosomal dominant tubulointerstitial kidney disease (ADTKD). Recent studies have shown that ADTKD-UMOD is a relatively common cause of chronic kidney disease (CKD). However, the status of ADTKD-UMOD in Taiwan remains unknown. In this study, we identified three heterozygous UMOD missense variants, c.121T > C (p.Cys41Arg), c.179G > A (p.Gly60Asp), and c.817G > T (p.Val273Phe), in a total of 221 selected CKD families (1.36%). Two of these missense variants, p.Cys41Arg and p.Gly60Asp, have not been reported previously. In vitro studies showed that both uromodulin variants have defects in cell membrane trafficking and excretion to the culture medium. The structure model predicted altered disulfide bond formation in both variants, but only p.Gly60Asp was predicted to cause protein destabilization. Our findings extend the mutation spectrum and indicate that the ADTKD-UMOD contributed to a small but significant cause of CKD in the Taiwanese population.
Collapse
Affiliation(s)
- Huan-Da Chen
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan
| | - Chih-Chuan Yu
- National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan
| | - I-Hsiao Yang
- Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan
| | - Chi-Chih Hung
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan
| | - Mei-Chuan Kuo
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan
| | - Der-Cherng Tarng
- Institutes of Physiology and Clinical Medicine, Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 112201, Taiwan
| | - Jer-Ming Chang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan
- Correspondence: (J.-M.C.); (D.-Y.H.); Tel.: +886-7-3121101 (ext. 7901) (J.-M.C.); +886-6-7000123 (ext. 65163) (D.-Y.H.)
| | - Daw-Yang Hwang
- National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan
- Center for Biomarkers and Biotech Drugs, Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807377, Taiwan
- Correspondence: (J.-M.C.); (D.-Y.H.); Tel.: +886-7-3121101 (ext. 7901) (J.-M.C.); +886-6-7000123 (ext. 65163) (D.-Y.H.)
| |
Collapse
|
15
|
Sambharia M, Rastogi P, Thomas CP. Monogenic focal segmental glomerulosclerosis: A conceptual framework for identification and management of a heterogeneous disease. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:377-398. [PMID: 35894442 PMCID: PMC9796580 DOI: 10.1002/ajmg.c.31990] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 01/29/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS) is not a disease, rather a pattern of histological injury occurring from a variety of causes. The exact pathogenesis has yet to be fully elucidated but is likely varied based on the type of injury and the primary target of that injury. However, the approach to treatment is often based on the degree of podocyte foot process effacement and clinical presentation without sufficient attention paid to etiology. In this regard, there are many monogenic causes of FSGS with variable presentation from nephrotic syndrome with histological features of primary podocytopathy to more modest degrees of proteinuria with limited evidence of podocyte foot process injury. It is likely that genetic causes are largely underdiagnosed, as the role and the timing of genetic testing in FSGS is not established and genetic counseling, testing options, and interpretation of genotype in the context of phenotype may be outside the scope of practice for both nephrologists and geneticists. Yet most clinicians believe that a genetic diagnosis can lead to targeted therapy, limit the use of high-dose corticosteroids as a therapeutic trial, and allow the prediction of the natural history and risk for recurrence in the transplanted kidney. In this manuscript, we emphasize that genetic FSGS is not monolithic in its presentation, opine on the importance of genetic testing and provide an algorithmic approach to deployment of genetic testing in a timely fashion when faced with a patient with FSGS.
Collapse
Affiliation(s)
- Meenakshi Sambharia
- Division of Nephrology, Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
| | - Prerna Rastogi
- Department of PathologyUniversity of IowaIowa CityIowaUSA
| | - Christie P. Thomas
- Division of Nephrology, Department of Internal MedicineUniversity of IowaIowa CityIowaUSA,Department of PediatricsUniversity of IowaIowa CityIowaUSA,The Iowa Institute of Human GeneticsUniversity of IowaIowa CityIowaUSA,Medical ServiceVeterans Affairs Medical CenterIowa CityIowaUSA
| |
Collapse
|
16
|
Claus LR, Snoek R, Knoers NVAM, van Eerde AM. Review of genetic testing in kidney disease patients: Diagnostic yield of single nucleotide variants and copy number variations evaluated across and within kidney phenotype groups. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:358-376. [PMID: 36161467 PMCID: PMC9828643 DOI: 10.1002/ajmg.c.31995] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/02/2022] [Accepted: 08/18/2022] [Indexed: 01/29/2023]
Abstract
Genetic kidney disease comprises a diverse group of disorders. These can roughly be divided in the phenotype groups congenital anomalies of the kidney and urinary tract, ciliopathies, glomerulopathies, stone disorders, tubulointerstitial kidney disease, and tubulopathies. Many etiologies can lead to chronic kidney disease that can progress to end-stage kidney disease. Despite each individual disease being rare, together these genetic disorders account for a large proportion of kidney disease cases. With the introduction of massively parallel sequencing, genetic testing has become more accessible, but a comprehensive analysis of the diagnostic yield is lacking. This review gives an overview of the diagnostic yield of genetic testing across and within the full range of kidney disease phenotypes through a systematic literature search that resulted in 115 included articles. Patient, test, and cohort characteristics that can influence the diagnostic yield are highlighted. Detection of copy number variations and their contribution to the diagnostic yield is described for all phenotype groups. Also, the impact of a genetic diagnosis for a patient and family members, which can be diagnostic, therapeutic, and prognostic, is shown through the included articles. This review will allow clinicians to estimate an a priori probability of finding a genetic cause for the kidney disease in their patients.
Collapse
Affiliation(s)
- Laura R. Claus
- Department of GeneticsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Rozemarijn Snoek
- Department of GeneticsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Nine V. A. M. Knoers
- Department of GeneticsUniversity Medical Center GroningenGroningenThe Netherlands
| | | |
Collapse
|
17
|
Olinger E, Schaeffer C, Kidd K, Elhassan EAE, Cheng Y, Dufour I, Schiano G, Mabillard H, Pasqualetto E, Hofmann P, Fuster DG, Kistler AD, Wilson IJ, Kmoch S, Raymond L, Robert T, Eckardt KU, Bleyer AJ, Köttgen A, Conlon PJ, Wiesener M, Sayer JA, Rampoldi L, Devuyst O. An intermediate-effect size variant in UMOD confers risk for chronic kidney disease. Proc Natl Acad Sci U S A 2022; 119:e2114734119. [PMID: 35947615 PMCID: PMC9388113 DOI: 10.1073/pnas.2114734119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
The kidney-specific gene UMOD encodes for uromodulin, the most abundant protein excreted in normal urine. Rare large-effect variants in UMOD cause autosomal dominant tubulointerstitial kidney disease (ADTKD), while common low-impact variants strongly associate with kidney function and the risk of chronic kidney disease (CKD) in the general population. It is unknown whether intermediate-effect variants in UMOD contribute to CKD. Here, candidate intermediate-effect UMOD variants were identified using large-population and ADTKD cohorts. Biological and phenotypical effects were investigated using cell models, in silico simulations, patient samples, and international databases and biobanks. Eight UMOD missense variants reported in ADTKD are present in the Genome Aggregation Database (gnomAD), with minor allele frequency (MAF) ranging from 10-5 to 10-3. Among them, the missense variant p.Thr62Pro is detected in ∼1/1,000 individuals of European ancestry, shows incomplete penetrance but a high genetic load in familial clusters of CKD, and is associated with kidney failure in the 100,000 Genomes Project (odds ratio [OR] = 3.99 [1.84 to 8.98]) and the UK Biobank (OR = 4.12 [1.32 to 12.85). Compared with canonical ADTKD mutations, the p.Thr62Pro carriers displayed reduced disease severity, with slower progression of CKD and an intermediate reduction of urinary uromodulin levels, in line with an intermediate trafficking defect in vitro and modest induction of endoplasmic reticulum (ER) stress. Identification of an intermediate-effect UMOD variant completes the spectrum of UMOD-associated kidney diseases and provides insights into the mechanisms of ADTKD and the genetic architecture of CKD.
Collapse
Affiliation(s)
- Eric Olinger
- Institute of Physiology, University of Zurich, CH-8057 Zurich, Switzerland
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Céline Schaeffer
- Molecular Genetics of Renal Disorders, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, 20132 Italy
| | - Kendrah Kidd
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC 27101
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic
| | - Elhussein A. E. Elhassan
- Division of Nephrology, Beaumont General Hospital, 1297 Dublin, Ireland
- Department of Medicine, Royal College of Surgeons in Ireland, 1297 Dublin, Ireland
| | - Yurong Cheng
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, D-79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, D-79106 Freiburg, Germany
| | - Inès Dufour
- Institute of Physiology, University of Zurich, CH-8057 Zurich, Switzerland
- Division of Nephrology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Guglielmo Schiano
- Institute of Physiology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Holly Mabillard
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
- Renal Services, Newcastle Upon Tyne Hospitals National Health Service Trust, Newcastle upon Tyne NE7 7DN, United Kingdom
| | - Elena Pasqualetto
- Molecular Genetics of Renal Disorders, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, 20132 Italy
| | - Patrick Hofmann
- Institute of Physiology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Daniel G. Fuster
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Andreas D. Kistler
- Department of Medicine, Cantonal Hospital Frauenfeld, 8501 Frauenfeld, Switzerland
| | - Ian J. Wilson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Stanislav Kmoch
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC 27101
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic
| | - Laure Raymond
- Genetics Department, Laboratoire Eurofins Biomnis, Lyon, 69007 France
| | - Thomas Robert
- Centre de Néphrologie et Transplantation Rénale, Centre Hospitalier Universitaire (CHU) la Conception, Assistance Publique - Hôpitaux de Marseille (AP-HM), Marseille, 13005 France
- Marseille Medical Genetics, Bioinformatics & Genetics, Unité Mixte de Recherche (UMR)_S910, Aix-Marseille Université, Marseille, 13005 France
| | | | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anthony J. Bleyer
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC 27101
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, D-79106 Freiburg, Germany
- Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79106 Freiburg, Germany
| | - Peter J. Conlon
- Division of Nephrology, Beaumont General Hospital, 1297 Dublin, Ireland
- Department of Medicine, Royal College of Surgeons in Ireland, 1297 Dublin, Ireland
| | - Michael Wiesener
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - John A. Sayer
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
- Renal Services, Newcastle Upon Tyne Hospitals National Health Service Trust, Newcastle upon Tyne NE7 7DN, United Kingdom
- National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre, Newcastle upon Tyne NE4 5PL, United Kingdom
| | - Luca Rampoldi
- Molecular Genetics of Renal Disorders, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, 20132 Italy
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, CH-8057 Zurich, Switzerland
- Division of Nephrology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
18
|
Devuyst O, Bochud M, Olinger E. UMOD and the architecture of kidney disease. Pflugers Arch 2022; 474:771-781. [PMID: 35881244 PMCID: PMC9338900 DOI: 10.1007/s00424-022-02733-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/17/2022]
Abstract
The identification of genetic factors associated with the risk, onset, and progression of kidney disease has the potential to provide mechanistic insights and therapeutic perspectives. In less than two decades, technological advances yielded a trove of information on the genetic architecture of chronic kidney disease. The spectrum of genetic influence ranges from (ultra)rare variants with large effect size, involved in Mendelian diseases, to common variants, often non-coding and with small effect size, which contribute to polygenic diseases. Here, we review the paradigm of UMOD, the gene coding for uromodulin, to illustrate how a kidney-specific protein of major physiological importance is involved in a spectrum of kidney disorders. This new field of investigation illustrates the importance of genetic variation in the pathogenesis and prognosis of disease, with therapeutic implications.
Collapse
Affiliation(s)
- Olivier Devuyst
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland.
| | - Murielle Bochud
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1010, Lausanne, Switzerland
| | - Eric Olinger
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| |
Collapse
|
19
|
Detecting MUC1 Variants in Patients Clinicopathologically Diagnosed With Having Autosomal Dominant Tubulointerstitial Kidney Disease. Kidney Int Rep 2022; 7:857-866. [PMID: 35497811 PMCID: PMC9039432 DOI: 10.1016/j.ekir.2021.12.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/15/2021] [Accepted: 12/28/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction Autosomal dominant tubulointerstitial kidney disease (ADTKD)-MUC1 is predominantly caused by frameshift mutations owing to a single-base insertion into the variable number tandem repeat (VNTR) region in MUC1. Because of the complexity of the variant hotspot, identification using short-read sequencers (SRSs) is challenging. Although recent studies have revealed the usefulness of long-read sequencers (LRSs), the prevalence of MUC1 variants in patients with clinically suspected ADTKD remains unknown. We aimed to clarify this prevalence and the genetic characteristics and clinical manifestations of ADTKD-MUC1 in a Japanese population using an SRS and an LRS. Methods From January 2015 to December 2019, genetic analysis was performed using an SRS in 48 patients with clinically suspected ADTKD. Additional analyses were conducted using an LRS in patients with negative SRS results. Results Short-read sequencing results revealed MUC1 variants in 1 patient harboring a cytosine insertion in the second repeat unit of the VNTR region; however, deeper VNTR regions could not be read by the SRS. Therefore, we conducted long-read sequencing analysis of 39 cases and detected MUC1 VNTR variants in 8 patients (in total, 9 patients from unrelated families). With the inclusion of family-affected patients (n = 31), the median age at the development of end-stage kidney disease (ESKD) was 45 years (95% CI: 40–40 years). Conclusion In Japan, the detection rate of MUC1 variants in patients with clinically suspected ADTKD was 18.8%. More than 20% of patients with negative SRS results had MUC1 variants detected by an LRS.
Collapse
|
20
|
Mabillard H, Olinger E, Sayer JA. UMOD and you! Explaining a rare disease diagnosis. JOURNAL OF RARE DISEASES (BERLIN, GERMANY) 2022; 1:4. [PMID: 36569465 PMCID: PMC9767401 DOI: 10.1007/s44162-022-00005-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/24/2022] [Indexed: 12/12/2022]
Abstract
The precise molecular genetic diagnosis of a rare inherited disease is nearly always a prolonged odyssey. Fortunately, modern molecular testing strategies are allowing more diagnoses to be made. There are many different rare inherited kidney diseases and both the genetic heterogeneity of these conditions and the clinical diversity often leads to confusing nomenclature. Autosomal dominant tubulointerstitial kidney disease (ADTKD) is an example of this. ADTKD, an inherited kidney disease that leads to worsening of kidney function over time, often culminating in end stage kidney disease, accounting for around 2% of this cohort. UMOD is the most common gene implicated in this disorder but there are at least 6 subtypes. At present, there are no specific treatments for ADTKD. Here, we review the current understanding of this condition and provide patient-centred information to allow conceptual understanding of this disease to allow better recognition, diagnosis and management.
Collapse
Affiliation(s)
- Holly Mabillard
- grid.1006.70000 0001 0462 7212Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ UK ,grid.420004.20000 0004 0444 2244Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN UK
| | - Eric Olinger
- grid.1006.70000 0001 0462 7212Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ UK
| | - John A. Sayer
- grid.1006.70000 0001 0462 7212Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ UK ,grid.420004.20000 0004 0444 2244Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN UK ,grid.454379.8NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, NE4 5PL UK
| |
Collapse
|
21
|
Wang D, Qiu Y, Fan J, Liu Y, Chen W, Li Z, Chen W, Wang X. Upregulation of C/EBP Homologous Protein induced by ER Stress Mediates Epithelial to Myofibroblast Transformation in ADTKD-UMOD. Int J Med Sci 2022; 19:364-376. [PMID: 35165522 PMCID: PMC8795802 DOI: 10.7150/ijms.65036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
Autosomal dominant tubulointerstitial kidney disease due to UMOD mutations (ADTKD-UMOD) results in chronic interstitial nephritis, which gradually develops into end-stage renal disease. It is believed that the accumulation of mutant uromodulin causes the endoplasmic reticulum (ER) stress, then leads to the kidney damage. But the underlying mechanism remains unclear. To find the ADTKD-UMOD patients, UMOD gene screening was performed in 26 patients with unexplained chronic interstitial nephritis, during the past 10 years in our department, and among them three ADTKD-UMOD cases were discovered. Routine pathological staining and electron microscopy sections were reviewed again to confirm their kidney lesions. Immunostaining of UMOD and ER stress marker GRP78, as well as CHOP have all been done. The strong colocalization of UMOD with GRP78 and CHOP in ADTKD-UMOD patients but not in other chronic interstitial nephritis patients had been found. Moreover in vitro experiments, ER stress induced by tunicamycin (TM) not only significantly increased the expression of GRP78 and CHOP, but also caused the epithelial to myofibroblast transformation (EMT) of renal tubular epithelial cells, evidenced by decreased expression of E-cadherin and increased expression of vimentin, and extracellular matrix (ECM) deposition, evidenced by increased expression of fibronectin (FN). CHOP knockdown could restore the upregulation of vimentin and FN induced by TM. Thus, specific activation of CHOP in renal tubular epithelial cells induced by UMOD protein might be the key reason of renal interstitial fibrosis in ADTKD-UMOD patients.
Collapse
Affiliation(s)
- Dan Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, China.,Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, China
| | - Yagui Qiu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, China.,Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, China
| | - Jinjin Fan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, China.,Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, China
| | - Yuanying Liu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, China.,Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, China
| | - Wenfang Chen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, China
| | - Zhijian Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, China.,Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, China.,Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, China
| | - Xin Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, China.,Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, China
| |
Collapse
|
22
|
Shen F, Liu M, Pei F, Yu L, Yang X. Role of uromodulin and complement activation in the progression of kidney disease. Oncol Lett 2021; 22:829. [PMID: 34691256 PMCID: PMC8527566 DOI: 10.3892/ol.2021.13090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/26/2021] [Indexed: 11/13/2022] Open
Abstract
Uromodulin (UMOD) is a glycoprotein that is selectively expressed on the epithelial cells of the thick ascending limb of Henle's loop and the early distal renal tubule. The present study aimed to investigate whether UMOD was associated with complement activation in patients with renal diseases. In addition, its biological function was examined in vitro. The expression levels of UMOD and complement components, including C1q, C3, C4 and C3a, and membrane attack complex (MAC) in the plasma of patients with IgA nephropathy (IgAN; n=58) and lupus nephritis (LN; n=36) were detected using ELISA, which was used to determine the association between UMOD expression and complement components. In addition, a simulated hypoxia-reoxygenation (H/R) model was used to stimulate UMOD expression in mouse inner medullary collecting duct cells. Additionally, the association between UMOD expression and complement components C1q and C3d at the cellular level was identified using western blotting and immunofluorescence, respectively. It was revealed that the plasma UMOD concentration was significantly decreased in patients with IgAN and LN compared with in healthy controls, and the levels of C3a and MAC were significantly increased in the plasma of patients with IgAN and LN. Furthermore, the plasma levels of C1q, C3 and C4 in patients with LN, but not in patients with IgAN, were significantly decreased compared with in healthy controls. The plasma levels of UMOD were negatively correlated with the plasma C3a and MAC concentrations. However, the plasma levels of UMOD were significantly and positively correlated with the plasma C1q concentration, but not with that of C3 and C4. It was identified that UMOD expression started to increase after 1 h of simulated H/R, and continued to increase at 6 and 12 h. In addition, cells with lower UMOD expression had higher C3d expression in vitro. Collectively, the present results suggested that UMOD was associated with severe complement activation and may be involved in complement-mediated immune protection by inhibiting complement activation in renal disease.
Collapse
Affiliation(s)
- Fei Shen
- Department of Nephrology, Qi Lu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Maojing Liu
- Department of Nephrology, Qi Lu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Fei Pei
- Department of Nephrology, Qi Lu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Li Yu
- Department of Nephrology, Qi Lu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiangdong Yang
- Department of Nephrology, Qi Lu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
23
|
Saracyn M, Kisiel B, Franaszczyk M, Brodowska-Kania D, Żmudzki W, Małecki R, Niemczyk L, Dyrla P, Kamiński G, Płoski R, Niemczyk S. Diabetic kidney disease: Are the reported associations with single-nucleotide polymorphisms disease-specific? World J Diabetes 2021; 12:1765-1777. [PMID: 34754377 PMCID: PMC8554375 DOI: 10.4239/wjd.v12.i10.1765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/26/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The genetic backgrounds of diabetic kidney disease (DKD) and end-stage kidney disease (ESKD) have not been fully elucidated. AIM To examine the individual and cumulative effects of single-nucleotide polymorphisms (SNPs) previously associated with DKD on the risk for ESKD of diabetic etiology and to determine if any associations observed were specific for DKD. METHODS Fourteen SNPs were genotyped in hemodialyzed 136 patients with diabetic ESKD (DKD group) and 121 patients with non-diabetic ESKD (NDKD group). Patients were also re-classified on the basis of the primary cause of chronic kidney disease (CKD). The distribution of alleles was compared between diabetic and non-diabetic groups as well as between different sub-phenotypes. The weighted multilocus genetic risk score (GRS) was calculated to estimate the cumulative risk conferred by all SNPs. The GRS distribution was then compared between the DKD and NDKD groups as well as in the groups according to the primary cause of CKD. RESULTS One SNP (rs841853; SLC2A1) showed a nominal association with DKD (P = 0.048; P > 0.05 after Bonferroni correction). The GRS was higher in the DKD group (0.615 ± 0.260) than in the NDKD group (0.590 ± 0.253), but the difference was not significant (P = 0.46). The analysis of associations between GRS and individual factors did not show any significant correlation. However, the GRS was significantly higher in patients with glomerular disease than in those with tubulointerstitial disease (P = 0.014) and in those with a combined group (tubulointerstitial, vascular, and cystic and congenital disease) (P = 0.018). CONCLUSION Our results suggest that selected SNPs that were previously associated with DKD may not be specific for DKD and may confer risk for CKD of different etiology, particularly those affecting renal glomeruli.
Collapse
Affiliation(s)
- Marek Saracyn
- Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine, Warsaw 04-141, Poland
- Department of Endocrinology and Isotope Therapy, Military Institute of Medicine, Warsaw 04-141, Poland
| | - Bartłomiej Kisiel
- Clinical Research Support Center, Military Institute of Medicine, Warsaw 04-141, Poland
| | - Maria Franaszczyk
- Department of Medical Biology, Molecular Biology Laboratory, Institute of Cardiology, Warsaw 04-628, Poland
| | - Dorota Brodowska-Kania
- Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine, Warsaw 04-141, Poland
- Department of Endocrinology and Isotope Therapy, Military Institute of Medicine, Warsaw 04-141, Poland
| | - Wawrzyniec Żmudzki
- Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine, Warsaw 04-141, Poland
| | - Robert Małecki
- Department of Nephrology, Międzyleski Specialist Hospital in Warsaw, Warsaw 04-749, Poland
| | - Longin Niemczyk
- Department of Nephrology, Dialysis and Internal Diseases, Warsaw Medical University, Warsaw 02-097, Poland
| | - Przemysław Dyrla
- Department of Gastroenterology, Military Institute of Medicine, Warsaw 04-141, Poland
| | - Grzegorz Kamiński
- Department of Endocrinology and Isotope Therapy, Military Institute of Medicine, Warsaw 04-141, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw 02-106, Poland
| | - Stanisław Niemczyk
- Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine, Warsaw 04-141, Poland
| |
Collapse
|
24
|
Mabillard H, Sayer JA, Olinger E. Clinical and genetic spectra of autosomal dominant tubulointerstitial kidney disease. Nephrol Dial Transplant 2021; 38:271-282. [PMID: 34519781 PMCID: PMC9923703 DOI: 10.1093/ndt/gfab268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 12/23/2022] Open
Abstract
Autosomal dominant tubulointerstitial kidney disease (ADTKD) is a clinical entity defined by interstitial fibrosis with tubular damage, bland urinalysis and progressive kidney disease. Mutations in UMOD and MUC1 are the most common causes of ADTKD but other rarer (REN, SEC61A1), atypical (DNAJB11) or heterogeneous (HNF1B) subtypes have been described. Raised awareness, as well as the implementation of next-generation sequencing approaches, have led to a sharp increase in reported cases. ADTKD is now believed to be one of the most common monogenic forms of kidney disease and overall it probably accounts for ∼5% of all monogenic causes of chronic kidney disease. Through international efforts and systematic analyses of patient cohorts, critical insights into clinical and genetic spectra of ADTKD, genotype-phenotype correlations as well as innovative diagnostic approaches have been amassed during recent years. In addition, intense research efforts are addressed towards deciphering and rescuing the cellular pathways activated in ADTKD. A better understanding of these diseases and of possible commonalities with more common causes of kidney disease may be relevant to understand and target mechanisms leading to fibrotic kidney disease in general. Here we highlight recent advances in our understanding of the different subtypes of ADTKD with an emphasis on the molecular underpinnings and its clinical presentations.
Collapse
Affiliation(s)
- Holly Mabillard
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK,Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - John A Sayer
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK,Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK,NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, UK
| | - Eric Olinger
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK,Correspondence to: Eric Olinger; E-mail:
| |
Collapse
|
25
|
Kim Y, Wang Z, Li C, Kidd K, Wang Y, Johnson BG, Kmoch S, Morrissey JJ, Bleyer AJ, Duffield JS, Singamaneni S, Chen YM. Ultrabright plasmonic fluor nanolabel-enabled detection of a urinary ER stress biomarker in autosomal dominant tubulointerstitial kidney disease. Am J Physiol Renal Physiol 2021; 321:F236-F244. [PMID: 34251273 PMCID: PMC8424663 DOI: 10.1152/ajprenal.00231.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/22/2022] Open
Abstract
Autosomal dominant tubulointerstitial kidney disease (ADTKD)-uromodulin (UMOD) is the most common nonpolycystic genetic kidney disease, but it remains unrecognized due to its clinical heterogeneity and lack of screening test. Moreover, the fact that the clinical feature is a poor predictor of disease outcome further highlights the need for the development of mechanistic biomarkers in ADTKD. However, low abundant urinary proteins secreted by thick ascending limb cells, where UMOD is synthesized, have posed a challenge for the detection of biomarkers in ADTKD-UMOD. In the CRISPR/Cas9-generated murine model and patients with ADTKD-UMOD, we found that immunoglobulin heavy chain-binding protein (BiP), an endoplasmic reticulum chaperone, was exclusively upregulated by mutant UMOD in the thick ascending limb and easily detected by Western blot analysis in the urine at an early stage of disease. However, even the most sensitive ELISA failed to detect urinary BiP in affected individuals. We therefore developed an ultrasensitive, plasmon-enhanced fluorescence-linked immunosorbent assay (p-FLISA) to quantify urinary BiP concentration by harnessing the newly invented ultrabright fluorescent nanoconstruct, termed "plasmonic Fluor." p-FLISA demonstrated that urinary BiP excretion was significantly elevated in patients with ADTKD-UMOD compared with unaffected controls, which may have potential utility in risk stratification, disease activity monitoring, disease progression prediction, and guidance of endoplasmic reticulum-targeted therapies in ADTKD.NEW & NOTEWORTHY Autosomal dominant tubulointerstitial kidney disease (ADTKD)-uromodulin (UMOD) is an underdiagnosed cause of chronic kidney disease (CKD). Lack of ultrasensitive bioanalytical tools has hindered the discovery of low abundant urinary biomarkers in ADTKD. Here, we developed an ultrasensitive plasmon-enhanced fluorescence-linked immunosorbent assay (p-FLISA). p-FLISA demonstrated that secreted immunoglobulin heavy chain-binding protein is an early urinary endoplasmic reticulum stress biomarker in ADTKD-UMOD, which will be valuable in monitoring disease progression and the treatment response in ADTKD.
Collapse
Affiliation(s)
- Yeawon Kim
- Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Zheyu Wang
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Chuang Li
- Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Kendrah Kidd
- Section of Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Research Unit of Rare Diseases, Department of Pediatric and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Yixuan Wang
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Bryce G Johnson
- Pfizer Worldwide Research and Development, Inflammation & Immunology, Cambridge, Massachusetts
| | - Stanislav Kmoch
- Section of Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Research Unit of Rare Diseases, Department of Pediatric and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jeremiah J Morrissey
- Division of Clinical and Translational Research, Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
| | - Anthony J Bleyer
- Section of Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
| | - Ying Maggie Chen
- Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
26
|
Floris M, Lepori N, Angioi A, Cabiddu G, Piras D, Loi V, Swaminathan S, Rosner MH, Pani A. Chronic Kidney Disease of Undetermined Etiology around the World. Kidney Blood Press Res 2021; 46:142-151. [PMID: 33845480 DOI: 10.1159/000513014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/12/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Epidemics of chronic kidney disease of uncertain etiology (CKDu) are occurring on the Pacific coast of Central America, in Sri Lankan and Indian agricultural communities, and in other hotspots around the world. CKDu primarily affects male agricultural workers, and traditional risk factors such as diabetes and hypertension are not involved in the pathogenesis. Although a causal factor has not yet been identified, culprits include repeated volume depletion-induced kidney injury, as well as exposure to agrichemicals, heavy metals and nephrotoxins contained in drugs, beverages, and traditional medications. Multiple risk factors may interact in a synergistic fashion thus resulting in chronic kidney damage. The absence of undefined protective factors may amplify the risk. SUMMARY This review focuses on the current understanding of CKDu by analyzing epidemiology, potential risk factors, and clinical and pathological features as well as geographical peculiarities of each disease. We also focus our attention on the etiology of these conditions in which multiple factors may synergistically contribute to the development and progression of the disease. The last part of the manuscript is dedicated to the research agenda and practical recommendations. Key Messages: Since renal replacement therapy is not extensively available in areas where CKDu is widespread, prevention by avoiding all known potential risk factors is crucial. Innovative healthcare solutions and social policies in endemic areas along with collaborative clinical research projects are needed to better identify factors involved in disease promotion and progression.
Collapse
Affiliation(s)
- Matteo Floris
- Nephrology and Dialysis, G. Brotzu Hospital, Università degli Studi di Cagliari, Cagliari, Italy
| | - Nicola Lepori
- Nephrology and Dialysis, G. Brotzu Hospital, Università degli Studi di Cagliari, Cagliari, Italy
| | - Andrea Angioi
- Nephrology and Dialysis, G. Brotzu Hospital, Università degli Studi di Cagliari, Cagliari, Italy
| | - Gianfranca Cabiddu
- Nephrology and Dialysis, G. Brotzu Hospital, Università degli Studi di Cagliari, Cagliari, Italy
| | - Doloretta Piras
- Nephrology and Dialysis, G. Brotzu Hospital, Università degli Studi di Cagliari, Cagliari, Italy
| | - Valentina Loi
- Nephrology and Dialysis, G. Brotzu Hospital, Università degli Studi di Cagliari, Cagliari, Italy
| | | | - Mitchell H Rosner
- Division of Nephrology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Antonello Pani
- Nephrology and Dialysis, G. Brotzu Hospital, Università degli Studi di Cagliari, Cagliari, Italy
| |
Collapse
|
27
|
Significance of kidney biopsy in autosomal dominant tubulointerstitial kidney disease-UMOD: is kidney biopsy truly nonspecific? BMC Nephrol 2021; 22:1. [PMID: 33397327 PMCID: PMC7784305 DOI: 10.1186/s12882-020-02169-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023] Open
Abstract
Background Autosomal dominant tubulointerstitial kidney disease (ADTKD) is a rare hereditary disease caused by a variety of genetic mutations. Carriers of a mutation in the responsible genes are at risk of reaching end-stage kidney disease typically in middle age. The frequency of this disease is assumed to be underestimated because of a lack of disease-specific signs. Pathological findings obtained from kidney of uromodulin related ADTKD (ADTKD-UMOD) patients are regarded as non-specific and less-informative for its diagnosis. This research was undertaken to evaluate the significance of kidney biopsy in ADTKD-UMOD patients. Methods Thirteen patients from 10 families with nine identified uromodulin (UMOD) gene mutations who underwent kidney biopsy in the past were studied. Their kidney tissues were stained with anti-UMOD antibody in addition to conventional methods such as PAS staining. When positive, the numbers of tubules with visible UMOD protein accumulations were calculated based on the total numbers of UMOD expressing tubules. Pathological findings such as tubulointerstitial fibrosis, atrophy, inflammation and glomerulosclerosis were also evaluated and analyzed. Results Interstitial fibrosis and tubular atrophy were present in all 13 patients. Most atrophic tubules with thickening and lamellation of tubular basement membranes showed negative UMOD staining. In all but two patients with C94F mutations, massive accumulation of UMOD proteins was observed in the renal endoplasmic reticulum. UMOD accumulations were also detectable by PAS staining as polymorphic unstructured materials in the 11 patients at frequencies of 2.6–53.4%. 80.4% of the UMOD accumulations were surrounded by halos. The detection rate of UMOD accumulations positively correlated with eGFR. Glomerulosclerosis was detected in 11/13 patients, with a frequency of 20.0 to 61.1%, while no cystic dilatations of glomeruli were detected. Conclusions Massively accumulated UMOD proteins in ADTKD-UMOD kidneys are detectable not only by immunostaining using anti-UMOD antibody but also by conventional methods such as PAS staining, although their detection is not easy. These findings can provide important clues to the diagnosis of ADTKD-UMOD. Kidney biopsy in ADTKD-UMOD may be more informative than assumed previously.
Collapse
|
28
|
Wang Y, Liu H, He Q, Yi Z, Li Y, Dang X. A novel likely pathogenic variant in the UMOD gene in a family with autosomal dominant tubulointerstitial kidney disease: a case report. BMC Nephrol 2020; 21:368. [PMID: 32847529 PMCID: PMC7449067 DOI: 10.1186/s12882-020-02022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/16/2020] [Indexed: 11/10/2022] Open
Abstract
Background Autosomal dominant tubulointerstitial kidney disease (ADTKD) caused by a pathogenic variant in UMOD (ADTKD-UMOD) is a rare group of diseases characterized by hyperuricaemia with decreased urinary excretion of urate, gout and progressive chronic kidney disease. The mundane clinical characteristics often result in a failure to diagnose ADTKD-UMOD. Case presentation In this report, we describe a 12-year-old boy who presented with polyarthritis, hyperuricaemia and tophi with a family history of 8 affected individuals. Clinical data, blood and urine samples of 3 affected members and 8 unaffected members were collected. Genetic testing of the eight genes (UMOD, HPRT1, PRPS1, MTHFR, REN, HNF1b, URAT1 and G6PC) was performed using Sanger sequencing. A heterozygous missense variant (c.674C > G; p.T225R) in UMOD was found in this boy, his older brother with the same phenotype and his mother with hyperuricaemia, gout and chronic kidney disease. Conclusion This case highlights the importance of family history and genetic testing for definite diagnosis. This novel variant extends the spectrum of known UMOD gene variants and further supports the allelic heterogeneity of ADTKD-UMOD.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pediatrics, the Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, Central South University, Changsha, Huan, China
| | - Haibo Liu
- Department of Pediatrics, the Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, Central South University, Changsha, Huan, China
| | - Qingnan He
- Department of Pediatrics, the Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, Central South University, Changsha, Huan, China
| | - Zhuwen Yi
- Department of Pediatrics, the Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, Central South University, Changsha, Huan, China
| | - Yongzhen Li
- Department of Pediatrics, the Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, Central South University, Changsha, Huan, China
| | - Xiqiang Dang
- Department of Pediatrics, the Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China. .,Laboratory of Pediatric Nephrology, Institute of Pediatrics, Central South University, Changsha, Huan, China.
| |
Collapse
|
29
|
Abstract
Mutations in approximately 80 genes have been implicated as the cause of various genetic kidney diseases. However, gene delivery to kidney cells from the blood is inefficient because of the natural filtering functions of the glomerulus, and research into and development of gene therapy directed toward kidney disease has lagged behind as compared with hepatic, neuromuscular, and ocular gene therapy. This lack of progress is in spite of numerous genetic mouse models of human disease available to the research community and many vectors in existence that can theoretically deliver genes to kidney cells with high efficiency. In the past decade, several groups have begun to develop novel injection techniques in mice, such as retrograde ureter, renal vein, and direct subcapsular injections to help resolve the issue of gene delivery to the kidney through the blood. In addition, the ability to retarget vectors specifically toward kidney cells has been underutilized but shows promise. This review discusses how recent advances in gene delivery to the kidney and the field of gene therapy can leverage the wealth of knowledge of kidney genetics to work toward developing gene therapy products for patients with kidney disease.
Collapse
Affiliation(s)
- Jeffrey D Rubin
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN, USA
| | - Michael A Barry
- Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
30
|
Olinger E, Hofmann P, Kidd K, Dufour I, Belge H, Schaeffer C, Kipp A, Bonny O, Deltas C, Demoulin N, Fehr T, Fuster DG, Gale DP, Goffin E, Hodaňová K, Huynh-Do U, Kistler A, Morelle J, Papagregoriou G, Pirson Y, Sandford R, Sayer JA, Torra R, Venzin C, Venzin R, Vogt B, Živná M, Greka A, Dahan K, Rampoldi L, Kmoch S, Bleyer AJ, Devuyst O. Clinical and genetic spectra of autosomal dominant tubulointerstitial kidney disease due to mutations in UMOD and MUC1. Kidney Int 2020; 98:717-731. [PMID: 32450155 DOI: 10.1016/j.kint.2020.04.038] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/23/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022]
Abstract
Autosomal dominant tubulointerstitial kidney disease (ADTKD) is an increasingly recognized cause of end-stage kidney disease, primarily due to mutations in UMOD and MUC1. The lack of clinical recognition and the small size of cohorts have slowed the understanding of disease ontology and development of diagnostic algorithms. We analyzed two registries from Europe and the United States to define genetic and clinical characteristics of ADTKD-UMOD and ADTKD-MUC1 and develop a practical score to guide genetic testing. Our study encompassed 726 patients from 585 families with a presumptive diagnosis of ADTKD along with clinical, biochemical, genetic and radiologic data. Collectively, 106 different UMOD mutations were detected in 216/562 (38.4%) of families with ADTKD (303 patients), and 4 different MUC1 mutations in 72/205 (35.1%) of the families that are UMOD-negative (83 patients). The median kidney survival was significantly shorter in patients with ADTKD-MUC1 compared to ADTKD-UMOD (46 vs. 54 years, respectively), whereas the median gout-free survival was dramatically reduced in patients with ADTKD-UMOD compared to ADTKD-MUC1 (30 vs. 67 years, respectively). In contrast to patients with ADTKD-UMOD, patients with ADTKD-MUC1 had normal urinary excretion of uromodulin and distribution of uromodulin in tubular cells. A diagnostic algorithm based on a simple score coupled with urinary uromodulin measurements separated patients with ADTKD-UMOD from those with ADTKD-MUC1 with a sensitivity of 94.1%, a specificity of 74.3% and a positive predictive value of 84.2% for a UMOD mutation. Thus, ADTKD-UMOD is more frequently diagnosed than ADTKD-MUC1, ADTKD subtypes present with distinct clinical features, and a simple score coupled with urine uromodulin measurements may help prioritizing genetic testing.
Collapse
Affiliation(s)
- Eric Olinger
- Institute of Physiology, University of Zurich, Zurich, Switzerland; Department of Nephrology and Hypertension, Inselspital Bern University Hospital, Bern, Switzerland; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Patrick Hofmann
- Institute of Physiology, University of Zurich, Zurich, Switzerland; Department of Internal Medicine, Hospital Uster, Uster, Switzerland
| | - Kendrah Kidd
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA; Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Inès Dufour
- Institute of Physiology, University of Zurich, Zurich, Switzerland; Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Hendrica Belge
- Center for Human Genetics, Institute of Pathology and Genetics, Gosselies, Belgium
| | - Céline Schaeffer
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Anne Kipp
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Olivier Bonny
- Service of Nephrology, Lausanne University Hospital, Lausanne, Switzerland
| | - Constantinos Deltas
- Molecular Medicine Research Center, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Nathalie Demoulin
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Thomas Fehr
- Institute of Physiology, University of Zurich, Zurich, Switzerland; Department of Internal Medicine, Cantonal Hospital Graubuenden, Chur, Switzerland
| | - Daniel G Fuster
- Department of Nephrology and Hypertension, Inselspital Bern University Hospital, Bern, Switzerland
| | - Daniel P Gale
- Department of Nephrology, University College of London, London, UK
| | - Eric Goffin
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Kateřina Hodaňová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Uyen Huynh-Do
- Department of Nephrology and Hypertension, Inselspital Bern University Hospital, Bern, Switzerland
| | - Andreas Kistler
- Department of Internal Medicine, Cantonal Hospital Frauenfeld, Frauenfeld, Switzerland
| | - Johann Morelle
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Gregory Papagregoriou
- Molecular Medicine Research Center, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Yves Pirson
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Richard Sandford
- Department of Medical Genetics, Cambridge Biomedical Campus, Cambridge, UK
| | - John A Sayer
- Renal Services, Newcastle upon Tyne Hospitals National Health Service Trust, Newcastle upon Tyne, UK; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Roser Torra
- Inherited Renal Disorders, Nephrology Department, Fundació Puigvert, Spanish Renal Research Network (REDinREN), Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Christina Venzin
- Division of Nephrology, Department of Internal Medicine, Hospital Davos, Davos, Switzerland
| | - Reto Venzin
- Division of Nephrology, Department of Internal Medicine, Cantonal Hospital Graubuenden, Chur, Switzerland
| | - Bruno Vogt
- Department of Nephrology and Hypertension, Inselspital Bern University Hospital, Bern, Switzerland
| | - Martina Živná
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Anna Greka
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Broad Institute of MIT and Harvard, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Karin Dahan
- Center for Human Genetics, Institute of Pathology and Genetics, Gosselies, Belgium
| | - Luca Rampoldi
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Anthony J Bleyer
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA; Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland; Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
| |
Collapse
|
31
|
Cormican S, Connaughton DM, Kennedy C, Murray S, Živná M, Kmoch S, Fennelly NK, O'Kelly P, Benson KA, Conlon ET, Cavalleri G, Foley C, Doyle B, Dorman A, Little MA, Lavin P, Kidd K, Bleyer AJ, Conlon PJ. Autosomal dominant tubulointerstitial kidney disease (ADTKD) in Ireland. Ren Fail 2020; 41:832-841. [PMID: 31509055 PMCID: PMC6746258 DOI: 10.1080/0886022x.2019.1655452] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Introduction: Autosomal dominant tubulointerstitial kidney disease (ADTKD) is a rare genetic cause of renal impairment resulting from mutations in the MUC1, UMOD, HNF1B, REN, and SEC61A1 genes. Neither the national or global prevalence of these diseases has been determined. We aimed to establish a database of patients with ADTKD in Ireland and report the clinical and genetic characteristics of these families. Methods: We identified patients via the Irish Kidney Gene Project and referral to the national renal genetics clinic in Beaumont Hospital who met the clinical criteria for ADTKD (chronic kidney disease, bland urinary sediment, and autosomal dominant inheritance). Eligible patients were then invited to undergo genetic testing by a variety of methods including panel-based testing, whole exome sequencing and, in five families who met the criteria for diagnosis of ADTKD but were negative for causal genetic mutations, we analyzed urinary cell smears for the presence of MUC1fs protein. Results: We studied 54 individuals from 16 families. We identified mutations in the MUC1 gene in three families, UMOD in five families, HNF1beta in two families, and the presence of abnormal MUC1 protein in urine smears in three families (one of which was previously known to carry the genetic mutation). We were unable to identify a mutation in 4 families (3 of whom also tested negative for urinary MUC1fs). Conclusions: There are 4443 people with ESRD in Ireland, 24 of whom are members of the cohort described herein. We observe that ADTKD represents at least 0.54% of Irish ESRD patients.
Collapse
Affiliation(s)
- S Cormican
- Nephrology Department, Beaumont Hospital , Dublin , Ireland
| | - D M Connaughton
- Nephrology Department, Beaumont Hospital , Dublin , Ireland.,Department of Medicine, Boston Children's Hospital, Harvard Medical School , Boston , MA , USA.,Trinity Health Kidney Centre, Trinity Translational Medicine Institute , Dublin , Ireland
| | - C Kennedy
- Nephrology Department, Beaumont Hospital , Dublin , Ireland.,Department of Medicine, Royal College of Surgeons , Dublin , Ireland
| | - S Murray
- Nephrology Department, Beaumont Hospital , Dublin , Ireland.,Department of Medicine, Royal College of Surgeons , Dublin , Ireland
| | - M Živná
- Department of Pediatrics and Adolescent Medicine, Research Unit for Rare Diseases, First Faculty of Medicine, Charles University , Prague , Czech Republic
| | - S Kmoch
- Department of Pediatrics and Adolescent Medicine, Research Unit for Rare Diseases, First Faculty of Medicine, Charles University , Prague , Czech Republic
| | - N K Fennelly
- Pathology Department, Beaumont Hospital , Dublin , Ireland
| | - P O'Kelly
- Nephrology Department, Beaumont Hospital , Dublin , Ireland
| | - K A Benson
- Nephrology Department, Beaumont Hospital , Dublin , Ireland.,Department of Medicine, Royal College of Surgeons , Dublin , Ireland
| | - E T Conlon
- Nephrology Department, Beaumont Hospital , Dublin , Ireland
| | - G Cavalleri
- Department of Medicine, Royal College of Surgeons , Dublin , Ireland
| | - C Foley
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute , Dublin , Ireland.,Clinical Research Centre, Royal College of Surgeons , Dublin , Ireland
| | - B Doyle
- Pathology Department, Beaumont Hospital , Dublin , Ireland
| | - A Dorman
- Pathology Department, Beaumont Hospital , Dublin , Ireland
| | - M A Little
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute , Dublin , Ireland.,Trinity Health Kidney Centre, Tallaght Hospital , Dublin , Ireland
| | - P Lavin
- Trinity Health Kidney Centre, Tallaght Hospital , Dublin , Ireland
| | - K Kidd
- Section on Nephrology, Wake Forest School of Medicine , Winston-Salem , NC , USA
| | - A J Bleyer
- Section on Nephrology, Wake Forest School of Medicine , Winston-Salem , NC , USA
| | - P J Conlon
- Nephrology Department, Beaumont Hospital , Dublin , Ireland.,Department of Medicine, Royal College of Surgeons , Dublin , Ireland
| |
Collapse
|
32
|
Cormican S, Kennedy C, Connaughton DM, O'Kelly P, Murray S, Živná M, Kmoch S, Fennelly NK, Benson KA, Conlon ET, Cavalleri GL, Foley C, Doyle B, Dorman A, Little MA, Lavin P, Kidd K, Bleyer AJ, Conlon PJ. Renal transplant outcomes in patients with autosomal dominant tubulointerstitial kidney disease. Clin Transplant 2020; 34:e13783. [PMID: 31958169 DOI: 10.1111/ctr.13783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Autosomal dominant tubulointerstitial kidney disease (ADTKD) is a rare genetic cause of chronic kidney disease (CKD) and end-stage renal disease (ESRD). We aimed to compare renal transplant outcomes in people with ESRD due to ADTKD to those with other causes of renal failure. METHODS Patients with clinical characteristics consistent with ADTKD by the criteria outlined in the 2015 KDIGO consensus were included. We compared ADTKD transplant outcomes with those of 4633 non-ADTKD renal transplant recipients. RESULTS We included 31 patients who met diagnostic criteria for ADTKD in this analysis, 23 of whom had an identified mutation (28 were categorized as definite-ADTKD and 3 as suspected ADTKD). Five patients received a second transplant during follow-up. In total, 36 grafts were included. We did not identify significant differences between groups in terms of graft or patient survival after transplantation. Twenty-five transplant biopsies were performed during follow-up, and none of these showed signs of recurrent ADTKD post-transplant. CONCLUSION In patients with ESRD due to ADTKD, we demonstrate that transplant outcomes are comparable with the general transplant population. There is no evidence that ADTKD can recur after transplantation.
Collapse
Affiliation(s)
- Sarah Cormican
- Nephrology Department, Beaumont Hospital, Dublin, Ireland
| | - Claire Kennedy
- Nephrology Department, Beaumont Hospital, Dublin, Ireland.,Royal College of Surgeons, Dublin, Ireland
| | - Dervla M Connaughton
- Nephrology Department, Beaumont Hospital, Dublin, Ireland.,Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Susan Murray
- Nephrology Department, Beaumont Hospital, Dublin, Ireland.,Royal College of Surgeons, Dublin, Ireland
| | - Martina Živná
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Katherine A Benson
- Nephrology Department, Beaumont Hospital, Dublin, Ireland.,Royal College of Surgeons, Dublin, Ireland
| | - Eoin T Conlon
- Nephrology Department, Beaumont Hospital, Dublin, Ireland
| | | | - Claire Foley
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland.,Clinical Research Centre, Royal College of Surgeons, Dublin, Ireland
| | - Brendan Doyle
- Pathology Department, Beaumont Hospital, Dublin, Ireland
| | - Anthony Dorman
- Royal College of Surgeons, Dublin, Ireland.,Pathology Department, Beaumont Hospital, Dublin, Ireland
| | - Mark A Little
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland.,Trinity Health Kidney Centre, Tallaght Hospital, Dublin, Ireland
| | - Peter Lavin
- Trinity Health Kidney Centre, Tallaght Hospital, Dublin, Ireland
| | - Kendrah Kidd
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Section on Nephrology, Wake Forest School of Medicine, Medical Centre Blvd., Winston-Salem, NC, USA
| | - Anthony J Bleyer
- Section on Nephrology, Wake Forest School of Medicine, Medical Centre Blvd., Winston-Salem, NC, USA
| | - Peter J Conlon
- Nephrology Department, Beaumont Hospital, Dublin, Ireland.,Royal College of Surgeons, Dublin, Ireland
| |
Collapse
|
33
|
Chun J, Wang M, Wilkins MS, Knob AU, Benjamin A, Bu L, Pollak MR. Autosomal Dominant Tubulointerstitial Kidney Disease-Uromodulin Misclassified as Focal Segmental Glomerulosclerosis or Hereditary Glomerular Disease. Kidney Int Rep 2020; 5:519-529. [PMID: 32274456 PMCID: PMC7136358 DOI: 10.1016/j.ekir.2019.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/11/2019] [Accepted: 12/31/2019] [Indexed: 12/19/2022] Open
Abstract
Introduction Focal segmental glomerulosclerosis (FSGS) is a histopathologically defined kidney lesion. FSGS can be observed with various underlying causes, including highly penetrant monogenic renal disease. We recently identified pathogenic variants of UMOD, a gene encoding the tubular protein uromodulin, in 8 families with suspected glomerular disease. Methods To validate pathogenic variants of UMOD, we reviewed the clinical and pathology reports of members of 8 families identified to have variants of UMOD. Clinical, laboratory, and pathologic data were collected, and genetic confirmation for UMOD was performed by Sanger sequencing. Results Biopsy-proven cases of FSGS were verified in 21% (7 of 34) of patients with UMOD variants. The UMOD variants seen in 7 families were mutations previously reported in autosomal dominant tubulointerstitial kidney disease-uromodulin (ADTKD-UMOD). For one family with 3 generations affected, we identified p.R79G in a noncanonical transcript variant of UMOD co-segregating with disease. Consistent with ADTKD, most patients in our study presented with autosomal dominant inheritance, subnephrotic range proteinuria, minimal hematuria, and renal impairment. Kidney biopsies showed histologic features of glomerular injury consistent with secondary FSGS, including focal sclerosis and partial podocyte foot process effacement. Conclusion Our study demonstrates that with the use of standard clinical testing and kidney biopsy, clinicians were unable to make the diagnosis of ADTKD-UMOD; patients were often labeled with a clinical diagnosis of FSGS. We show that genetic testing can establish the diagnosis of ADTKD-UMOD with secondary FSGS. Genetic testing in individuals with FSGS histology should not be limited to genes that directly impair podocyte function.
Collapse
Affiliation(s)
- Justin Chun
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Division of Nephrology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Minxian Wang
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA.,Medical and Population Genetics Program of the Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Maris S Wilkins
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| | - Andrea U Knob
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| | - Ava Benjamin
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| | - Lihong Bu
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Martin R Pollak
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Abstract
Autosomal dominant tubulointerstitial kidney disease (ADTKD) is a recently defined entity that includes rare kidney diseases characterized by tubular damage and interstitial fibrosis in the absence of glomerular lesions, with inescapable progression to end-stage renal disease. These diseases have long been neglected and under-recognized, in part due to confusing and inconsistent terminology. The introduction of a gene-based, unifying terminology led to the identification of an increasing number of cases, with recent data suggesting that ADTKD is one of the more common monogenic kidney diseases after autosomal dominant polycystic kidney disease, accounting for ~5% of monogenic disorders causing chronic kidney disease. ADTKD is caused by mutations in at least five different genes, including UMOD, MUC1, REN, HNF1B and, more rarely, SEC61A1. These genes encode various proteins with renal and extra-renal functions. The mundane clinical characteristics and lack of appreciation of family history often result in a failure to diagnose ADTKD. This Primer highlights the different types of ADTKD and discusses the distinct genetic and clinical features as well as the underlying mechanisms.
Collapse
|
35
|
Schaeffer C, Izzi C, Vettori A, Pasqualetto E, Cittaro D, Lazarevic D, Caridi G, Gnutti B, Mazza C, Jovine L, Scolari F, Rampoldi L. Autosomal Dominant Tubulointerstitial Kidney Disease with Adult Onset due to a Novel Renin Mutation Mapping in the Mature Protein. Sci Rep 2019; 9:11601. [PMID: 31406136 PMCID: PMC6691008 DOI: 10.1038/s41598-019-48014-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/22/2019] [Indexed: 01/10/2023] Open
Abstract
Autosomal dominant tubulointerstitial kidney disease (ADTKD) is a genetically heterogeneous renal disorder leading to progressive loss of renal function. ADTKD-REN is due to rare mutations in renin, all localized in the protein leader peptide and affecting its co-translational insertion in the endoplasmic reticulum (ER). Through exome sequencing in an adult-onset ADTKD family we identified a new renin variant, p.L381P, mapping in the mature protein. To assess its pathogenicity, we combined genetic data, computational and predictive analysis and functional studies. The L381P substitution affects an evolutionary conserved residue, co-segregates with renal disease, is not found in population databases and is predicted to be deleterious by in silico tools and by structural modelling. Expression of the L381P variant leads to its ER retention and induction of the Unfolded Protein Response in cell models and to defective pronephros development in zebrafish. Our work shows that REN mutations outside of renin leader peptide can cause ADTKD and delineates an adult form of ADTKD-REN, a condition which has usually its onset in childhood. This has implications for the molecular diagnosis and the estimated prevalence of the disease and points at ER homeostasis as a common pathway affected in ADTKD-REN, and possibly more generally in ADTKD.
Collapse
Affiliation(s)
- Céline Schaeffer
- Molecular Genetics of Renal Disorders, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Izzi
- Division of Nephrology and Dialysis, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and Montichiari Hospital, Brescia, Italy.,Prenatal Diagnosis Unit, Department of Obstetrics and Gynecology, ASST Spedali Civili, Brescia, Italy
| | - Andrea Vettori
- Department of Biology, University of Padova, Padova, Italy.,Department of Biotechnology, University of Verona, Verona, Italy
| | - Elena Pasqualetto
- Molecular Genetics of Renal Disorders, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Davide Cittaro
- Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dejan Lazarevic
- Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gianluca Caridi
- Laboratory of Molecular Nephrology, Istituto Giannina Gaslini IRCCS, Genoa, Italy
| | - Barbara Gnutti
- Laboratory of Medical Genetics, Department of Pathology, ASST Spedali Civili, Brescia, Italy
| | - Cinzia Mazza
- Laboratory of Medical Genetics, Department of Pathology, ASST Spedali Civili, Brescia, Italy
| | - Luca Jovine
- Department of Biosciences and Nutrition & Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Francesco Scolari
- Division of Nephrology and Dialysis, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and Montichiari Hospital, Brescia, Italy
| | - Luca Rampoldi
- Molecular Genetics of Renal Disorders, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|